JPS60162800A - Method for decontaminating surface of metallic member - Google Patents

Method for decontaminating surface of metallic member

Info

Publication number
JPS60162800A
JPS60162800A JP1568784A JP1568784A JPS60162800A JP S60162800 A JPS60162800 A JP S60162800A JP 1568784 A JP1568784 A JP 1568784A JP 1568784 A JP1568784 A JP 1568784A JP S60162800 A JPS60162800 A JP S60162800A
Authority
JP
Japan
Prior art keywords
electrolytic
electrolysis
metal member
electrode
radioactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1568784A
Other languages
Japanese (ja)
Inventor
Yoshio Harada
良夫 原田
Masaru Ishibashi
勝 石橋
Masao Sumi
角 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1568784A priority Critical patent/JPS60162800A/en
Publication of JPS60162800A publication Critical patent/JPS60162800A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove efficiently a contaminant by immersing a pair of metallic members having surfaces contaminated by radioactivity in an electrolytic soln. at an interval and by supplying AC using the metallic members as electrodes. CONSTITUTION:An electrolytic cell 1 is filled with an electrolytic soln. 2 consisting of about 70wt% phosphoric acid having 1.84 specific gravity, about 20wt% sulfuric acid having 1.84 specific gravity and about 10wt% water. A pair of metallic members 31, 32 having surfaces contaminated by radioactivity are immersed in the soln. 2 so that they confront each other. The members 31, 32 are connected to a DC power source 4, and they are electropolished. Conditions during the electrodeposition include about 60 deg.C temp., 60Hz AC cycle, about 70A/dm<2> current density and about 15min electrolysis time.

Description

【発明の詳細な説明】 本発明は金属部材の表面汚染を除去する方法に関し、特
に、放射能で汚染された金属部材の除染に有用な方法に
係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing surface contamination of metal members, and particularly to a method useful for decontaminating metal members contaminated with radioactivity.

原子力発電所では定期点検工事等の際に放射能で汚染さ
れた大愚の金属部材廃棄物が発生するが、現在のところ
、これら汚染廃棄物は適当な大きさに切断した上でドラ
ム缶等の密閉容器に詰めて保管されている。然し乍ら、
今後は原子力発電所の増加や運転年数が伸びるに従って
放射能汚染廃棄物が益々増大することは必至で、保管場
所の確保および管理の面で困難な問題が予想されるため
、保管すべき汚染廃棄物の放射能を低減し得る方法の開
発が望まれている。
At nuclear power plants, waste metal parts contaminated with radioactivity are generated during periodic inspection work, etc., but at present, these contaminated wastes are cut into appropriate sizes and stored in sealed drums etc. It is stored in containers. However,
In the future, as the number of nuclear power plants increases and the number of years of operation increases, the amount of radioactively contaminated waste will inevitably increase, and difficult problems are expected in terms of securing and managing storage space.Contaminated waste that should be stored It is desired to develop a method that can reduce the radioactivity of objects.

ところで、金属部材表面に付着している放射能汚染物質
の除去方法としては、従来法の方法が用いられている。
By the way, conventional methods are used to remove radioactive contaminants adhering to the surface of metal members.

第1の方法は物理的除染方法で、アルミナ、珪砂、氷の
粒子、ガラス球、l1llf、ドライアイス等の固形粒
子をそのまま、又はこれに水、洗剤、ときには酸やアル
カリ等を添加して研削剤とし、該研削剤を被除染面に吹
付けたり、物理的に摩擦して汚染物を除去するものであ
る。
The first method is a physical decontamination method, in which solid particles such as alumina, silica sand, ice particles, glass bulbs, l1llf, and dry ice are used as they are, or water, detergent, and sometimes acids or alkalis are added to them. This is an abrasive that is sprayed onto the surface to be decontaminated or physically rubbed to remove contaminants.

m2の方法は化学的除染方法で、硫酸、塩酸、硝酸等の
無m酸、苛性ソーダや苛性カリ等の強アールカリ、am
やクエン酸等の有m酸、ときにはEDTA (エチレン
ジアミン四酢酸)を含む水溶液を処理液とし、該処理液
中に浸漬したり処理液を吹f」けたすすることにより、
その化学的溶解作用で汚染物を除去するものである。
The m2 method is a chemical decontamination method that uses non-acid such as sulfuric acid, hydrochloric acid, and nitric acid, strong alkali such as caustic soda and caustic potash, and am
By using an aqueous solution containing acid such as citric acid or citric acid, and sometimes EDTA (ethylenediaminetetraacetic acid) as a treatment liquid, or by blowing the treatment liquid,
It removes contaminants through its chemical dissolving action.

しかし、従来性なわれている方法の中で最も除染効率が
高いのは、次に述べる第3の方法、即ち、電気化学的方
法である。この方法は燐酸、硫酸等の単独液あるいはこ
れらの混合液を電解液として用い、被除染金属部材をア
ノード(陽極)、鉛、白金、黒鉛あるいはステンレス鋼
等をカソード(陰極)として電流を通じることにより電
解研磨を行なうもので、一般には電解除染法と呼ばれて
いる。この電解除染法でステンレス鋼の汚染部材を除染
する場合、燐酸/硫酸混合液を電解液とする方法が最も
効率的で有望とされている。しかし、汚染の程度によっ
ては硫酸ナトリウム、塩化ナトリウム等の中性塩水溶液
を電解液に使用できるという利点がある。
However, among the conventional methods, the third method described below, that is, the electrochemical method, has the highest decontamination efficiency. This method uses a single solution such as phosphoric acid, sulfuric acid, or a mixture thereof as an electrolyte, and conducts an electric current using the metal member to be decontaminated as an anode (anode) and lead, platinum, graphite, stainless steel, etc. as a cathode (cathode). This method performs electrolytic polishing and is generally called the electrolytic dyeing method. When decontaminating contaminated stainless steel parts using this electrolytic dedying method, a method using a phosphoric acid/sulfuric acid mixture as the electrolyte is considered to be the most efficient and promising method. However, depending on the degree of contamination, there is an advantage that a neutral salt aqueous solution such as sodium sulfate or sodium chloride can be used as the electrolyte.

ところが上記従来の電解除染法の場合、被除染体をアノ
ードとし、他の金属電極をカソードとして直流の電解電
流を流していたため、除染はアノード側でしか行なわれ
ない。もし両方の電極に被除染体を用い、アノード側の
みならずカソード側でも除染が可能となれば、除染効率
を飛躍的に向上できることになる。
However, in the case of the conventional electrolytic decontamination method described above, the object to be decontaminated is used as an anode and the other metal electrode is used as a cathode to pass a direct current electrolytic current, so that decontamination is performed only on the anode side. If the object to be decontaminated is used for both electrodes, and it becomes possible to decontaminate not only the anode side but also the cathode side, the decontamination efficiency can be dramatically improved.

本発明は上記事情に鑑みてなされたもので、従来の電解
除染法を改良し、アノード側およびカソード側の両方で
放射能汚染金属部材の除染が可能な金属部材の表面汚染
除去方法を提供するものである。
The present invention has been made in view of the above circumstances, and provides a method for removing surface contamination of metal members, which improves the conventional electrolytic decontamination method and enables decontamination of radioactively contaminated metal members on both the anode side and the cathode side. This is what we provide.

即ち、本発明による金属部材の表面汚染除去方法の第1
は、放射能に表面汚染された金属部材を電解液中に離間
して保持し、金属部材を電極として交流電流を流すこと
を特徴とするものである。
That is, the first method of removing surface contamination from a metal member according to the present invention
The method is characterized in that a metal member whose surface is contaminated with radioactivity is held apart in an electrolytic solution, and an alternating current is passed through the metal member as an electrode.

また、本発明による表面汚染除去方法の第2は、上記第
1の方法を実施した後、同一の金属部材を電極として、
更に直流電流を流すことを特徴とするものである。
In addition, the second method for removing surface contamination according to the present invention is to use the same metal member as an electrode after carrying out the first method described above.
Furthermore, it is characterized by flowing a direct current.

上記本発明では電解電流として交流を用いるため、アノ
ードとカソードが交互に反転し、両極で被除染体の電解
研磨を行なうことができる。従って、処理能力は直流電
流を用いた従来の電解除染法の略2倍となり、著しく向
上する。
In the present invention, since alternating current is used as the electrolytic current, the anode and cathode are alternately reversed, and the object to be decontaminated can be electrolytically polished using both poles. Therefore, the processing capacity is approximately twice that of the conventional electrode dyeing method using direct current, and is significantly improved.

また、直流電源による従来の電解除染法ではアノード側
において金属の溶出と酸素ガスの発生に伴う分極(一種
の電気抵抗)が発生し、カソード側においても金属の溶
出は生じないが水素ガス発生による分極が起こるため、
これを打消すために通常は高電圧を負荷することが必要
とされ、消費電力が増大する原因になっている。これに
対して交流電解を採用した本発明の除染方法では、両極
から金属の溶出が認められるものの、同一極で酸素ガス
と水素ガスの発生が交互に行なわれるため分極が破壊さ
れる(この現象は一般に消極と呼ばれる)。従って、直
流電解による従来の除染方法よりも低い電圧で電解を行
なうことが可能となり、消費電力を低減することができ
る。更に、分極が生じないことから被除染体が複雑な形
状を有している場合にもその隅々まで電流が流れ、従っ
て電解除染効果はより一層向上する。
In addition, in the conventional electrode dyeing method using a DC power supply, polarization (a type of electrical resistance) occurs on the anode side due to metal elution and oxygen gas generation, and on the cathode side, metal elution does not occur, but hydrogen gas is generated. Because polarization occurs due to
In order to counteract this, it is usually necessary to load a high voltage, which causes an increase in power consumption. In contrast, in the decontamination method of the present invention that employs AC electrolysis, metal elution is observed from both electrodes, but the polarization is destroyed because oxygen gas and hydrogen gas are generated alternately at the same electrode (this phenomenon is generally called negativity). Therefore, it is possible to perform electrolysis at a lower voltage than in the conventional decontamination method using DC electrolysis, and power consumption can be reduced. Furthermore, since polarization does not occur, even if the object to be decontaminated has a complicated shape, the current will flow to every corner of the object, thus further improving the electrolytic decontamination effect.

他方、交流電解による電解研磨では表面状態が粗くなら
ざるを得ないという問題があるが、この問題は本願第2
発明のように交流電解を行なった後、更に直流電解を施
すことによって解消することができる。
On the other hand, electrolytic polishing using AC electrolysis has the problem that the surface condition inevitably becomes rough, but this problem is addressed in the second part of the present application.
This problem can be solved by performing AC electrolysis and then performing DC electrolysis as in the invention.

以下、実施例に基いて本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail based on Examples.

第1図は、本発明を実施するための具体的な装置の一例
を示している。同図において、1は電解槽であり、該電
解11の中には電解液2が満されている。そして、除染
さるべき一対の金属部材31.32は電解液2中に浸漬
され、図示のように対峙して吊設される。他方、電解電
源としては直流電源4が股I!され、該電解′R源4は
直流/交流変換器5(インバータ)を介して前記被除染
金属部材3r 、32に接続されている。また、電解電
流を測定するために電流計6が設けられ、電極間電圧を
測定するために電圧計7が設けられている。
FIG. 1 shows an example of a specific apparatus for implementing the present invention. In the figure, 1 is an electrolytic cell, and the electrolytic cell 11 is filled with an electrolytic solution 2. A pair of metal members 31 and 32 to be decontaminated are immersed in the electrolytic solution 2 and hung facing each other as shown. On the other hand, as an electrolytic power source, the DC power source 4 is used as an electrolytic power source. The electrolysis source 4 is connected to the metal members 3r and 32 to be decontaminated via a DC/AC converter 5 (inverter). Further, an ammeter 6 is provided to measure the electrolytic current, and a voltmeter 7 is provided to measure the voltage between the electrodes.

次に、上記第1図の装置を用いて行なった電解研磨の実
験を実施例として説明する。
Next, an electrolytic polishing experiment conducted using the apparatus shown in FIG. 1 will be described as an example.

実施例1 50aX 100aX1 rumの寸法の5us304
ステンレス鋼を第1図における電極金属部材31゜32
として用い、これを下記の条件で・電解研磨を行なった
Example 1 5us304 with dimensions of 50aX 100aX1 rum
The electrode metal member 31°32 in Fig. 1 is made of stainless steel.
This was used for electrolytic polishing under the following conditions.

また、比較例として直流電解による従来の電解fA磨法
、即ち、前記5us304ステンレス鋼電極31.32
を直接直流電源4に接続することにより、同様の電解研
磨を行った。
In addition, as a comparative example, the conventional electrolytic fA polishing method using DC electrolysis, that is, the 5 us 304 stainless steel electrode 31.32
Similar electrolytic polishing was performed by connecting directly to the DC power source 4.

[電解条件] 電解液の組成; 燐酸(比重1.84)70重量% 硫III(比重1.84)20 〃 水 10 !l 液温; 60℃ 交流サイクル; 60H2 電流密度; 2OA/dm 電解時間−: 15分 上記の実施例1および比較例について、電極金属部材の
溶出による重層減少量(比較例ではアノード側のみ)を
め、また同一の電流密度で電解している際の電圧を測定
することにより電力消費団の差をめた。その結果を下記
第1表に示づ。・第1表 この結果から明らかなように、交流電解による実施例1
では極材料の溶出が直流電解の比較例よりも若干劣るが
、実施例1の場合は一度の電解で両極の電極金属部材3
1.32を電解できるので、処理量としては比較例の2
倍の能力をもつことが判明した。また、電解後の電極金
属部材表面は、実施例1の場合、直流電解による比較例
のアノード表面はど良好ではないが、除染作業に問題と
なるようなことは認められなかった。
[Electrolysis conditions] Composition of electrolytic solution; Phosphoric acid (specific gravity 1.84) 70% by weight Sulfur III (specific gravity 1.84) 20 Water 10! l Liquid temperature; 60°C AC cycle; 60H2 Current density; 2OA/dm Electrolysis time: 15 minutes For the above Example 1 and Comparative Example, the amount of reduction in the layer due to elution of the electrode metal member (only on the anode side in the Comparative Example) was In addition, the difference in power consumption was determined by measuring the voltage during electrolysis at the same current density. The results are shown in Table 1 below.・Table 1 As is clear from the results, Example 1 using AC electrolysis
In this case, the elution of the electrode material is slightly inferior to that in the comparative example of DC electrolysis, but in the case of Example 1, the electrode metal members 3 of both electrodes are removed in one electrolysis.
1.32 can be electrolyzed, so the processing amount is 2 in the comparative example.
It turned out to be twice as powerful. Further, the surface of the electrode metal member after electrolysis was not as good in Example 1 as in the comparative example using DC electrolysis, but no problem was observed in the decontamination work.

他方、電解時の電圧についても実施例1では比較例に比
較して10〜30%低く、電力消費を低減できることが
確認された。
On the other hand, the voltage during electrolysis was also 10 to 30% lower in Example 1 than in the comparative example, confirming that power consumption could be reduced.

次に、交流電解ii源の周波数を3H2,101−1z
、30H7に夫々セットして上記実施例1と同じ電解研
磨を行ない、周波数による影響を調べたどころ、何れの
周波数の場合にも両極において電解研磨が可能で、交流
による電解除染を行なえることが確認された。
Next, change the frequency of the AC electrolysis II source to 3H2,101-1z
, 30H7, respectively, and performed the same electrolytic polishing as in Example 1, and examined the influence of frequency. It was found that electrolytic polishing is possible at both poles at any frequency, and electrolytic dedying can be performed using alternating current. was confirmed.

実施例2 実施例1出使用したのと同じ電極金属部材31゜32を
用い、これを実施例1と同じ条件で交流による電解研磨
を実施した後、インバータ5の作動を停止し、従来の直
流電解により3分間の電解研磨を行った。この結果、カ
ソード側の電極金属部材の表面粗さは0.8〜1.2μ
乳と実施例1の場合と同じであったが、アノード側の電
極金属部材では0.5〜0.8μ仇と表面状態が改善さ
れて光沢が増し、鏡面仕上げ状態となった。
Example 2 Using the same electrode metal members 31 and 32 as used in Example 1, this was electrolytically polished using AC under the same conditions as Example 1. After that, the operation of the inverter 5 was stopped and the conventional DC current was used. Electrolytic polishing was performed for 3 minutes using a solution. As a result, the surface roughness of the electrode metal member on the cathode side is 0.8 to 1.2μ.
The results were the same as in Example 1, but the surface condition of the electrode metal member on the anode side was improved to 0.5 to 0.8 μm, the gloss increased, and a mirror finish was achieved.

このように金属部材の電解研磨面が鏡面仕上げされるこ
とは、放射能汚染部材の除染に際して次のような意味を
有する。即ち、電解除染の終了後に電極に用いた除染金
属部材を電解液から引上げる際、その表面状態が粗いと
電解液が付着して外部に持ち去られ易いが、鏡面状態の
良好な表面仕上げの場合には電解液が除染金属部材表面
に付着し難く、外部に持ち去られることは少なくなる。
The fact that the electrolytically polished surface of the metal member is mirror-finished in this way has the following meaning in decontaminating the radioactively contaminated member. In other words, when a decontaminated metal member used as an electrode is pulled up from the electrolyte after the completion of electrolytic de-dying, if the surface is rough, the electrolyte will adhere to it and be easily carried away. In this case, the electrolyte is less likely to adhere to the surface of the metal member to be decontaminated, and less likely to be carried away to the outside.

放射能汚染部材の電解除染の場合には電解液中に汚染物
質が溶出しているから、これは放射能の外部拡散を防止
できることを意味し、安全管理上極めて有利である。
In the case of electrolytic de-dying of radioactively contaminated parts, contaminants are eluted into the electrolytic solution, which means that external diffusion of radioactivity can be prevented, which is extremely advantageous in terms of safety management.

実施例3 第2図の断面形状を有する5us304鋼製の山形8M
 (a−60am、 b−60ms+、 C=5ao+
)を電極金属部材3s 、32とし、実施例1の場合と
同じ条件(ただし、電解時間は60分)で交流電解によ
る電解研磨を行った。その際、山形鋼31゜32は図示
の状態で対峙して電解液中に配置した。
Example 3 A 5us304 steel chevron 8M having the cross-sectional shape shown in Fig. 2
(a-60am, b-60ms+, C=5ao+
) were used as electrode metal members 3s and 32, and electrolytic polishing by AC electrolysis was performed under the same conditions as in Example 1 (however, the electrolysis time was 60 minutes). At that time, the angle irons 31 and 32 were placed in the electrolytic solution facing each other as shown in the figure.

60分の電解研磨の後、電極金属部材に用いた山形鋼の
厚さを、第3図に示す5箇所の測定位置(10M間隔)
で計測した。
After 60 minutes of electrolytic polishing, the thickness of the angle iron used for the electrode metal member was measured at five locations (10M intervals) shown in Figure 3.
It was measured with.

また、比較例として上記と同じ山形鋼を従来の直流電解
゛により電解研磨を行ない、アノードに用いた山形鋼に
ついて、電解終了後に実施例3と同様に厚さの測定を行
なった。
Further, as a comparative example, the same angle steel as above was electrolytically polished by conventional DC electrolysis, and the thickness of the angle steel used for the anode was measured in the same manner as in Example 3 after completion of electrolysis.

第3図は上記実施例3の結果(曲線X)および比較例の
結果(曲4IIY)を示している。この結果から交流雪
解では山形鋼の角部深くまで同程度の電解l1ll@が
なされ、比較例の直流電解に比較して均一電解性能に優
れていることが確認された。
FIG. 3 shows the results of Example 3 (curve X) and the results of Comparative Example (track 4IIY). From this result, it was confirmed that AC snow melting produced the same level of electrolysis deep into the corners of the angle steel, and that it was superior in uniform electrolysis performance compared to the DC electrolysis of the comparative example.

以上詳述したように、従来の電解除染法を改良した本発
明による金属部材の表面汚染除去方法では、アノード側
およびカソード側の両方で放射能汚染金属部材の除染が
可能であると共に、金属部材が複雑な形状を有している
場合にも均一な汚染除去が可能である等、顕著な効果が
得られるもの均一除染効果を確認するために行った一実
施例において、電極金属部材に用いた山形鋼の形状を示
す断面図であり、第3−図はその厚さ測定位置を示す側
面図、第4図は 第2図の山形鋼を用いて行った実施例の結果を示す線図
である。
As described in detail above, the method for removing surface contamination of metal members according to the present invention, which is an improvement over the conventional electrolytic decontamination method, makes it possible to decontaminate radioactively contaminated metal members on both the anode side and the cathode side. Uniform decontamination can be achieved even when the metal member has a complicated shape.In an example conducted to confirm the uniform decontamination effect, the electrode metal member Fig. 3 is a cross-sectional view showing the shape of the angle iron used in the above, Fig. 3 is a side view showing the position of thickness measurement, and Fig. 4 shows the results of an example conducted using the angle iron shown in Fig. 2. It is a line diagram.

1・・・電解槽、2・・・電解液、31,32・・・電
極金属部材、4・・・直流電源、5・・・インバータ、
6・・・電流計、7・・・電圧計。
DESCRIPTION OF SYMBOLS 1... Electrolytic tank, 2... Electrolyte, 31, 32... Electrode metal member, 4... DC power supply, 5... Inverter,
6... Ammeter, 7... Voltmeter.

Claims (2)

【特許請求の範囲】[Claims] (1)放射能に表面汚染された金属部材を電解液中に離
間して保持し、金属部材を電極として交流電流を流すこ
とを特徴とする金j[部材の表面汚染除去方法。
(1) A method for removing surface contamination from a metal member, which is characterized by holding a metal member whose surface has been contaminated by radioactivity in an electrolytic solution at a distance, and passing an alternating current through the metal member as an electrode.
(2)放射能に表面汚染された金属部材を電解液中に離
間して保持し、金属部材を電極として交流電流を流した
後、同一の金属部材を電極として直流電流を流すことを
特徴とする金属部材の表面汚染除去方法。
(2) A metal member whose surface is contaminated with radioactivity is held separately in an electrolytic solution, an alternating current is passed through the metal member as an electrode, and then a direct current is passed through the same metal member as an electrode. A method for removing surface contamination from metal parts.
JP1568784A 1984-01-31 1984-01-31 Method for decontaminating surface of metallic member Pending JPS60162800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1568784A JPS60162800A (en) 1984-01-31 1984-01-31 Method for decontaminating surface of metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1568784A JPS60162800A (en) 1984-01-31 1984-01-31 Method for decontaminating surface of metallic member

Publications (1)

Publication Number Publication Date
JPS60162800A true JPS60162800A (en) 1985-08-24

Family

ID=11895662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1568784A Pending JPS60162800A (en) 1984-01-31 1984-01-31 Method for decontaminating surface of metallic member

Country Status (1)

Country Link
JP (1) JPS60162800A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586499A (en) * 1990-12-13 1993-04-06 Agency Of Ind Science & Technol Production of iridium oxide film metal joined body
JP2009216576A (en) * 2008-03-11 2009-09-24 Hitachi-Ge Nuclear Energy Ltd Removal method of machined layer, residual stress improvement method of nuclear structure member, and core shroud replacement method
CN107413762A (en) * 2017-09-06 2017-12-01 沈阳中科腐蚀控制工程技术有限公司 A kind of nuclear facilities ultrasonic electrochemical radioactive pollution decontamination plant and method
JP2019523406A (en) * 2016-07-26 2019-08-22 シー−テック イノベーション リミテッド Electrolytic treatment for nuclear decontamination

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586499A (en) * 1990-12-13 1993-04-06 Agency Of Ind Science & Technol Production of iridium oxide film metal joined body
JP2009216576A (en) * 2008-03-11 2009-09-24 Hitachi-Ge Nuclear Energy Ltd Removal method of machined layer, residual stress improvement method of nuclear structure member, and core shroud replacement method
JP2019523406A (en) * 2016-07-26 2019-08-22 シー−テック イノベーション リミテッド Electrolytic treatment for nuclear decontamination
CN107413762A (en) * 2017-09-06 2017-12-01 沈阳中科腐蚀控制工程技术有限公司 A kind of nuclear facilities ultrasonic electrochemical radioactive pollution decontamination plant and method

Similar Documents

Publication Publication Date Title
JP7018426B2 (en) Electrolytic treatment for nuclear decontamination
CN112176145B (en) Method for recovering radioactive waste metal
JPS60162800A (en) Method for decontaminating surface of metallic member
US5877388A (en) Apparatus and method for electrochemical decontamination of radioactive metallic waste
US11342092B2 (en) Electrolyte for electrochemical decontamination and preparation method and application thereof
US7384529B1 (en) Method for electrochemical decontamination of radioactive metal
JP2010227811A (en) Washing method for work, work, and watch
CN110257890A (en) Remove foul electrolyte and decontamination method
JPS6020720B2 (en) Decontamination method for metal materials contaminated with radioactivity
JPS60106998A (en) Electrolytic decontamination method
JPS61209400A (en) Method of decontaminating radioactive contaminated metallic waste
JPS60159700A (en) Method of decontaminating radioactive contaminated metallic material
JP3663048B2 (en) Wet treatment method
JPS60114600A (en) Decontamination method by electrolysis in alkali
Lee et al. Application of a modified electrochemical system for surface decontamination of radioactive metal waste
JPS60106999A (en) Electrolytic decontamination method
JPS61231496A (en) Method of decontaminating radioactive metallic waste
JP3045933B2 (en) Apparatus and method for decontaminating radioactive metal waste
JP2005140761A (en) Electrolytic decontamination method on lead material for shielding
JPS6018798A (en) Method of electrolytically decontaminating metallic materialcontaminated by radioactivity
JPS599599A (en) Method of decontaminating radioactive metal by electrolysis
JPH0226759B2 (en)
JPH0527092A (en) Removal of contamination of radioactive metallic waste
JPH03158800A (en) Electrolytic decontamination method for radioactive metallic waste
JPH0631858B2 (en) Method for separating metal ions in solution