JP3663048B2 - Wet treatment method - Google Patents

Wet treatment method Download PDF

Info

Publication number
JP3663048B2
JP3663048B2 JP12888498A JP12888498A JP3663048B2 JP 3663048 B2 JP3663048 B2 JP 3663048B2 JP 12888498 A JP12888498 A JP 12888498A JP 12888498 A JP12888498 A JP 12888498A JP 3663048 B2 JP3663048 B2 JP 3663048B2
Authority
JP
Japan
Prior art keywords
water
cleaning
wafer
electrolytic
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12888498A
Other languages
Japanese (ja)
Other versions
JPH11330027A (en
Inventor
一郎 片伯部
浩 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12888498A priority Critical patent/JP3663048B2/en
Publication of JPH11330027A publication Critical patent/JPH11330027A/en
Application granted granted Critical
Publication of JP3663048B2 publication Critical patent/JP3663048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は特に電解イオン水を用いるシリコンウェハ、石英ウェハの洗浄方法に関する。
【0002】
【従来の技術】
従来のウェハの洗浄では、RCA洗浄で代表されるように、高濃度、高温の薬液を使用する。このため、廃液や蒸気雰囲気等、環境に悪い。環境整備にもコストがかかる。また、高濃度の薬液を洗い流すため多量の純水を必要としていた。多量の純水(超純水)の使用はコスト的な問題にもなる。
【0003】
近年、半導体ウェハの洗浄処理において、環境、コストダウンの面から電解イオン水洗浄が注目されている。しかし、実際にウェハに付着する粒子(パーティクル)、有機汚染物、原子レベルの金属汚染物等を効率的に除去する洗浄方法というと現状では未発達である。
【0004】
【発明が解決しようとする課題】
このように従来、コスト、環境面を良好にするため、半導体ウェハをイオン水にて洗浄するウェット処理方法が注目されているが、ウェハに付着するパーティクル、有機汚染物、原子レベルの金属汚染物等が効率的に除去されるような技術には至っていない。
【0005】
この発明は上記のような事情を考慮し、その課題は、薬液や純水の使用を大幅に削減しつつ、ウェハに付着するパーティクル、有機汚染物、原子レベルの金属汚染物等が効率的に除去されるウェハのウェット処理方法を提供することにある。
【0006】
【課題を解決するための手段】
この発明のウェット処理方法は、陽極水及び陰極水を生成する電解槽を有する電解イオン水生成装置により生成された電解イオン水を用いる半導体ウェハ及び石英ウェハの洗浄であって、陰極水を用いた洗浄の後に、HF溶液を用いた処理を行い、この後、陽極水を用いた洗浄を行うことを特徴とする。
また、この発明のウェット処理方法は、陽極水及び陰極水を生成する電解槽を有する電解イオン水生成装置により生成された電解イオン水を用いる半導体ウェハ及び石英ウェハの洗浄であって、陰極水を用いた洗浄の後に陽極水を用いた洗浄を行い、前記陰極水と陽極水を用いる各洗浄工程を始める前または後にHF溶液を用いた処理を行うことを特徴とする。
【0007】
この発明では、ウェハに付着する汚染物であるパーティクル、有機汚染物を陰極水で除去した後に、原子レベルの金属汚染を陽極水で除去する。このような洗浄の順序によって、ウェハの処理面を効率的に洗浄する。
【0008】
【発明の実施の形態】
図1はこの発明の実施形態に係るウェット処理方法の工程順序を示す流れ図である。また、図2は、半導体ウェハ(ここではシリコンウェハ)のウェット洗浄に用いられるワンバス式洗浄装置を示す概念図であり、これらにより、シリコンウェハの洗浄に関するウェット処理方法を説明する。
【0009】
図2において、電解イオン水生成装置1は、イオン交換膜121で隔てられた電解槽12に、陰極、陽極となる各電極棒13a,13bを挿入し、電流を流すことにより水を電気分解し、イオン水を生成する。電解槽12の陰極側には、例えばNH4 OH(水酸化アンモニウム)が純水H2 Oに対して0.02%程度、陽極側には、例えばHCl(塩酸)が純水に対して0.1%程度、電解質としてそれぞれ添加される。
【0010】
洗浄装置2は、複数のシリコンウェハ5が挿入される1個の洗浄槽21が示され、純水、陰極水、陽極水の供給が制御される。搬送機構3は、ウェハ5を洗浄槽から出し入れしたり、洗浄したウェハ5を乾燥装置4に搬送したりする。
【0011】
この発明では、電解イオン水生成装置で生成されたイオン水を、陰極水、陽極水の順に用いたウェハの洗浄を行う。なお、この例では、イオン水、純水の供給速度を20リットル/min、洗浄槽21の容積を25リットルとした。
【0012】
図1及び図2において、まず、洗浄槽21の中を純水でオーバフローする。次に、洗浄槽21の中へ被処理体であるシリコンウェハ5をセットする。
次に、洗浄槽21にイオン水生成装置1で生成された陰極水を供給し、槽21の中の液を陰極水により置換する。置換が終了するとそのまま10分間ウェハ5を陰極水に浸す。
【0013】
この時の陰極水は常温であり、Phが6〜11、酸化還元電位(ORP:Oxdation Reduction Potential) が100〜−800mVであることが望ましい。この実施形態では、陰極水のPhは10、酸化還元電位は−300mVとしている。陰極水は電解槽の出口で−100mV以下の酸化還元電位を有することが重要である。これは電解槽12の出口に設けられた電位検出器6によって検出する方法がある。
【0014】
この陰極水による洗浄により、ウェハ5に付着する汚染物であるパーティクル、有機汚染物が除去される。この洗浄時、洗浄槽21内を高周波振動させると、上記パーティクル、有機汚染物の除去の効率は向上する。
【0015】
次に、約5分間、純水を洗浄槽21に供給し、槽5内及びウェハ5に付着した陰極水を洗い流す(H2 Oによるリンス処理)。純水の供給を約5分間とするのは、洗浄槽21の中が中性に導かれるまでの十分な時間である。イオン水における薬液使用料はRCA洗浄に比べて少量である。従って、従来のRCA洗浄に比べて洗浄槽21中を中性にするまでの純水の供給時間は短くなり、純水の使用量を節約することができる。
【0016】
次に、洗浄槽21にイオン水生成装置1で生成された陽極水を供給し、槽21の中の液を陽極水により置換する。置換が終了するとそのまま10分間ウェハ5を陰極水に浸す。置換が終了するとそのまま10分間ウェハを陽極水に浸す。
【0017】
この時の陽極水は常温であり、Phが6〜0.5、酸化還元電位が300〜1300mVであることが望ましい。この実施形態では、陽極水のPhは2、酸化還元電位は1000mVとしている。陽極水は電解槽12の出口で500mV以上の酸化還元電位を有することが重要である。これは電解槽12の出口に設けられた電位検出器7によって検出する方法がある。
【0018】
この陽極水による洗浄により、原子レベルの金属汚染が除去される。陰極水でパーティクル及び有機汚染物を除去した後に、原子レベルの金属の除去がなされるので、ウェハの処理面が効率的に洗浄できる。
【0019】
次に、約5分間、純水を洗浄槽21に供給し、槽21内及びウェハに付着した陽極水を洗い流す(H2 Oによるリンス処理)。純水の供給を約5分間とするのは、洗浄槽21の中が中性に導かれるまでの十分な時間である。イオン水における薬液使用料はRCA洗浄に比べて少量である。従って、従来のRCA洗浄に比べて洗浄槽21中を中性にするまでの純水の供給時間は短くなり、純水の使用を節約できる。
【0020】
次に、搬送機構3でウェハ5を洗浄槽21から取り出し、乾燥装置4に運び、ウェハ5を乾燥させる(スピン乾燥)。以上でウェハの洗浄が終了する。
この実施形態の方法によれば、シリコンウェハ上のパーティクルを陰極水で除去し、金属汚染を陽極水により除去するため、従来のRCA洗浄の方法と同等以上の洗浄効果を得ることができる。また、従来の洗浄より使用薬液を大幅に削減でき、薬液コスト及び純水使用量が節約できる。
【0021】
従来のRCA洗浄ではアルカリ性薬液としてNH3 OHの含有量は、過酸化水素水及び純水に対して14.3%程度、酸性薬液としてHClの含有量は、過酸化水素水及び純水に対して12.5%程度である。この薬液の濃度に伴い、バスの純水オーバーフロー洗浄に15分もかかり、純水は1回の洗浄で600リットルも必要であった。
【0022】
これに比べてこの発明の方法を採用すれば、上述したように、NH4 OHが純水に対して0.02%程度の含有量(200ppm)であり、HClが純水に対して0.1%程度の含有量(1000ppm)であるから、バスの純水オーバーフロー洗浄には5分で、純水は1回の洗浄で200リットルあればよい。純水使用コストが低減され、また、環境にも良いウェット処理方法を実現することができる。
【0023】
また、この発明の方法はワンバス式洗浄装置に限るものではない。タクト式洗浄装置でも、枚葉式の洗浄装置でもよい。すなわち、陰極水を用いた洗浄の後に陽極水を用いた洗浄を行う順序でウェット処理が行われれば良い。例えば、枚葉式は純水によるリンス処理が省略される場合がある。
【0024】
さらに、このようなウェット処理における、陰極水と陽極水を用いる各洗浄工程の間にウェハ表面に自然酸化膜が形成されてしまう場合、HF溶液を用いた処理でこの自然酸化膜を除去する工程が必要になる。また、陰極水と陽極水を用いる各洗浄工程を始める前または後にHF溶液を用いた処理を行うことも考えられる。
【0025】
【発明の効果】
以上説明したようにこの発明によれば、ウェハに付着する汚染物であるパーティクル、有機汚染物を、まず、陰極水で除去した後に、原子レベルの金属汚染を、陽極水で除去する。このような洗浄の順序によって、ウェハの処理面を効率的に洗浄するウェット処理装置を提供することができる。
【図面の簡単な説明】
【図1】この発明の実施形態に係るウェット処理方法の工程順序を示す流れ図。
【図2】この発明の方法に関するシリコンウェハのウェット洗浄に用いられるワンバス式洗浄装置を示す概念図。
【符号の説明】
1…電解イオン水生成装置
121…イオン交換膜
12…電解槽
13a,13b…電極棒
2…洗浄装置
21…洗浄槽
3…搬送機構
4…乾燥装置
5…ウェハ
6,7…電位検出器
[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to a method for cleaning silicon wafers and quartz wafers using electrolytic ionized water.
[0002]
[Prior art]
In conventional wafer cleaning, a chemical solution having a high concentration and a high temperature is used, as represented by RCA cleaning. For this reason, it is bad for the environment, such as waste liquid and steam atmosphere. The environment is also expensive. In addition, a large amount of pure water is required to wash away a high concentration chemical solution. The use of a large amount of pure water (ultra pure water) also causes a cost problem.
[0003]
2. Description of the Related Art In recent years, electrolytic ion water cleaning has attracted attention in terms of environmental and cost reduction in semiconductor wafer cleaning processing. However, a cleaning method that efficiently removes particles (particles), organic contaminants, atomic level metal contaminants, and the like that actually adhere to the wafer has not yet been developed.
[0004]
[Problems to be solved by the invention]
Conventionally, in order to improve cost and environmental aspects, wet processing methods for cleaning semiconductor wafers with ionized water have attracted attention. However, particles adhering to the wafer, organic contaminants, and atomic level metal contaminants have been attracting attention. It has not yet reached a technology that can effectively eliminate the above.
[0005]
The present invention takes the above circumstances into consideration, and the problem is that particles, organic contaminants, atomic level metal contaminants, etc. adhering to the wafer are efficiently reduced while greatly reducing the use of chemicals and pure water. An object of the present invention is to provide a wet processing method for a wafer to be removed.
[0006]
[Means for Solving the Problems]
The wet treatment method of the present invention is a cleaning of a semiconductor wafer and a quartz wafer using electrolytic ionic water generated by an electrolytic ionic water generating apparatus having an electrolytic bath for generating anodic water and cathodic water, using the cathodic water. After the cleaning, a treatment using an HF solution is performed, and then a cleaning using anodized water is performed.
Further, the wet treatment method of the present invention is a cleaning of a semiconductor wafer and a quartz wafer using electrolytic ionic water generated by an electrolytic ionic water generating apparatus having an electrolytic bath for generating anodic water and cathodic water, After the used cleaning, cleaning with anodic water is performed, and before or after each cleaning process using the cathodic water and anodic water is started, a treatment with an HF solution is performed.
[0007]
In the present invention, particles and organic contaminants that are contaminants adhering to the wafer are removed with the cathode water, and then metal contamination at the atomic level is removed with the anode water. By such a cleaning sequence, the processing surface of the wafer is efficiently cleaned.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart showing a process sequence of a wet processing method according to an embodiment of the present invention. FIG. 2 is a conceptual diagram showing a one-bus type cleaning apparatus used for wet cleaning of a semiconductor wafer (here, a silicon wafer), and a wet processing method related to cleaning of a silicon wafer will be described using these.
[0009]
In FIG. 2, the electrolytic ionic water generating apparatus 1 inserts electrode rods 13 a and 13 b serving as a cathode and an anode into an electrolytic cell 12 separated by an ion exchange membrane 121, and electrolyzes water by flowing current. To produce ionic water. On the cathode side of the electrolytic cell 12, for example, NH 4 OH (ammonium hydroxide) is about 0.02% with respect to pure water H 2 O, and on the anode side, for example, HCl (hydrochloric acid) is 0% with respect to pure water. About 1% of each is added as an electrolyte.
[0010]
The cleaning apparatus 2 shows one cleaning tank 21 into which a plurality of silicon wafers 5 are inserted, and the supply of pure water, cathode water, and anode water is controlled. The transport mechanism 3 moves the wafer 5 in and out of the cleaning tank or transports the cleaned wafer 5 to the drying device 4.
[0011]
In this invention, the wafer is cleaned using the ion water generated by the electrolytic ion water generator in the order of the cathode water and the anode water. In this example, the supply rate of ionic water and pure water was 20 liters / min, and the volume of the cleaning tank 21 was 25 liters.
[0012]
1 and 2, first, the cleaning tank 21 overflows with pure water. Next, the silicon wafer 5 as the object to be processed is set in the cleaning tank 21.
Next, the cathodic water produced | generated with the ion water production | generation apparatus 1 is supplied to the washing tank 21, and the liquid in the tank 21 is substituted with cathodic water. When the replacement is completed, the wafer 5 is immersed in the cathode water for 10 minutes.
[0013]
The cathode water at this time is normal temperature, and it is desirable that Ph is 6 to 11 and an oxidation reduction potential (ORP) is 100 to -800 mV. In this embodiment, the cathode water has a Ph of 10 and an oxidation-reduction potential of −300 mV. It is important that the cathode water has an oxidation-reduction potential of −100 mV or less at the outlet of the electrolytic cell. This can be detected by a potential detector 6 provided at the outlet of the electrolytic cell 12.
[0014]
By cleaning with the cathode water, particles and organic contaminants that are contaminants attached to the wafer 5 are removed. At the time of cleaning, if the inside of the cleaning tank 21 is vibrated at a high frequency, the efficiency of removing the particles and organic contaminants is improved.
[0015]
Next, pure water is supplied to the cleaning tank 21 for about 5 minutes, and the cathode water adhering to the tank 5 and the wafer 5 is washed away (rinsing with H 2 O). The supply of pure water for about 5 minutes is a sufficient time until the inside of the cleaning tank 21 is neutrally introduced. The chemical usage fee in ionic water is small compared to RCA cleaning. Therefore, compared with the conventional RCA cleaning, the supply time of pure water until the inside of the cleaning tank 21 is neutral becomes shorter, and the amount of pure water used can be saved.
[0016]
Next, the anodic water produced | generated with the ionic water production | generation apparatus 1 is supplied to the washing tank 21, and the liquid in the tank 21 is substituted with an anodic water. When the replacement is completed, the wafer 5 is immersed in the cathode water for 10 minutes. When the replacement is completed, the wafer is immersed in anode water for 10 minutes.
[0017]
The anodic water at this time is normal temperature, and it is desirable that Ph is 6 to 0.5 and the oxidation-reduction potential is 300 to 1300 mV. In this embodiment, the anode water has a Ph of 2 and an oxidation-reduction potential of 1000 mV. It is important that the anode water has an oxidation-reduction potential of 500 mV or more at the outlet of the electrolytic cell 12. This can be detected by a potential detector 7 provided at the outlet of the electrolytic cell 12.
[0018]
This anodic water cleaning removes atomic level metal contamination. After removing particles and organic contaminants with the cathode water, the metal at the atomic level is removed, so that the processing surface of the wafer can be efficiently cleaned.
[0019]
Next, pure water is supplied to the cleaning tank 21 for about 5 minutes, and the anode water adhering to the inside of the tank 21 and the wafer is washed away (rinsing with H 2 O). The supply of pure water for about 5 minutes is a sufficient time until the inside of the cleaning tank 21 is neutrally introduced. The chemical usage fee in ionic water is small compared to RCA cleaning. Therefore, compared with the conventional RCA cleaning, the supply time of pure water until the inside of the cleaning tank 21 is neutral becomes shorter, and the use of pure water can be saved.
[0020]
Next, the wafer 5 is taken out from the cleaning tank 21 by the transport mechanism 3 and carried to the drying device 4 to dry the wafer 5 (spin drying). This completes the cleaning of the wafer.
According to the method of this embodiment, particles on the silicon wafer are removed with cathodic water, and metal contamination is removed with anodic water, so that a cleaning effect equivalent to or higher than that of the conventional RCA cleaning method can be obtained. In addition, the chemical solution used can be greatly reduced compared to conventional cleaning, and the chemical cost and the amount of pure water used can be saved.
[0021]
In the conventional RCA cleaning, the content of NH 3 OH as an alkaline chemical is about 14.3% with respect to hydrogen peroxide and pure water, and the content of HCl as an acidic chemical is relative to hydrogen peroxide and pure water. About 12.5%. With the concentration of this chemical solution, it took as long as 15 minutes to wash the pure water overflow of the bath, and 600 liters of pure water was required for one wash.
[0022]
In contrast, when the method of the present invention is employed, as described above, NH 4 OH has a content (200 ppm) of about 0.02% with respect to pure water, and HCl has a content of about 0.2% with respect to pure water. Since the content is about 1% (1000 ppm), the pure water overflow cleaning of the bath takes 5 minutes, and the pure water needs only 200 liters in one cleaning. The cost of using pure water is reduced, and a wet treatment method that is good for the environment can be realized.
[0023]
Further, the method of the present invention is not limited to the one-bath type cleaning apparatus. A tact type cleaning device or a single wafer cleaning device may be used. That is, the wet treatment may be performed in the order of cleaning with the anode water after cleaning with the cathode water. For example, the single wafer type may omit the rinsing process with pure water.
[0024]
Further, when a natural oxide film is formed on the wafer surface during each cleaning process using cathodic water and anodic water in such wet processing, the natural oxide film is removed by processing using an HF solution. Is required. It is also conceivable to perform treatment using an HF solution before or after starting each cleaning step using cathodic water and anodic water.
[0025]
【The invention's effect】
As described above, according to the present invention, particles and organic contaminants that are contaminants adhering to the wafer are first removed with cathode water, and then metal contamination at the atomic level is removed with anode water. A wet processing apparatus for efficiently cleaning the processing surface of the wafer can be provided by such a cleaning order.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a process sequence of a wet processing method according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram showing a one-bath cleaning apparatus used for wet cleaning of a silicon wafer according to the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrolytic ion water production | generation apparatus 121 ... Ion exchange membrane 12 ... Electrolysis tank 13a, 13b ... Electrode rod 2 ... Cleaning apparatus 21 ... Cleaning tank 3 ... Conveyance mechanism 4 ... Drying apparatus 5 ... Wafer 6, 7 ... Potential detector

Claims (4)

陽極水及び陰極水を生成する電解槽を有する電解イオン水生成装置により生成された電解イオン水を用いる半導体ウェハ及び石英ウェハの洗浄であって、陰極水を用いた洗浄の後に、HF溶液を用いた処理を行い、この後、陽極水を用いた洗浄を行うことを特徴とするウェット処理方法。  Cleaning of semiconductor wafers and quartz wafers using electrolytic ionic water generated by an electrolytic ionic water generator having an electrolytic cell for generating anodic water and cathodic water, wherein the HF solution is used after the cleaning using cathodic water. A wet treatment method, wherein after the treatment is performed, cleaning with anodized water is performed. 陽極水及び陰極水を生成する電解槽を有する電解イオン水生成装置により生成された電解イオン水を用いる半導体ウェハ及び石英ウェハの洗浄であって、陰極水を用いた洗浄の後に陽極水を用いた洗浄を行い、前記陰極水と陽極水を用いる各洗浄工程を始める前または後にHF溶液を用いた処理を行うことを特徴とするウェット処理方法。  Cleaning of semiconductor wafers and quartz wafers using electrolytic ionic water generated by an electrolytic ionic water generator having an electrolytic cell for generating anodic water and cathodic water, using anodic water after cleaning using cathodic water A wet treatment method comprising performing a treatment using an HF solution before or after starting each washing step using the cathode water and the anode water. 陰極水と陽極水を用いる各洗浄工程の後にH2 Oによるリンス処理を行うことを特徴とする請求項1又は2に記載のウェット処理法。Wet treatment method according to claim 1 or 2, characterized in that the rinsing process by H 2 O after each washing step using cathode water and anode water. 前記電解槽出口での陽極水の酸化還元電位が500mV以上、陰極水の酸化還元電位が−100mV以下であることを特徴とする請求項1又は2に記載のウェット処理方法。The wet treatment method according to claim 1 or 2, wherein the redox potential of the anode water at the outlet of the electrolytic cell is 500 mV or more and the redox potential of the cathode water is -100 mV or less.
JP12888498A 1998-05-12 1998-05-12 Wet treatment method Expired - Fee Related JP3663048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12888498A JP3663048B2 (en) 1998-05-12 1998-05-12 Wet treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12888498A JP3663048B2 (en) 1998-05-12 1998-05-12 Wet treatment method

Publications (2)

Publication Number Publication Date
JPH11330027A JPH11330027A (en) 1999-11-30
JP3663048B2 true JP3663048B2 (en) 2005-06-22

Family

ID=14995745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12888498A Expired - Fee Related JP3663048B2 (en) 1998-05-12 1998-05-12 Wet treatment method

Country Status (1)

Country Link
JP (1) JP3663048B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6342838B2 (en) * 2014-06-25 2018-06-13 東京エレクトロン株式会社 Processing liquid supply method, processing liquid supply apparatus, and computer-readable recording medium
CN114985361B (en) * 2022-08-08 2022-10-28 国机传感科技有限公司 Automatic control cleaning device and control cleaning method for MEMS chip

Also Published As

Publication number Publication date
JPH11330027A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
US5635053A (en) Method and apparatus for cleaning electronic parts
JP3883401B2 (en) Wet method for manufacturing semiconductor device using anode water containing oxidizing substance and / or cathode water containing reducing substance, and anode water and / or cathode water used in this method
JPH07263430A (en) Wet treatment of semiconductor substrate
JP2859081B2 (en) Wet processing method and processing apparatus
US20120012134A1 (en) Method for cleaning electronic material and device for cleaning electronic material
JPH09153473A (en) Wet processing method
KR100913449B1 (en) Cleaning system and cleaning method
JP3313263B2 (en) Electrolytic water generation method, its generation apparatus, and semiconductor manufacturing apparatus
WO2013008605A1 (en) Method for cleaning metal gate semiconductor
JP4462513B2 (en) Electrolyzed water manufacturing method, cleaning water, and cleaning method
KR102424386B1 (en) How to clean synthetic surfaces
JP2581403B2 (en) Wet processing method and processing apparatus
JP3663048B2 (en) Wet treatment method
JP3639102B2 (en) Wet processing equipment
JP3437716B2 (en) Semiconductor substrate cleaning method and cleaning apparatus used therefor
JPH1129795A (en) Cleaning water for electronic material, its preparation, and cleaning of electronic material
JP3209223B2 (en) Wet treatment method
JP3191700B2 (en) Wet treatment method
JPH07324198A (en) Cleaning composition and method for cleaning semiconductor substrate using the same
JP3590273B2 (en) Semiconductor device manufacturing method and processing liquid generating apparatus
JP2000033376A (en) Electrolytic ionized water producing device, method for producing electrolytic ionized water, cleaner and method for cleaning semiconductor device
JPH0880486A (en) Electrolytic ultrapure water, producer thereof, production, cleaning device and cleaning method
KR20170104240A (en) Apparatus for producing cleaning water and cleaning method of substrate using cleaning water produced therefrom
JP3039372B2 (en) Semiconductor substrate cleaning processing apparatus and cleaning processing method
JPH0924350A (en) Wet treatment and treating device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees