JP2004117149A - Method and device for electrolytic decontamination for waste material from reprocessing facility - Google Patents

Method and device for electrolytic decontamination for waste material from reprocessing facility Download PDF

Info

Publication number
JP2004117149A
JP2004117149A JP2002280693A JP2002280693A JP2004117149A JP 2004117149 A JP2004117149 A JP 2004117149A JP 2002280693 A JP2002280693 A JP 2002280693A JP 2002280693 A JP2002280693 A JP 2002280693A JP 2004117149 A JP2004117149 A JP 2004117149A
Authority
JP
Japan
Prior art keywords
decontamination
decontaminated
electrolytic cell
waste material
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002280693A
Other languages
Japanese (ja)
Inventor
Toshio Sawa
沢 俊雄
Yoshikazu Kondo
近藤 賀計
Kiyotaka Ueda
上田 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002280693A priority Critical patent/JP2004117149A/en
Publication of JP2004117149A publication Critical patent/JP2004117149A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for the electrolytic decontamination which make it possible to efficiently and simultaneously decontaminate numerous objects to be decontaminated which are waste materials from reprocessing facilities such as end pieces of fuel cladding tubes and whose shapes are different. <P>SOLUTION: A basket 4 made of a titanium material which can be uniformly energized so as to use numerous objects 1 to be decontaminated as anodes and is given a passivation treatment is used in an electrolytic cell 2, and cathodes 5 and 6 are set up on the outer periphery including the bottom and an upper part of the objects 1 to be decontaminated. Oxalic acid which has high solvency power and is excellent in electrical conductivity is used as a decontamination liquid. An ultrasonic vibrator 10 is located in the electrolytic cell 2 to intermittently facilitate the exfoliation of the attachment to the objects 1 to be decontaminated during electrolytic decontamination. Since the titanium basket 4 which is given the passivation treatment is used as an anode conductive material, the differentially-shaped objects to be decontaminated can be uniformly decontaminated through the electrolytic manipulation of the oxalic acid decontamination liquid without the work for electrically connecting the anode to each of the objects 1 to be decontaminated. The impartation of ultrasonic vibration during the electrolytic manipulation enables the decontamination for the back sides and intricately-shaped parts of the differentially-shaped objects 1 to be decontaminated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、再処理廃材の電解除染方法および電解除染装置に係り、特に、燃料被覆管を固定するエンドピースなどの再処理施設から発生して形状が異なる多数個の被除染体を同時に効率良く除染する電解除染方法および電解除染装置に関する。
【0002】
【従来の技術】
再処理施設から定常的に発生してくる放射性成分が付着した廃材には、燃料被覆管を固定するエンドピースなど、種々の機材および部品がある。これら不定形廃材の除染については、実績があまりなく、不明な点が多い。
【0003】
ここでは、再処理施設全般における廃材の除染方法を概観する。一般に、機械的洗浄方法と化学除染方法とを組み合わせることが多く、再処理施設によっては、電気化学的除染方法も適用されている。
【0004】
付着物の形態は、再処理施設の場所に応じて異なる。燃料被覆管を固定するエンドピースの場合は、ウラン酸化物UO,プルトニウム酸化物PuO,核分裂生成物Cs,Sr,Ba,Zr,Nd,Ce,Moなどの金属または酸化物が内表面に付着しており、外表面には、クラッドという鉄の酸化物Fe,Feなどが付着していることが多い。
【0005】
これらの付着物は、酸,アルカリ,酸化剤,還元剤,錯化剤の各単独溶液では溶解しにくいので、化学的除染方法では、複数の除染液を使用し、温度を上げ、更に各操作を繰り返して除染する必要がある。
【0006】
酸としては、硝酸,リン酸,シュウ酸,クエン酸,酒石酸,ピクリン酸などが使用され、アルカリとしては、水酸化ナトリウムが使用され、酸化剤では、過マンガン酸カリ,過マンガン酸が使用され、還元剤としては、ヒドラジンが使用され、錯化剤としては、シュウ酸,クエン酸,EDTAなどが使用される。
【0007】
化学的除染方法は、複数の工程からなり、初めに高圧水,高圧空気,高圧蒸気で洗浄し、次に酸,アルカリ,錯化剤を順次通水し撹拌する。したがって、化学的除染方法は、操作が複雑であり、しかも、溶解効率を良くするために、液温度を高める必要がある。また、廃液の処理にも面倒な操作を伴うことが多くなる。
【0008】
一方、電気化学的除染方法は、原理的には、金属母材を陽極酸化により溶解し、その上の付着物を脱落させる方法である。
【0009】
それぞれの金属廃棄物と電極とを直接接続する作業をなくするための陽電極として、チタン,白金,チタンに白金をコーティングした電極を用いる方式が知られている(特許文献1,特許文献2参照。)。
【0010】
【特許文献1】
特開平10−282296号公報(第5頁,図4,図5)
【特許文献2】
特開平8−68894号公報(第4頁,第5頁,図7)
【発明が解決しようとする課題】
しかし、いずれの特許文献の方法でも、陽電極の溶解/劣化を防止する対策が不十分であり、陽電極自体に寿命があるという問題があった。
【0011】
また、通電方法と除染液との組み合わせにいくつかの方法がある。通電方法には、電極間に被除染体を設置して被除染体を複極化し陽極酸化により母材を溶解する方法と、被除染体を直接陽極にして酸化溶解する方法とが多く見られる。除染液には、硝酸,硫酸,塩酸,EDTA錯化剤も使われる。
【0012】
これらの除染方法において、前者の複極化方式は、被除染体よりも電解液に電流が流れることで電流効率が低くなる懸念がある。一方、直接陽極方法では、被除染体に通電する端子を接続することが必要になる。いずれも中空の管や不定形な被除染体では、効率良く溶解させることが困難になる。
【0013】
なお、化学的除染および電気化学的除染においては、各種の除染液を使用するので、その廃液処理が容易であり、二次廃棄物が少ないことが要求される。
【0014】
本発明の目的は、燃料被覆管エンドピースなどの再処理施設廃材で形状が異なる多数個の被除染体を同時に効率良く除染する再処理廃材の電解除染方法および電解除染装置を提供することである。
【0015】
【課題を解決するための手段】
本発明は、上記目的を達成するために、放射性成分が付着した再処理廃材の電解除染方法において、不動態化処理したチタンバスケットを陽極とし、その外周部に陰極を配置し、不動態化処理したチタンバスケット内に被除染体を載せ、電解槽内の除染液中でチタンバスケットと陰極とに直流を通電し、被除染体を電解除染する再処理廃材の電解除染方法を提案する。
【0016】
陽極材には、多数個の被除染体に均等に通電できる不動態化処理したチタン材のバスケットを用いる。被除染体を陽極にするための接続手段として、酸化チタンTiOを不導態化処理したチタンバスケットは、多数個の被除染体と接触している部分だけ導通し、その他の部位では導通しない特性を有する。
【0017】
陰極材としては、電解槽の側面および底部に固定陰極を配置し、上部に可変電極を配置し、被除染体の表裏に電流が均等に流れるようにする。
【0018】
本発明は、また、放射性成分が付着した再処理廃材の電解除染方法において、メッシュ状の不動態化処理したチタンバスケットを陽極とし、その外周部,底部,上部に陰極を配置し、不動態化処理したチタンバスケット内に被除染体を載せ、電解槽内の除染液中でチタンバスケットと陰極とに直流を通電し、被除染体を電解除染する再処理廃材の電解除染方法を提案する。
【0019】
電解除染中の被除染体に短時間または間欠的に超音波振動を付与することができる。被除染体の付着物の剥離促進と固形分の再付着を抑制するために、超音波振動を間欠的に付与する。
【0020】
被除染体をチタンバスケット内で重ならないように一段に並べることが望ましい。被除染体の表裏に電流が均等に流れるようにするためである。
【0021】
電解槽内で用いる除染液は、濃度が0.5モル/l〜5モル/lのシュウ酸液とする。電解酸化操作に用いる除染液には、酸と錯化剤の両方の作用があり、しかも導電性に優れるシュウ酸を用いる。廃液処理においてシュウ酸は、紫外線照射と過酸化水素で分解できるので、除染物だけを分離して回収できる。電解酸化操作においてシュウ酸液を用いる利点は、▲1▼酸または錯化剤として母材または付着物を溶解する作用があること、▲2▼導電性が大きく電解時に電流が流れやすいこと、▲3▼電流が届く範囲の指標となるスローイングパワー(Throwing Power)が大きいすなわち被除染体の裏面へも電流が流れて溶解しやすいことである。
【0022】
また、電解除染中の被除染体の電流密度は、5mA/cm以上である。
【0023】
本発明は、上記目的を達成するために、電解槽と、電解槽内部に陽極として配置される不動態化処理したチタンバスケットと、陽極の外周部および底部に配置される固定陰極と、陽極の上部に配置される可変陰極と、電解槽の中に除染液を供給する除染液導入系統と、電解中に除染液を循環させる循環ポンプと、電解槽の外部に配置され不動態化処理したチタンバスケットと固定陰極,可変陰極との間に直流を通電する直流電源と、電解槽の底部に配置され電解除染中に剥離して沈殿した微粒子を排出する除染液排出系統とからなる再処理廃材の電解除染装置を提案する。
【0024】
本発明は、さらに、電解槽と、電解槽内部に陽極として配置される不動態化処理したチタンバスケットと、陽極の外周部および底部に配置される固定陰極と、陽極の上部に配置される可変陰極と、電解槽内部に設置される超音波振動子と、電解槽の中に除染液を供給する除染液導入系統と、電解中に除染液を循環させる循環ポンプと、電解槽の外部に配置され不動態化処理したチタンバスケットと固定陰極,可変陰極との間に直流を通電する直流電源と、電解槽の外部に配置され電解中に超音波振動子を短時間または間欠的に駆動する超音波発振器と、電解槽の底部に配置され電解除染中に剥離して沈殿した微粒子を排出する除染液排出系統とからなる再処理廃材の電解除染装置を提案する。
【0025】
電解槽内に超音波振動を付与すると、被除染体の裏面の付着物をキャビテーション作用により剥離し、剥離した固形分の再付着を抑制できる。
【0026】
チタンバスケットは、硝酸溶液を電解液として陽極酸化処理により不動態化皮膜を形成したチタン材である。
【0027】
電解槽内の被除染体の上部に配置される可変陰極は、被除染体の形状および位置に応じてその位置を変更する手段を備える。
【0028】
【発明の実施の形態】
次に、図1〜図6を参照して、本発明による再処理廃材の電解除染方法および電解除染装置の実施形態を説明する。
【0029】
【実施形態1】
図1は、本発明による再処理廃材の電解除染装置の系統構成を示す図である。本実施形態の場合、再処理廃材は、燃料被覆管を固定するエンドピースなどの被除染体1である。電解槽2は、角型または円筒形であり、その中に除染液導入系統14からの除染液3を満たし、除染液3を循環させる循環ポンプ11を設置してある。電解槽2の内部には、不動態化処理したチタンバスケットを陽極4として配置し、陽極4の外周部と底部には、固定陰極5を配置し、被除染体1の上部には、可変陰極6を配置してある。電解槽1の上部には、電解に伴い発生する酸素ガス,水素ガスを排出する排気孔7を形成したふた8が設置されており、空気導入系統9からの空気により電解ガスを希釈して排出するようになっている。電解槽2に内部には、超音波振動子10も設置してある。電解槽2の外部には、陽極すなわち不動態化処理したチタンバスケット4と固定陰極5,可変陰極6との間で直流を通電するための直流電源12と、超音波振動子10を駆動する超音波発振器13とが設けられている。電解槽2の底部には、なお、電解除染中に剥離して沈殿した微粒子を排出するための除染液排出系統15を配置してある。
【0030】
除染操作に先だって、電解槽2内に固定陰極5を配置し、その内側に不動態化処理したチタンバスケットを陽極4として配置する。不動態化処理したチタンバスケット4上に被除染体1を好ましくは一段に並べる。除染液導入系統14から、電解槽2に所定濃度の除染液を入れる。可変電極6と超音波振動子10とを所定の位置に取り付ける。
【0031】
次に、循環ポンプ11により除染液3を循環させながら、直流電源12により直流を通電して除染する。除染中には、例えば間欠的に超音波振動子10を駆動して、被除染体1に超音波振動を付与する。
【0032】
除染中に発生する電解ガスすなわち酸素と水素の混合ガスには、空気導入系統9から希釈空気を供給し、排気孔7から放出する。
【0033】
除染が終了したら、除染液排出系統15から、除染液3と電解除染中に剥離した微粒子とを排出する。
【0034】
【実施形態2】
図2は、本発明の効果を実証するための電解除染試験装置の構成を示す図である。本電解除染試験装置は、大きさが300φ×450Hの円筒形電解槽16の内部に、メッシュタイプの不動態化処理したチタンバスケットを陽極17として配置し、陽極の外周部と底部には、チタン製の板を固定陰極18として配置し、上部には可変陰極19を配置してある。被除染試料20は、不動態化処理したチタンバスケット17上に設置される。電解槽16の内部には、除染液を撹拌する撹拌器21と超音波振動子22とが備えられている。電解槽16の外部には、直流電源23と超音波発振器24とを設置してある。
【0035】
被除染試料20は、実機の燃料被覆管を固定するエンドピースに模擬の付着物をつけた試料である。付着物試料は、燃料被覆管を固定するエンドピースを模擬高レベル放射性廃液(Zr,Mo,Nd,Ce,Gd,Ba,Cs,Srなど16種類の元素を含む)中に浸漬し、100℃で3日間付着処理した試料である。付着物は各元素の酸化物が多く、厚さは20μm程度であった。
【0036】
図3は、2モル/lのシュウ酸液中でチタンバスケット17上にステンレス管(SUS304L,48φ×80H)を設置した時としない時との電流−電圧特性を示す図である。被除染体試料を陽極として通電するための不動態化処理したチタンバスケット17の通電特性を検討した。バスケットは、メッシュ状のチタン材であり、4モル/lの硝酸液中において、電流密度:5mA/cmで5時間通電し、二酸化ジルコニウムZrOの皮膜を形成し、不動態化処理したものである。
【0037】
図3によれば、ステンレス管がない場合には、5Vよりも高い電圧から電流が僅かに流れるのに対して、ステンレス管がある場合には、2V前後から液の導電率に応じて電流が流れる。これらの特性は、チタン材の不動態化皮膜がシュウ酸液中において大きい電気抵抗を有するが、異種の材料との間では、特にチタンよりも電位的に卑なる材料との間では、接触すれば通電できる性質であることを示している。
【0038】
【実施形態3】
図4は、模擬廃材を用いて電解操作だけによる除染効果を検討した結果を示す特性図である。被除染試料20には、高レベル廃液の含有金属成分を付着させた実機の燃料被覆管を固定するエンドピース材を使用した。除染効果は、電解操作での母材の主成分のFeと付着物成分の内のZrとMoの液中濃度を測定して評価した。陰極は、試料の外周部,底部の他に、試料の上部にも設置した。
【0039】
除染液を2モル/lのシュウ酸液とし、電流10Aを60分間流して、Fe,Zr,Moの固形分も含む溶解量の変化を示している。Feは、時間に比例して溶解し、付着物のZrとMoとは、20分で飽和傾向に達する特性を示した。
【0040】
【比較例1】
図5は、模擬廃材を用いて超音波振動付与だけによる除染効果を検討した結果を示す特性図である。被除染試料20には、実施形態3と同じ高レベル廃液の含有金属成分を付着させた実機の燃料被覆管を固定するエンドピース材を用いた。除染効果は、電解操作の効果と同じく母材の主成分のFeと付着物成分の内のZrとMo元素の液中濃度を測定した。
【0041】
除染液は、2モル/lのシュウ酸液である。25kHz,750Wの超音波振動を15分,30分,45分から各5分間だけ間欠的に付与した。
【0042】
Feは、シュウ酸で溶解し、ZrおよびMoは振動付与時に剥離を生じた。剥離量が増える傾向は認められるが、溶解量は非常に小さい。
【0043】
このように、超音波振動付与は、外表面,内表面を問わず、形状が複雑な部位での付着物の脱離や脱落に効果がある。
【0044】
【実施形態4】
図6は、模擬廃材を用いて電解操作と超音波振動付与とを組み合わせた場合の除染効果を検討した結果を示す特性図である。
【0045】
被除染試料20には、実施形態4と5と同様に付着処理した燃料被覆管を固定するエンドピース材を用いた。除染効果は、電解操作と超音波振動付与操作でのFe,ZrおよびMo元素の液中濃度を測定した。
陰極は、試料の外周部,底部の他に、試料の上部にも設置した。除染液を2モル/lのシュウ酸液とし、電流10Aを60分流し、超音波振動を15分,30分,45分に各5分間付与した。
【0046】
図6から、Feは、実施形態3と同じく、時間に比例して溶解し、付着物のZrとMoとは、超音波振動付与時に溶解促進があり、60分後には、実施形態3の電解単独よりも大きい溶解量を示した。
【0047】
電解後の目視では、燃料被覆管を固定するエンドピースの内部にも付着物が全くなく、内部の除染に超音波振動の効果が大きいことを裏付けた。
【0048】
【発明の効果】
本発明によれば、燃料被覆管を固定するエンドピースなど再処理施設からの不定形金属廃材の除染方法において、不動態化処理したチタンバスケットを陽極導電材として用いるので、それぞれの被除染体に陽電極を電気的に接続する作業をすることなく、シュウ酸除染液の電解操作で、被除染体を均等に除染できる。しかもチタンバスケットが不動態化処理されており、その寿命が非常に長い。
【0049】
また、電解操作中に超音波振動を付与する操作を加えると、被除染体の裏面または複雑形状部の除染が可能となる。
【0050】
さらに、電解槽内で電解操作と超音波振動付与により除染した後、除染液を純水に入れ換えて電解槽内で水洗すれば、後処理も可能になり、除染設備が少なくてすむ。
【0051】
除染液としてシュウ酸を用いると、電解操作時の電流が届く範囲が増加する。また、除染後の廃液の処理において、紫外線照射および過酸化水素などの酸化剤による分解が可能となり、減容化が容易になる。
【図面の簡単な説明】
【図1】本発明による再処理廃材の電解除染装置の系統構成を示す図である。
【図2】本発明の効果を実証するための電解除染試験装置の構成を示す図である。
【図3】2モル/lのシュウ酸液中でチタンバスケット上にステンレス管を設置した時としない時との電流−電圧特性を示す図である。
【図4】模擬廃材を用いて電解操作だけによる除染効果を検討した結果を示す特性図である。
【図5】模擬廃材を用いて超音波振動付与だけによる除染効果を検討した結果を示す特性図である。
【図6】模擬廃材を用いて電解操作と超音波振動付与とを組み合わせた場合の除染効果を検討した結果を示す特性図である。
【符号の説明】
1 被除染体
2 電解槽
3 除染液
4 不動態化処理したチタンバスケット(陽極)
5 固定陰極
6 可変陰極
7 排気孔
8 ふた
9 空気導入系統
10 超音波振動子
11 循環ポンプ
12 直流電源
13 超音波発振器
14 除染液導入系統
15 除染液排出系統
16 円筒型電解槽
17 陽極
18 固定陰極
19 可変陰極
20 被除染試料
21 撹拌器
22 超音波振動子
23 直流電源
24 超音波発振器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for electrodischarge dyeing of reprocessed waste materials, and more particularly to a method for removing a large number of decontaminated objects having different shapes generated from a reprocessing facility such as an end piece for fixing a fuel cladding tube. The present invention relates to an electro-decontamination method and an electro-decontamination apparatus for simultaneously decontaminating efficiently.
[0002]
[Prior art]
The waste materials to which radioactive components constantly generated from the reprocessing facility adhere include various equipment and components such as end pieces for fixing the fuel cladding tubes. There is not much experience in decontamination of these irregular shaped waste materials, and there are many unclear points.
[0003]
Here, an overview of the decontamination method of waste materials in the entire reprocessing facility is given. Generally, a mechanical cleaning method and a chemical decontamination method are often combined, and an electrochemical decontamination method is also applied to some reprocessing facilities.
[0004]
The form of the deposit depends on the location of the reprocessing facility. In the case of an end piece for fixing a fuel cladding tube, a metal or oxide such as uranium oxide UO 2 , plutonium oxide PuO 2 , fission products Cs, Sr, Ba, Zr, Nd, Ce, and Mo is present on the inner surface. In many cases, iron oxides such as cladding such as Fe 2 O 3 and Fe 3 O 4 are attached to the outer surface.
[0005]
Since these deposits are difficult to dissolve in a single solution of an acid, an alkali, an oxidizing agent, a reducing agent, and a complexing agent, the chemical decontamination method uses a plurality of decontamination solutions, raises the temperature, It is necessary to decontaminate each operation repeatedly.
[0006]
Nitric acid, phosphoric acid, oxalic acid, citric acid, tartaric acid, picric acid, etc. are used as acids, sodium hydroxide is used as alkali, and potassium permanganate and permanganic acid are used as oxidizing agents. As a reducing agent, hydrazine is used, and as a complexing agent, oxalic acid, citric acid, EDTA or the like is used.
[0007]
The chemical decontamination method comprises a plurality of steps. First, it is washed with high-pressure water, high-pressure air, and high-pressure steam, and then an acid, an alkali, and a complexing agent are sequentially passed through and stirred. Therefore, the operation of the chemical decontamination method is complicated, and it is necessary to raise the liquid temperature in order to improve the dissolution efficiency. In addition, the disposal of waste liquid often involves complicated operations.
[0008]
On the other hand, the electrochemical decontamination method is, in principle, a method in which a metal base material is dissolved by anodic oxidation to remove attached matter thereon.
[0009]
As a positive electrode for eliminating the work of directly connecting each metal waste and an electrode, a system using titanium, platinum, and an electrode coated with platinum on titanium is known (see Patent Documents 1 and 2). .).
[0010]
[Patent Document 1]
JP-A-10-282296 (page 5, FIG. 4, FIG. 5)
[Patent Document 2]
JP-A-8-68894 (page 4, page 5, FIG. 7)
[Problems to be solved by the invention]
However, in any of the methods disclosed in Patent Documents, the measures for preventing dissolution / deterioration of the positive electrode are insufficient, and there is a problem that the positive electrode itself has a life.
[0011]
There are several methods for combining the energization method and the decontamination liquid. The energization method includes a method in which the object to be decontaminated is placed between the electrodes to polarize the object to be decontaminated and the base material is dissolved by anodic oxidation, and a method in which the object to be decontaminated is directly anodic and oxidized and dissolved. Many are seen. Nitric acid, sulfuric acid, hydrochloric acid and EDTA complexing agents are also used in the decontamination solution.
[0012]
In these decontamination methods, in the former bipolar method, there is a concern that the current efficiency may be reduced due to the current flowing through the electrolyte solution more than the object to be decontaminated. On the other hand, in the direct anode method, it is necessary to connect a terminal to be energized to the object to be decontaminated. In any case, it is difficult to efficiently dissolve in a hollow tube or an irregular decontaminated object.
[0013]
In chemical decontamination and electrochemical decontamination, since various decontamination liquids are used, it is required that the waste liquid treatment is easy and the amount of secondary waste is small.
[0014]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus for electrically decontaminating reprocessed waste materials for efficiently decontaminating a large number of objects to be decontaminated having different shapes simultaneously from reprocessing facility waste materials such as fuel cladding tube end pieces. It is to be.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for electrodisinfecting reprocessed waste material to which radioactive components are adhered, wherein a passivated titanium basket is used as an anode, and a cathode is arranged on the outer periphery of the titanium basket. A method of placing the object to be decontaminated in the treated titanium basket, applying a direct current to the titanium basket and the cathode in the decontamination solution in the electrolytic cell, and subjecting the object to be decontaminated to electrodischarge, the method of electrodischarging the reprocessed waste material. Suggest.
[0016]
As the anode material, a basket of a passivated titanium material that can evenly supply current to a large number of objects to be decontaminated is used. As a connecting means for turning the object to be decontaminated into an anode, the titanium basket in which titanium oxide TiO 2 is passivated conducts only the portion in contact with a large number of objects to be decontaminated, and in other portions, It has the property of not conducting.
[0017]
As the cathode material, a fixed cathode is disposed on the side and bottom of the electrolytic cell, and a variable electrode is disposed on the upper part so that current flows uniformly on the front and back of the object to be decontaminated.
[0018]
The present invention also provides a method for electro-discharging reprocessed waste materials to which radioactive components are attached, wherein a mesh-shaped passivated titanium basket is used as an anode, and a cathode is arranged on the outer periphery, bottom, and top of the basket. The object to be decontaminated is placed in the titanium basket that has been treated, and a direct current is applied between the titanium basket and the cathode in the decontamination solution in the electrolytic cell to discharge the object to be decontaminated. Suggest a method.
[0019]
Ultrasonic vibration can be applied to the object to be decontaminated during the electric release dyeing for a short time or intermittently. Ultrasonic vibration is applied intermittently in order to promote the detachment of the deposits on the object to be decontaminated and to suppress the reattachment of the solids.
[0020]
It is desirable to arrange the objects to be decontaminated in a single step so as not to overlap in the titanium basket. This is to ensure that the current flows uniformly on the front and back of the object to be decontaminated.
[0021]
The decontamination solution used in the electrolytic cell is an oxalic acid solution having a concentration of 0.5 mol / l to 5 mol / l. For the decontamination solution used in the electrolytic oxidation operation, oxalic acid having both the action of an acid and a complexing agent and having excellent conductivity is used. Since oxalic acid can be decomposed by ultraviolet irradiation and hydrogen peroxide in waste liquid treatment, only decontaminated substances can be separated and recovered. The advantages of using an oxalic acid solution in the electrolytic oxidation operation are as follows: (1) an action of dissolving a base material or deposits as an acid or a complexing agent; (2) a large conductivity and a current flow during electrolysis; 3) Throwing power, which is an index of the range in which the current reaches, is large, that is, the current also flows to the back surface of the object to be decontaminated, and it is easily dissolved.
[0022]
The current density of the object to be decontaminated during the electrodischarge dyeing is 5 mA / cm 2 or more.
[0023]
In order to achieve the above object, the present invention provides an electrolytic cell, a passivated titanium basket disposed as an anode inside the electrolytic cell, a fixed cathode disposed on the outer periphery and bottom of the anode, A variable cathode placed at the top, a decontamination solution introduction system that supplies the decontamination solution into the electrolytic cell, a circulation pump that circulates the decontamination solution during electrolysis, and a passivation placed outside the electrolytic cell A DC power supply that applies a direct current between the treated titanium basket and the fixed and variable cathodes, and a decontamination solution discharge system that is located at the bottom of the electrolytic cell and discharges fine particles that have separated and settled during electrodischarge dyeing We propose an electric decontamination device for reprocessing waste materials.
[0024]
The invention further provides an electrolytic cell, a passivated titanium basket disposed as an anode inside the electrolytic cell, a fixed cathode disposed at the outer periphery and bottom of the anode, and a variable cathode disposed at the top of the anode. A cathode, an ultrasonic vibrator installed inside the electrolytic cell, a decontamination liquid introduction system for supplying the decontamination liquid into the electrolytic cell, a circulation pump for circulating the decontamination liquid during electrolysis, A DC power supply that supplies DC between the passivated titanium basket and the fixed and variable cathodes that is placed outside, and an ultrasonic vibrator that is placed outside the electrolyzer for short or intermittent operation during electrolysis We propose an electrodischarge dyeing apparatus for waste reprocessing waste, which consists of a driven ultrasonic oscillator and a decontamination liquid discharge system that is located at the bottom of the electrolytic cell and discharges fine particles that have separated and settled during electrodischarge dyeing.
[0025]
When ultrasonic vibration is applied to the electrolytic cell, the adhered matter on the back surface of the object to be decontaminated is peeled off by cavitation action, and reattachment of the peeled solid can be suppressed.
[0026]
The titanium basket is a titanium material having a passivation film formed by anodizing using a nitric acid solution as an electrolytic solution.
[0027]
The variable cathode disposed above the object to be decontaminated in the electrolytic cell includes means for changing the position of the object to be decontaminated in accordance with the shape and position of the object.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, with reference to FIGS. 1 to 6, an embodiment of a method and an apparatus for electrodisinfecting reprocessed waste material according to the present invention will be described.
[0029]
Embodiment 1
FIG. 1 is a diagram showing a system configuration of an apparatus for electrodisinfecting reprocessing waste material according to the present invention. In the case of this embodiment, the reprocessing waste material is the object 1 to be decontaminated such as an end piece for fixing the fuel cladding tube. The electrolytic cell 2 has a square or cylindrical shape, in which a circulation pump 11 for filling the decontamination liquid 3 from the decontamination liquid introduction system 14 and circulating the decontamination liquid 3 is installed. A passivated titanium basket is disposed as an anode 4 inside the electrolytic cell 2, a fixed cathode 5 is disposed on an outer peripheral portion and a bottom portion of the anode 4, and a variable cathode is disposed on an upper portion of the object 1 to be decontaminated. A cathode 6 is provided. A lid 8 having an exhaust hole 7 for discharging oxygen gas and hydrogen gas generated during electrolysis is installed at the upper part of the electrolytic cell 1, and the electrolytic gas is diluted and discharged by air from an air introduction system 9. It is supposed to. An ultrasonic vibrator 10 is also installed inside the electrolytic cell 2. Outside the electrolytic cell 2, there is a DC power supply 12 for supplying a DC between the anode, that is, the passivated titanium basket 4, the fixed cathode 5, and the variable cathode 6, and a super power source for driving the ultrasonic vibrator 10. A sound wave oscillator 13 is provided. At the bottom of the electrolytic cell 2, a decontamination liquid discharge system 15 for discharging fine particles separated and settled during electrodischarge dyeing is arranged.
[0030]
Prior to the decontamination operation, the fixed cathode 5 is disposed in the electrolytic cell 2, and a passivated titanium basket is disposed therein as the anode 4. The objects 1 to be decontaminated are preferably arranged in a single stage on the titanium basket 4 which has been passivated. From the decontamination liquid introduction system 14, a decontamination liquid of a predetermined concentration is put into the electrolytic cell 2. The variable electrode 6 and the ultrasonic vibrator 10 are mounted at predetermined positions.
[0031]
Next, while the decontamination liquid 3 is circulated by the circulation pump 11, a direct current is supplied from the DC power supply 12 to perform decontamination. During the decontamination, for example, the ultrasonic vibrator 10 is intermittently driven to apply ultrasonic vibration to the object 1 to be decontaminated.
[0032]
Dilution air is supplied from an air introduction system 9 to an electrolytic gas generated during decontamination, that is, a mixed gas of oxygen and hydrogen, and is discharged from an exhaust hole 7.
[0033]
When the decontamination is completed, the decontamination liquid 3 and the fine particles separated during the electrodischarge dyeing are discharged from the decontamination liquid discharge system 15.
[0034]
Embodiment 2
FIG. 2 is a diagram showing a configuration of an electrodischarge dyeing test apparatus for verifying the effect of the present invention. In the present electrodischarge dyeing test apparatus, a mesh-type passivated titanium basket is disposed as an anode 17 inside a cylindrical electrolytic cell 16 having a size of 300φ × 450H. A titanium plate is arranged as a fixed cathode 18, and a variable cathode 19 is arranged on the upper part. The sample 20 to be decontaminated is placed on the passivated titanium basket 17. A stirrer 21 for stirring the decontamination liquid and an ultrasonic vibrator 22 are provided inside the electrolytic cell 16. A DC power supply 23 and an ultrasonic oscillator 24 are provided outside the electrolytic bath 16.
[0035]
The sample 20 to be decontaminated is a sample in which a simulated deposit is attached to an end piece for fixing a fuel cladding tube of an actual machine. The attached sample is immersed in a simulated high-level radioactive liquid waste (containing 16 elements such as Zr, Mo, Nd, Ce, Gd, Ba, Cs, and Sr) at 100 ° C. Is a sample subjected to adhesion treatment for 3 days. The attached matter contained a large amount of oxides of each element, and the thickness was about 20 μm.
[0036]
FIG. 3 is a diagram showing current-voltage characteristics when a stainless tube (SUS304L, 48φ × 80H) is installed on a titanium basket 17 in a 2 mol / l oxalic acid solution and when it is not installed. The energization characteristics of the passivated titanium basket 17 for energization using the sample to be decontaminated as an anode were examined. The basket is a mesh-shaped titanium material, which is subjected to passivation at a current density of 5 mA / cm 2 for 5 hours in a nitric acid solution of 4 mol / l to form a zirconium dioxide ZrO 2 film and passivated. It is.
[0037]
According to FIG. 3, when there is no stainless tube, current slightly flows from a voltage higher than 5 V, whereas when there is a stainless tube, the current flows from around 2 V according to the conductivity of the liquid. Flows. These properties indicate that the passivation film of titanium material has a large electric resistance in oxalic acid solution, but does not come into contact with a different kind of material, especially with a material that is more electric potential than titanium. It indicates that it can be energized if it is.
[0038]
Embodiment 3
FIG. 4 is a characteristic diagram showing the result of examining the decontamination effect only by the electrolytic operation using the simulated waste material. As the sample 20 to be decontaminated, an end piece material for fixing a fuel cladding tube of an actual machine to which a metal component contained in a high-level waste liquid was adhered was used. The decontamination effect was evaluated by measuring the concentrations of Fe, which is the main component of the base material, and Zr and Mo in the deposit components in the electrolytic operation. The cathode was placed at the top of the sample in addition to the outer periphery and the bottom of the sample.
[0039]
The decontamination solution was a 2 mol / l oxalic acid solution, and a current of 10 A was passed for 60 minutes to show the change in the dissolved amount including the solid contents of Fe, Zr, and Mo. Fe was dissolved in proportion to time, and Zr and Mo as deposits showed characteristics of reaching a saturation tendency in 20 minutes.
[0040]
[Comparative Example 1]
FIG. 5 is a characteristic diagram showing a result of examining the decontamination effect only by applying ultrasonic vibration using the simulated waste material. As the sample 20 to be decontaminated, the same end piece material as that used in the third embodiment for fixing the fuel cladding tube of the actual machine to which the metal component contained in the high-level waste liquid was attached was used. The decontamination effect was measured by measuring the concentrations of Fe in the main component of the base material and Zr and Mo elements in the attached matter components in the liquid, similarly to the effect of the electrolytic operation.
[0041]
The decontamination solution is a 2 mol / l oxalic acid solution. Ultrasonic vibration of 25 kHz and 750 W was applied intermittently for 15 minutes, 30 minutes and 45 minutes for each 5 minutes.
[0042]
Fe was dissolved by oxalic acid, and Zr and Mo peeled off when vibration was applied. There is a tendency for the amount of peeling to increase, but the amount of dissolution is very small.
[0043]
As described above, the application of the ultrasonic vibration is effective for detachment and detachment of the attached matter at a site having a complicated shape regardless of the outer surface or the inner surface.
[0044]
Embodiment 4
FIG. 6 is a characteristic diagram showing the result of examining the decontamination effect when the electrolytic operation and the ultrasonic vibration application are combined using the simulated waste material.
[0045]
As the sample 20 to be decontaminated, an end piece material for fixing the fuel cladding tube subjected to the adhesion treatment in the same manner as in Embodiments 4 and 5 was used. The decontamination effect was measured by measuring the concentrations of Fe, Zr, and Mo elements in the liquid in the electrolytic operation and the ultrasonic vibration applying operation.
The cathode was placed at the top of the sample in addition to the outer periphery and the bottom of the sample. The decontamination liquid was a 2 mol / l oxalic acid solution, an electric current of 10 A was passed for 60 minutes, and ultrasonic vibration was applied for 15 minutes, 30 minutes and 45 minutes for 5 minutes each.
[0046]
As shown in FIG. 6, Fe dissolves in proportion to time, as in the third embodiment, and Zr and Mo of the attached matter accelerate dissolution when ultrasonic vibration is applied, and after 60 minutes, the electrolysis of the third embodiment occurs. It showed a greater amount of dissolution than alone.
[0047]
Visual observation after the electrolysis confirmed that there was no deposit on the inside of the end piece for fixing the fuel cladding tube, and that the effect of ultrasonic vibration on the internal decontamination was great.
[0048]
【The invention's effect】
According to the present invention, in the method for decontaminating irregular shaped metal waste from a reprocessing facility such as an end piece for fixing a fuel cladding tube, a passivated titanium basket is used as an anode conductive material. The subject to be decontaminated can be uniformly decontaminated by the electrolytic operation of the oxalic acid decontamination solution without the need to electrically connect the positive electrode to the body. Moreover, the titanium basket has been passivated and has a very long life.
[0049]
In addition, when an operation of applying ultrasonic vibration is performed during the electrolysis operation, decontamination of the back surface or the complex shape portion of the object to be decontaminated becomes possible.
[0050]
Furthermore, after decontamination by electrolytic operation and ultrasonic vibration application in the electrolytic cell, if the decontamination liquid is replaced with pure water and washed in the electrolytic cell, post-treatment can be performed, and the decontamination equipment can be reduced. .
[0051]
When oxalic acid is used as the decontamination liquid, the range in which the current reaches during the electrolytic operation increases. In the treatment of the waste liquid after decontamination, ultraviolet irradiation and decomposition with an oxidizing agent such as hydrogen peroxide become possible, and volume reduction becomes easy.
[Brief description of the drawings]
FIG. 1 is a diagram showing a system configuration of an apparatus for electro-discharging and reprocessing waste materials according to the present invention.
FIG. 2 is a diagram showing a configuration of an electrodischarge dyeing test apparatus for demonstrating the effect of the present invention.
FIG. 3 is a diagram showing current-voltage characteristics when a stainless steel tube is placed on a titanium basket in a 2 mol / l oxalic acid solution and when it is not.
FIG. 4 is a characteristic diagram showing a result of examining a decontamination effect only by an electrolytic operation using a simulated waste material.
FIG. 5 is a characteristic diagram showing a result of examining a decontamination effect only by applying ultrasonic vibration using a simulated waste material.
FIG. 6 is a characteristic diagram showing a result of examining a decontamination effect when an electrolytic operation and ultrasonic vibration application are combined using a simulated waste material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Decontamination object 2 Electrolysis tank 3 Decontamination liquid 4 Passivated titanium basket (anode)
Reference Signs List 5 Fixed cathode 6 Variable cathode 7 Exhaust hole 8 Lid 9 Air introduction system 10 Ultrasonic transducer 11 Circulation pump 12 DC power supply 13 Ultrasonic oscillator 14 Decontamination liquid introduction system 15 Decontamination liquid discharge system 16 Cylindrical electrolytic cell 17 Anode 18 Fixed cathode 19 Variable cathode 20 Sample to be decontaminated 21 Stirrer 22 Ultrasonic vibrator 23 DC power supply 24 Ultrasonic oscillator

Claims (10)

放射性成分が付着した再処理廃材の電解除染方法において、
不動態化処理したチタンバスケットを陽極とし、
その外周部に陰極を配置し、
前記不動態化処理したチタンバスケット内に被除染体を載せ、
電解槽内の除染液中で前記チタンバスケットと前記陰極とに直流を通電し、
前記被除染体を電解除染する
ことを特徴とする再処理廃材の電解除染方法。
In the method of electro-release dyeing of reprocessed waste materials with radioactive components attached,
The passivated titanium basket is used as the anode,
Place the cathode on its outer periphery,
Place the object to be decontaminated in the passivated titanium basket,
Applying a direct current to the titanium basket and the cathode in the decontamination solution in the electrolytic cell,
A method for electrodischarging a reprocessed waste material, wherein the object to be decontaminated is electrodischarged.
放射性成分が付着した再処理廃材の電解除染方法において、
メッシュ状の不動態化処理したチタンバスケットを陽極とし、
その外周部,底部,上部に陰極を配置し、
前記不動態化処理したチタンバスケット内に被除染体を載せ、
電解槽内の除染液中で前記チタンバスケットと前記陰極とに直流を通電し、
前記被除染体を電解除染する
ことを特徴とする再処理廃材の電解除染方法。
In the method of electro-release dyeing of reprocessed waste materials with radioactive components attached,
Using a mesh-shaped passivated titanium basket as the anode,
The cathode is placed on the outer periphery, bottom and top,
Place the object to be decontaminated in the passivated titanium basket,
Applying a direct current to the titanium basket and the cathode in the decontamination solution in the electrolytic cell,
A method for electrodischarging a reprocessed waste material, wherein the object to be decontaminated is electrodischarged.
請求項1または2に記載の再処理廃材の電解除染方法において、
電解除染中の前記被除染体に短時間または間欠的に超音波振動を付与する
ことを特徴とする再処理廃材の電解除染方法。
In the method of electro-decontamination of reprocessing waste material according to claim 1 or 2,
A method for electro-disinfecting reprocessed waste material, wherein ultrasonic vibration is applied to the object to be decontaminated in a short time or intermittently during electro-discharge dyeing.
請求項1ないし3のいずれか一項に記載の再処理廃材の電解除染方法において、
前記被除染体を前記チタンバスケット内で重ならないように一段に並べる
ことを特徴とする再処理廃材の電解除染方法。
In the method of electrodischarging reprocessing waste material according to any one of claims 1 to 3,
A method of electro-decontamination of reprocessed waste material, wherein the objects to be decontaminated are arranged in one step so as not to overlap in the titanium basket.
請求項1ないし4のいずれか一項に記載の再処理廃材の電解除染方法において、
前記電解槽内で用いる除染液が、濃度が0.5モル/l〜5モル/lのシュウ酸液である
ことを特徴とする再処理廃材の電解除染方法。
In the method of electrodischarge dyeing of reprocessing waste material according to any one of claims 1 to 4,
A method of electro-decontamination of reprocessed waste material, wherein the decontamination liquid used in the electrolytic cell is an oxalic acid solution having a concentration of 0.5 mol / l to 5 mol / l.
請求項1ないし5のいずれか一項に記載の再処理廃材の電解除染方法において、
電解除染中の前記被除染体の電流密度が、5mA/cm以上である
ことを特徴とする再処理廃材の電解除染方法。
In the method of electro-dyeing reprocessing waste material according to any one of claims 1 to 5,
The method of electrodisinfecting reprocessed waste material, wherein the current density of the object to be decontaminated during electrodischarge dyeing is 5 mA / cm 2 or more.
電解槽と、
前記電解槽内部に陽極として配置される不動態化処理したチタンバスケットと、
前記陽極の外周部および底部に配置される固定陰極と、
前記陽極の上部に配置される可変陰極と、
前記電解槽の中に除染液を供給する除染液導入系統と、
電解中に前記除染液を循環させる循環ポンプと、
前記電解槽の外部に配置され前記不動態化処理したチタンバスケットと前記固定陰極,可変陰極との間に直流を通電する直流電源と、
前記電解槽の底部に配置され電解除染中に剥離して沈殿した微粒子を排出する除染液排出系統と
からなる再処理廃材の電解除染装置。
An electrolytic cell,
A passivated titanium basket arranged as an anode inside the electrolytic cell,
A fixed cathode disposed on the outer periphery and the bottom of the anode,
A variable cathode disposed above the anode,
A decontamination liquid introduction system for supplying a decontamination liquid into the electrolytic cell,
A circulation pump for circulating the decontamination solution during electrolysis,
A direct current power supply that is disposed outside the electrolytic cell and that supplies a direct current between the passivated titanium basket and the fixed cathode and the variable cathode;
A decontamination apparatus for reprocessing waste material, comprising: a decontamination liquid discharge system disposed at the bottom of the electrolytic cell to discharge fine particles separated and precipitated during electrodischarge dyeing.
電解槽と、
前記電解槽内部に陽極として配置される不動態化処理したチタンバスケットと、
前記陽極の外周部および底部に配置される固定陰極と、
前記陽極の上部に配置される可変陰極と、
前記電解槽内部に設置される超音波振動子と、
前記電解槽の中に除染液を供給する除染液導入系統と、
電解中に前記除染液を循環させる循環ポンプと、
前記電解槽の外部に配置され前記不動態化処理したチタンバスケットと前記固定陰極,可変陰極との間に直流を通電する直流電源と、
前記電解槽の外部に配置され電解中に前記超音波振動子を短時間または間欠的に駆動する超音波発振器と、
前記電解槽の底部に配置され電解除染中に剥離して沈殿した微粒子を排出する除染液排出系統と
からなる再処理廃材の電解除染装置。
An electrolytic cell,
A passivated titanium basket arranged as an anode inside the electrolytic cell,
A fixed cathode disposed on the outer periphery and the bottom of the anode,
A variable cathode disposed above the anode,
Ultrasonic vibrator installed inside the electrolytic cell,
A decontamination liquid introduction system for supplying a decontamination liquid into the electrolytic cell,
A circulation pump for circulating the decontamination solution during electrolysis,
A direct current power supply that is disposed outside the electrolytic cell and that supplies a direct current between the passivated titanium basket and the fixed cathode and the variable cathode;
An ultrasonic oscillator that is disposed outside the electrolytic cell and drives the ultrasonic vibrator for a short time or intermittently during electrolysis,
A decontamination apparatus for reprocessing waste material, comprising: a decontamination liquid discharge system disposed at the bottom of the electrolytic cell to discharge fine particles separated and precipitated during electrodischarge dyeing.
請求項7または8に記載の再処理廃材の電解除染装置において、
前記チタンバスケットは、硝酸溶液を電解液として陽極酸化処理により不動態化皮膜を形成したチタン材である
ことを特徴とする再処理廃材の電解除染装置。
An electro-decolorizing apparatus for reprocessing waste materials according to claim 7 or 8,
The titanium basket is a titanium material having a passivation film formed by anodic oxidation using a nitric acid solution as an electrolytic solution.
請求項7ないし9のいずれか一項に記載の再処理廃材の電解除染装置において、
前記電解槽内の被除染体の上部に配置される可変陰極が、前記被除染体の形状および位置に応じてその位置を変更する手段を備えた
ことを特徴とする再処理廃材の電解除染装置。
An electro-decontamination apparatus for reprocessing waste material according to any one of claims 7 to 9,
The variable cathode disposed above the object to be decontaminated in the electrolytic cell is provided with means for changing its position in accordance with the shape and position of the object to be decontaminated. Release dyeing equipment.
JP2002280693A 2002-09-26 2002-09-26 Method and device for electrolytic decontamination for waste material from reprocessing facility Pending JP2004117149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280693A JP2004117149A (en) 2002-09-26 2002-09-26 Method and device for electrolytic decontamination for waste material from reprocessing facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280693A JP2004117149A (en) 2002-09-26 2002-09-26 Method and device for electrolytic decontamination for waste material from reprocessing facility

Publications (1)

Publication Number Publication Date
JP2004117149A true JP2004117149A (en) 2004-04-15

Family

ID=32275331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280693A Pending JP2004117149A (en) 2002-09-26 2002-09-26 Method and device for electrolytic decontamination for waste material from reprocessing facility

Country Status (1)

Country Link
JP (1) JP2004117149A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934929B1 (en) * 2007-09-22 2010-01-06 한국원자력연구원 Regenerative Electrochemical Polishing Decontamination of metallic Radioactive Wastes and Decontamination Liquid Waste Treatment by Electro-sorption and Electro-deposition
JP2014501329A (en) * 2010-12-23 2014-01-20 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー Anode shroud for capturing and removing off-gas from electrolytic oxide reduction systems
RU2562829C1 (en) * 2014-06-04 2015-09-10 Открытое акционерное общество "Опытно-демонстрационный центр вывода из эксплуатации уран-графитовых ядерных реакторов" Stainless steel scrap deactivation unit
CN106158060A (en) * 2016-08-23 2016-11-23 中国工程物理研究院核物理与化学研究所 A kind of ultrasonic electrolysis automated decontamination system removing radioactive surface contamination
RU2628758C1 (en) * 2016-10-28 2017-08-22 Акционерное общество "Ордена Трудового Красного Знамени и ордена труда ЧССР опытное конструкторское бюро "ГИДРОПРЕСС" Ultrasonic installation for cleaning cps actuators
US9920443B2 (en) 2010-12-23 2018-03-20 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction
CN109147980A (en) * 2018-08-15 2019-01-04 南华大学 A kind of elimination of nuclear facilities decontamination processing system
JP2019074380A (en) * 2017-10-13 2019-05-16 日本碍子株式会社 Method for decontaminating radioactive metal waste
RU2695811C2 (en) * 2016-03-31 2019-07-29 Общество с ограниченной ответственностью "Александра-Плюс" Complex plant for decontamination of solid radioactive wastes and conditioning of formed liquid radioactive wastes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113200A (en) * 1984-06-29 1986-01-21 株式会社日立製作所 Fuel decontamination system
JPS62182699A (en) * 1986-02-06 1987-08-11 三菱原子燃料株式会社 Decontamination method
JPH04190197A (en) * 1990-11-26 1992-07-08 Toshiba Corp Decontamination of radioactive contaminated metal
JPH06212470A (en) * 1991-06-04 1994-08-02 Shanghai Inst Of Iron & Steel Titanium alloy anode electrode for electrolysis of manganese dioxide
JPH10140385A (en) * 1996-10-31 1998-05-26 Permascand Ab Electrode and production of electrode
JP2000088991A (en) * 1998-09-11 2000-03-31 Toshiba Corp Waste processing method from nuclear fuel cycle facility and its processing device
JP2000304896A (en) * 1999-04-21 2000-11-02 Toshiba Corp Decontamination method for radioactivated contamination material and device therefor
JP2001175590A (en) * 1999-12-22 2001-06-29 Sanyo Electric Co Ltd Address arithmetic unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113200A (en) * 1984-06-29 1986-01-21 株式会社日立製作所 Fuel decontamination system
JPS62182699A (en) * 1986-02-06 1987-08-11 三菱原子燃料株式会社 Decontamination method
JPH04190197A (en) * 1990-11-26 1992-07-08 Toshiba Corp Decontamination of radioactive contaminated metal
JPH06212470A (en) * 1991-06-04 1994-08-02 Shanghai Inst Of Iron & Steel Titanium alloy anode electrode for electrolysis of manganese dioxide
JPH10140385A (en) * 1996-10-31 1998-05-26 Permascand Ab Electrode and production of electrode
JP2000088991A (en) * 1998-09-11 2000-03-31 Toshiba Corp Waste processing method from nuclear fuel cycle facility and its processing device
JP2000304896A (en) * 1999-04-21 2000-11-02 Toshiba Corp Decontamination method for radioactivated contamination material and device therefor
JP2001175590A (en) * 1999-12-22 2001-06-29 Sanyo Electric Co Ltd Address arithmetic unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934929B1 (en) * 2007-09-22 2010-01-06 한국원자력연구원 Regenerative Electrochemical Polishing Decontamination of metallic Radioactive Wastes and Decontamination Liquid Waste Treatment by Electro-sorption and Electro-deposition
JP2014501329A (en) * 2010-12-23 2014-01-20 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー Anode shroud for capturing and removing off-gas from electrolytic oxide reduction systems
US9920443B2 (en) 2010-12-23 2018-03-20 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction
RU2562829C1 (en) * 2014-06-04 2015-09-10 Открытое акционерное общество "Опытно-демонстрационный центр вывода из эксплуатации уран-графитовых ядерных реакторов" Stainless steel scrap deactivation unit
RU2695811C2 (en) * 2016-03-31 2019-07-29 Общество с ограниченной ответственностью "Александра-Плюс" Complex plant for decontamination of solid radioactive wastes and conditioning of formed liquid radioactive wastes
CN106158060A (en) * 2016-08-23 2016-11-23 中国工程物理研究院核物理与化学研究所 A kind of ultrasonic electrolysis automated decontamination system removing radioactive surface contamination
RU2628758C1 (en) * 2016-10-28 2017-08-22 Акционерное общество "Ордена Трудового Красного Знамени и ордена труда ЧССР опытное конструкторское бюро "ГИДРОПРЕСС" Ultrasonic installation for cleaning cps actuators
JP2019074380A (en) * 2017-10-13 2019-05-16 日本碍子株式会社 Method for decontaminating radioactive metal waste
CN109147980A (en) * 2018-08-15 2019-01-04 南华大学 A kind of elimination of nuclear facilities decontamination processing system
CN109147980B (en) * 2018-08-15 2023-06-16 南华大学 Nuclear facility retired decontamination treatment system

Similar Documents

Publication Publication Date Title
EP3491651B1 (en) Electrolytic treatment for nuclear decontamination
JP2004117149A (en) Method and device for electrolytic decontamination for waste material from reprocessing facility
JP3481746B2 (en) Decontamination method of metal contaminated by radioactivity
JP2004286471A (en) Method and device for chemical decontamination of radioactivity
JPS62238B2 (en)
JP2000346988A (en) Method of chemical decontamination of metal structural material for facility related to reprocessing
US5877388A (en) Apparatus and method for electrochemical decontamination of radioactive metallic waste
JP2003050296A (en) Treating method of chemical decontamination liquid and its device
US7384529B1 (en) Method for electrochemical decontamination of radioactive metal
JP3010943B2 (en) Reduction chemical decontamination method for radioactive metal waste
JPH06242295A (en) Method and device for decontaminating radioactive metal waste
JPH0527092A (en) Removal of contamination of radioactive metallic waste
JP2010101762A (en) Method for decontaminating radioactive metal waste
JP2701631B2 (en) Method and apparatus for electrodischarge dyeing of radioactive metal waste
JPH03158800A (en) Electrolytic decontamination method for radioactive metallic waste
JP2549165B2 (en) Decontamination method for radioactive waste
JP3045933B2 (en) Apparatus and method for decontaminating radioactive metal waste
JPH04147098A (en) Electrolytic decontaminating device for radioactive metal waste
JPS60162800A (en) Method for decontaminating surface of metallic member
JP2004361262A (en) Pretreatment method for measuring corrosion crack
JP2005140761A (en) Electrolytic decontamination method on lead material for shielding
JPS61231496A (en) Method of decontaminating radioactive metallic waste
JP2002071882A (en) Melting method of spent fuel rod, and apparatus thereof
JP2000144274A (en) Electrolytic method of zirconium waster and device therefor
JP3339505B1 (en) Copper plating carbon electrode stripping equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115