JP3039372B2 - Semiconductor substrate cleaning processing apparatus and cleaning processing method - Google Patents

Semiconductor substrate cleaning processing apparatus and cleaning processing method

Info

Publication number
JP3039372B2
JP3039372B2 JP8124508A JP12450896A JP3039372B2 JP 3039372 B2 JP3039372 B2 JP 3039372B2 JP 8124508 A JP8124508 A JP 8124508A JP 12450896 A JP12450896 A JP 12450896A JP 3039372 B2 JP3039372 B2 JP 3039372B2
Authority
JP
Japan
Prior art keywords
cleaning
semiconductor substrate
electrolysis
water
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8124508A
Other languages
Japanese (ja)
Other versions
JPH09306885A (en
Inventor
好美 白水
傑 田中
かおり 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8124508A priority Critical patent/JP3039372B2/en
Publication of JPH09306885A publication Critical patent/JPH09306885A/en
Application granted granted Critical
Publication of JP3039372B2 publication Critical patent/JP3039372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解イオン水生成
及び電解イオン水生成機構に関し、特に半導体基板の洗
浄処理装置及び半導体基板の洗浄処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electrolytic ionic water generation and electrolytic ionic water generation mechanisms, and more particularly to a semiconductor substrate cleaning apparatus and a semiconductor substrate cleaning method.

【0002】[0002]

【従来の技術】超LSIの微細化に伴い、半導体基板表
面の洗浄化の要求がますます激しくなってきている。特
に金属不純物は、半導体基板表面に付着すると致命的で
半導体デバイスの電気特性を著しく劣化させる。一般的
には、半導体基板の表面金属汚染濃度は1X1010at
oms/cm2 以下のレベルにする必要があると言われ
ている。さらに、近年では、クリーンルーム中の有機物
が半導体デバイスの電気特性を劣化させる事も解ってき
ている。これらの汚染の制御のために超純水及び高純度
薬品を使用したウエット洗浄処理が不可欠となってい
る。
2. Description of the Related Art With the miniaturization of VLSI, the demand for cleaning the surface of a semiconductor substrate has become more and more intense. In particular, metal impurities are fatal if attached to the surface of a semiconductor substrate, and significantly deteriorate the electrical characteristics of a semiconductor device. Generally, the surface metal contamination concentration of a semiconductor substrate is 1 × 10 10 at.
It is said that the level needs to be oms / cm 2 or less. Further, in recent years, it has been found that organic matter in a clean room deteriorates electrical characteristics of a semiconductor device. For controlling these contaminations, wet cleaning using ultrapure water and high-purity chemicals is indispensable.

【0003】現在、超LSI製造プロセスで行われてい
るウエット処理は、洗浄処理、エッチング処理、リンス
処理の3種類に大きく分けることができる。これらの内
容は、(1)基体(半導体層、金属配線、絶縁膜等)に
付着する汚染物(金属汚染物、有機汚染物、有機及び無
機パーティクル、レジスト残渣、イオン性残留物など)
を、基体には影響を与えずに除去する洗浄及びリンス処
理、(2)基体をエッチングする処理、(3)基体表面
に形成される自然酸化膜及び有機被膜をエッチング除去
する処理、の3種類である。例えば(1)の処理ではH
PM(HCl/H22 /H2 O=1:1:6)やSP
M(H2 SO4 /H22 =5:1)などがよく使用さ
れる。(2)の処理では、APM(NH4 OH/H2
2 /H2O=1:4:20)などが使用される。(3)
の処理では、DHF(HF/H2O=1:50〜40
0)などがよく使用される。このように、超LSIの製
造プロセスでは色々な化学薬品を大量に使用してウエッ
ト洗浄処理を行っている為に、排液処理には大がかりな
設備とランニングコストがかかる。ウエット処理の基体
となるのは純水である。
[0003] Wet processing currently performed in the VLSI manufacturing process can be broadly divided into three types: cleaning, etching, and rinsing. These contents include: (1) Contaminants (metal contaminants, organic contaminants, organic and inorganic particles, resist residues, ionic residues, etc.) adhering to a substrate (semiconductor layer, metal wiring, insulating film, etc.)
And (2) a process of etching the substrate, and (3) a process of etching and removing a natural oxide film and an organic film formed on the surface of the substrate. It is. For example, in the process (1), H
PM (HCl / H 2 O 2 / H 2 O = 1: 1: 6) or SP
M (H 2 SO 4 / H 2 O 2 = 5: 1) and the like are often used. In the process (2), the APM (NH 4 OH / H 2 O)
2 / H 2 O = 1: 4: 20). (3)
In the process (1), DHF (HF / H 2 O = 1: 50 to 40
0) and the like are often used. As described above, since the wet cleaning process is performed using a large amount of various chemicals in the manufacturing process of the VLSI, large amounts of equipment and running costs are required for the drainage process. Pure water is used as the substrate for the wet treatment.

【0004】使用済みの純水は、再生されて何度も使用
されている。化学薬品も再生・再利用が行われている
が、寿命が尽き効果が無くなった時には分解・中和など
といった環境保全の為の適切な処理を行い廃棄されてい
る。しかし、再生・再利用によって薬品の使用量を減ら
そうとしても限界がある。また、現在の洗浄法は開発
後、数十年経ていて、最近の高清浄化、低コスト化への
要求を満たせなくなってきており新しいウエット洗浄技
術の開発が強く求められている。そこで、出願人は、薬
品使用量を大幅に削減できる画期的なウエット処理装置
及び方法を発明し、既に出願している(特願平5−10
5991、特願平6−56107、特願平6−5610
6、以下先願という)。これは、微量の電解質(薬液)
が添加された純水を電気分解して得られる特殊な水であ
り、この電解水を使用して半導体のウエット処理を行
い、電解水を速やかに生成できるので化学薬品の使用量
を削減し、廃棄物を減らし、廃棄物の回収、処理にかか
るコストを削減できるというものである。
[0004] Used pure water is regenerated and used many times. Chemicals are also recycled and reused, but when their life has expired and their effects have ceased, they are disposed of after appropriate treatment for environmental conservation, such as decomposition and neutralization. However, there is a limit to reducing the amount of chemicals used by recycling and reuse. In addition, the current cleaning method has been developed for several decades, and it has become impossible to satisfy the recent demand for high cleanliness and low cost. Therefore, development of a new wet cleaning technology is strongly demanded. Therefore, the applicant has invented an innovative wet treatment apparatus and method capable of greatly reducing the amount of chemicals used, and has already filed an application (Japanese Patent Application No. 5-10).
5991, Japanese Patent Application No. 6-56107, Japanese Patent Application No. 6-5610
6, hereinafter referred to as prior application). This is a small amount of electrolyte (chemical solution)
Is a special water obtained by electrolysis of pure water to which is added, wet processing of semiconductors using this electrolyzed water, and it is possible to quickly generate electrolyzed water, thus reducing the use of chemicals, This means that waste can be reduced and the cost of collecting and processing waste can be reduced.

【0005】従来は、薬液を添加した純水を電気分解す
る電極の材料に高純度Pt電極(99.999%)を使
用し、且つアノード側では、電解質としてNH4 Clに
代表されるようなハロゲン系の物質を使用していた。N
4 Clを電解質として使用した場合のアノード側の電
気化学反応を示す。
Conventionally, a high-purity Pt electrode (99.999%) has been used as an electrode material for electrolyzing pure water to which a chemical solution has been added, and on the anode side, an electrolyte represented by NH 4 Cl has been used. A halogen-based substance was used. N
The electrochemical reaction on the anode side when H 4 Cl is used as the electrolyte is shown.

【0006】 2H2 O→O2 +4H+ 4e- (1)または、 3H2 O→O3 +6H+ 6e- (2) 及び、 NH4 Cl→NH4 + +Cl- (3) 及び、 2Cl- →Cl2 +2e- (4) 及び、 Cl2 +2H2 O→2H+ +2HClO+2e- (5) Cl2 +4H2 O→6H+ +2HClO2 +6e- (6)または、 Cl2 +6H2 O→12H+ +2HClO3 +10e- (7)または、 及び、 3HClO→3H+ +ClO3 -+2Cl- (8) アノード側では、酸素ガス、オゾンガス、塩素ガスが発
生すると同時に水素イオン、塩素酸類(塩素と酸素が結
びついたイオン)、塩素イオンが発生する。このうち塩
素酸類、オゾンガスは酸化力が大変高く、従来のHPM
やSPM等の洗浄では除去しきれなかった微量の金属不
純物や有機不純物の除去を可能にする。
2H 2 O → O 2 + 4H + 4e (1) or 3H 2 O → O 3 + 6H + 6e (2) and NH 4 Cl → NH 4 + + Cl (3) and 2Cl → Cl 2 + 2e (4) and Cl 2 + 2H 2 O → 2H + + 2HClO + 2e (5) Cl 2 + 4H 2 O → 6H + + 2HCl 2 + 6e (6) or Cl 2 + 6H 2 O → 12H + + 2HCl 3 + 10e - (7) or, and, 3HClO → 3H + + ClO 3 - + 2Cl - (8) in the anode side, oxygen gas, ozone gas, at the same time hydrogen ions when the chlorine gas is generated, chlorine acids (chlorine and oxygen are combined ions), Chloride ions are generated. Of these, chloric acids and ozone gas have very high oxidizing power, and the conventional HPM
It is possible to remove trace amounts of metal impurities and organic impurities that could not be completely removed by cleaning of SPM or SPM.

【0007】さて、このような電解イオン水を製造する
際に電極は高純度Pt(99.999%)を使用してい
る。Ptは酸性側で塩素を含む強酸化性の溶液(たとえ
ば、熱王水など)に若干量溶解するという性質があるの
で、これらの水素イオンの多い状態で、活性な塩素酸や
オゾンガスが存在していれば、当然Pt電極は溶解する
と考えられる。Ptは、酸性、酸化性領域で溶解域が存
在するために、電気分解を行う事により溶出する。電気
分解中はPt(Cl)4 2- として安定な状態で存在して
いるが、電解停止後は、酸化力(酸化還元電位=OR
P)が急激に低下するため、不安定な状態として存在す
ると考えられる。電解停止後のアノード水では不安定な
状態でPtが溶液中に存在しているため、シリコン基板
の洗浄を行った場合、シリコン基板上にPtが吸着す
る。そこで、ORPの低い(〜500mV程度)電解停
止後のアノード水、電解直後のアノード水は使用でき
ず、酸化還元電位とpHの管理が非常に厳しい基準が必
要であった(ORP≧1000mV、pH≦2)。
[0007] When producing such electrolytic ionic water, the electrode uses high-purity Pt (99.999%). Since Pt has the property of dissolving a small amount in a strongly oxidizing solution containing chlorine (for example, hot aqua regia) on the acidic side, active chloric acid or ozone gas is present in a state where these hydrogen ions are large. If so, it is considered that the Pt electrode naturally dissolves. Pt is eluted by electrolysis due to the presence of a dissolving region in the acidic and oxidizing regions. During the electrolysis, Pt (Cl) 4 2- exists in a stable state, but after the electrolysis is stopped, the oxidizing power (redox potential = OR)
Since P) rapidly decreases, it is considered that an unstable state exists. Since Pt is present in the solution in an unstable state in the anode water after the electrolysis is stopped, Pt is adsorbed on the silicon substrate when the silicon substrate is cleaned. Therefore, the anode water after the electrolysis is stopped (about 500 mV) having a low ORP and the anode water immediately after the electrolysis cannot be used, and very strict standards for the control of the oxidation-reduction potential and the pH were required (ORP ≧ 1000 mV, pH ≦ 2).

【0008】[0008]

【発明が解決しようとする課題】本発明の目的とすると
ころは、前記の課題を解決し、電極からの汚染を少なく
し、ランニングコストを上げて、たとえ電解直後や電解
停止後の電解イオン水で洗浄しても目的の洗浄効果が得
られ、純水使用度、消費電力の大幅な削減を図ることに
ある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems, reduce the contamination from the electrodes, increase the running cost, and improve the electrolytic ionized water immediately after electrolysis or after stopping electrolysis. The purpose of the present invention is to achieve a desired cleaning effect even when the cleaning is performed by using the method, and to significantly reduce pure water usage and power consumption.

【0009】[0009]

【課題を解決するための手段】前記の目的は以下の手段
によって達成される。
The above object is achieved by the following means.

【0010】すなわち、本発明は、電解質を添加した純
水を電解槽に供給し、前記電解槽中に設けた電極間に電
圧を印加して電解水を生成する半導体基板の洗浄処理装
置において、前記電極材が99.999%以上の高純度
イリジウムまたは高純度オスミウムであることを特徴と
する半導体基板の洗浄処理装置を提案するものであり、
前記の電解質はHCl、HBr、HI、Cl、Br、I
を含むアンモニウム塩のいずれか1つであること、前記
電解質の濃度範囲は5mM〜100mMであることを含
む。
That is, the present invention relates to a semiconductor substrate cleaning apparatus for supplying pure water to which an electrolyte has been added to an electrolytic cell and applying a voltage between electrodes provided in the electrolytic cell to generate electrolytic water. The present invention proposes an apparatus for cleaning a semiconductor substrate, wherein the electrode material is at least 99.999% of high-purity iridium or high-purity osmium.
The electrolyte is HCl, HBr, HI, Cl, Br, I
And the concentration range of the electrolyte is 5 mM to 100 mM.

【0011】また、本発明は、前記の半導体基板の洗浄
処理装置で、半導体基板を常温で洗浄処理することを特
徴とする半導体基板の洗浄処理方法を提案するものであ
る。
Further, the present invention provides a method for cleaning a semiconductor substrate as described above.
The present invention proposes a method for cleaning a semiconductor substrate , wherein the processing apparatus cleans the semiconductor substrate at room temperature.

【0012】[0012]

【発明の実施の形態】本発明による電解イオン水の生成
法は、従来電極材として使用されたPtに変わる新電極
材として、酸性、酸化性の領域で非常に安定で溶解域を
ほとんど持たない純度99.999%以上の高純度のI
rまたはOsを使用し、電解質を添加した純水を電解分
解して電解イオン水の生成を行う方法である。Ir及び
OsはPtよりも消費電力を抑えることができ、しかも
Pt電極で得られる組成の電解イオン水と同じ組成の電
解イオン水をIr電極またはOs電極でも生成可能であ
る(ORP≧1000mV,pH≦2)。また、Ir電
極またはOs電極では、Cl2 →ClOx等の強酸化性
物質が選択的に生成されやすい。しかも、Pt電極で見
られたような電極材の溶出も防止できる。そのため、電
解中のみならず、電解直後や電解停止後のイオン水でも
充分に目的の洗浄が行うことが可能である。すなわち、
Ir電極またはOs電極を使用して得られたアノード側
の電解イオン水は金属汚染の除去及び有機物汚染の除去
が可能である。すなわち低電力でORPが充分高くな
り、強酸化性物質であるClOx等が容易に生成される
ため、処理温度は常温でよく、温度を上げると洗浄に深
く関与している強酸性物質が分解して大気拡散するた
め、好ましくない。また、電解効率を上げるためと洗浄
に関与する強酸性物質の生成のために添加する電解質の
濃度範囲は、電解を起こすに足る濃度から、過電流とな
り、電解が起こらなくなる以前の濃度まで5mN〜10
0mMの範囲が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing electrolytic ionic water according to the present invention is very stable in an acidic and oxidizing region and has almost no dissolving region as a new electrode material in place of Pt used as a conventional electrode material. High-purity I with a purity of 99.999% or more
In this method, pure water to which an electrolyte is added is electrolytically decomposed using r or Os to generate electrolytic ionic water. Ir and Os can reduce power consumption more than Pt, and can also generate electrolytic ion water having the same composition as that obtained at the Pt electrode at the Ir electrode or the Os electrode (ORP ≧ 1000 mV, pH ≦ 2). In addition, a strong oxidizing substance such as Cl 2 → ClOx is likely to be selectively generated at the Ir electrode or the Os electrode. In addition, elution of the electrode material as seen in the Pt electrode can be prevented. Therefore, not only during the electrolysis, but also with the ionic water immediately after the electrolysis or after the electrolysis is stopped, the desired cleaning can be sufficiently performed. That is,
The electrolytic ion water on the anode side obtained by using the Ir electrode or the Os electrode can remove metal contamination and organic substance contamination. That is, the ORP becomes sufficiently high with low power, and a strong oxidizing substance such as ClOx is easily generated. Therefore, the processing temperature may be room temperature, and when the temperature is increased, the strongly acidic substance which is deeply involved in cleaning is decomposed. It is not preferable because it diffuses into the atmosphere. In addition, the concentration range of the electrolyte added for increasing the electrolysis efficiency and for generating the strongly acidic substance involved in the cleaning ranges from a concentration sufficient to cause electrolysis to an overcurrent, and a concentration before the electrolysis does not occur, from 5 mN to 10
A range of 0 mM is preferred.

【0013】純水に添加される電解質としてはHCl,
HBr,HI,Cl,Br,Iを含むアンモニウム塩が
挙げられる。
As an electrolyte added to pure water, HCl,
Examples include ammonium salts containing HBr, HI, Cl, Br, and I.

【0014】上述のことより、同時にランニングコス
ト、および消費電力を押さえることができ、洗浄性能が
向上する。
As described above, the running cost and the power consumption can be suppressed at the same time, and the cleaning performance is improved.

【0015】[0015]

【実施例】以下、本発明を実施例により具体的に説明す
る。 第1実施例 次に、本発明の第一の実施例について図1のウエット処
理装置概略構成図を用いて説明する。電解槽1は、イオ
ン交換樹脂で構成される隔膜によって2槽に分割され、
その両側に陽極3aと陰極3bが配置され、直流電極5
に接続されている。イオン交換樹脂はアニオン交換樹脂
とカチオン交換樹脂の混合されているものを使用してい
る。3a、3bの電極材料はイリジウムを使用した。イ
リジウムは99.999%の純度のものを使用した。陽
極側に純水または再生水を供給し、電気分解処理を行っ
た陽極水を処理槽6aのウエット処理工程に供給する。
なお、この実施例では、陰極側の電解イオン水の利用は
考慮していない。
The present invention will be described below in more detail with reference to examples. First Embodiment Next, a first embodiment of the present invention will be described with reference to a schematic configuration diagram of a wet processing apparatus of FIG. The electrolytic cell 1 is divided into two cells by a diaphragm composed of an ion exchange resin,
An anode 3a and a cathode 3b are arranged on both sides of the DC electrode 5a.
It is connected to the. As the ion exchange resin, a mixture of an anion exchange resin and a cation exchange resin is used. Iridium was used for the electrode materials 3a and 3b. Iridium used had a purity of 99.999%. Pure water or regenerated water is supplied to the anode side, and the anode water subjected to the electrolysis treatment is supplied to the wet treatment step in the treatment tank 6a.
This embodiment does not consider the use of electrolytic ion water on the cathode side.

【0016】図1の電解槽で、物質添加システム9に、
HC140mMを添加した。電解前、電解直後、電解1
時間後、電解停止後の洗浄水を準備した。これらの洗浄
水で洗浄を施すウェーハは、前洗浄として、自然酸化膜
除去(DHF)、酸洗浄を行った。そして、DHF処理
有り無しの二水準とした。貴金属系の元素は自然酸化膜
上よりもシリコン表面に吸着しやすい傾向にある為であ
る。Ir電極を使用して製造したイオン水(電解直後、
電解一時間後、電解停止後)により、上述の二水準のウ
ェーハを洗浄した。洗浄時の液温は常温とした。この
際、リファレンスは前洗浄のみまたは前洗浄後にDHF
処理を施した水準とした。
In the electrolytic cell shown in FIG.
140 mM HC was added. Before electrolysis, immediately after electrolysis, electrolysis 1
After an hour, the washing water after the electrolysis was stopped was prepared. The wafers to be cleaned with these cleaning waters were subjected to natural oxide film removal (DHF) and acid cleaning as pre-cleaning. Then, there were two levels with and without DHF treatment. This is because noble metal elements tend to be more easily adsorbed on the silicon surface than on the natural oxide film. Ion water produced using an Ir electrode (immediately after electrolysis,
One hour after the electrolysis and after the electrolysis was stopped), the above-described two-level wafer was washed. The liquid temperature during washing was normal temperature. At this time, the reference is DHF only after pre-cleaning or after pre-cleaning.
The level was treated.

【0017】種々の洗浄処理後にウェーハ表面上に残存
している金属不純物の全反射蛍光X線の測定結果を表1
に示す。
Table 1 shows the results of measurement of total reflection X-ray fluorescence of metal impurities remaining on the wafer surface after various cleaning treatments.
Shown in

【0018】[0018]

【表1】 また、洗浄処理後のウェーハを950℃、O2 で熱処理
後の少数キャリアライフタイム測定を行った結果を図2
に示す。
[Table 1] FIG. 2 shows the result of measurement of the minority carrier lifetime of the wafer after the cleaning process after the heat treatment at 950 ° C. and O 2 .
Shown in

【0019】金属不純物の測定結果はDHF処理有り、
無しの水準ともCa,Ti,Cr,Fe,Ni,Cu,
Zn,Pt,Irともほぼ検出限界以下もしくは1010
〜109 atmos/cm2 レベルであった。少数キャ
リアライフタイムの結果もDHF処理有り無しのどちら
の場合も純水洗浄レベルとほぼ同等の500−600μ
secであった。このときのpHは電解前、電解直後、
電解一時間後、電解停止後とともに1.5であったが、
ORPは、電解前、電解停止後で500V以下、電解中
で1000V以上を示した。
The measurement results of the metal impurities have DHF treatment,
The levels without Ca, Ti, Cr, Fe, Ni, Cu,
Zn, Pt and Ir are almost below the detection limit or 10 10
The level was 〜1010 9 atmos / cm 2 . The result of the minority carrier lifetime is 500-600μ which is almost the same as the pure water cleaning level in both cases with and without DHF treatment.
sec. The pH at this time is before electrolysis, immediately after electrolysis,
One hour after electrolysis, it was 1.5 together with after electrolysis was stopped,
ORP showed 500 V or less before and after electrolysis stopped, and 1000 V or more during electrolysis.

【0020】比較例として、図1の電極材をPtにして
行った結果を表2に示す。電解質はIrの時と同様に、
HC140mMとした。ウェーハの種類もDHF処理有
り無しとした。上述と同様に洗浄後のウェーハを950
℃、O2 で熱処理後に少数キャリアライフタイム測定を
行った結果を図3に示す。DHF処理無しの水準では洗
浄のみの水準、純水洗浄の水準、アノード電解前、電解
中、電解停止後の水準でライフタイムの値はほぼ同レベ
ルであった。それに対して、DHF処理有りの水準で
は、電解前、電解停止後の水準で一桁から二桁のライフ
タイムの低下が確認された。ウェハー表面に自然酸化膜
が存在しているとライフタイムは低下せず、ウェハー表
面から自然酸化膜を除去するとライフタイムが低下して
いることが解る。この現象から考えられるのは、DHF
処理により露出したベアシリコン上に貴金属(Cu、
等)が付着した為と考えられる。この、原因を解明する
ために次のような実験を行った。Pt電極で製造したア
ノード側のイオン水中の金属不純物をICP−MSで測
定した。測定水準を下記に示す。
As a comparative example, Table 2 shows the results obtained by using Pt as the electrode material of FIG. The electrolyte is the same as for Ir,
HC was 140 mM. The type of wafer was also determined to be with or without DHF treatment. The washed wafer is 950 as described above.
FIG. 3 shows the result of the measurement of the minority carrier lifetime after the heat treatment at 0 ° C. and O 2 . At the level without the DHF treatment, the values of the lifetime were almost the same at the level of only the cleaning, the level of the pure water cleaning, the level before the anode electrolysis, during the electrolysis, and the level after the electrolysis was stopped. On the other hand, in the level with the DHF treatment, a decrease in the lifetime by one digit or two digits was confirmed before and after the electrolysis was stopped. It can be seen that the lifetime does not decrease when a natural oxide film is present on the wafer surface, and that the lifetime decreases when the natural oxide film is removed from the wafer surface. What can be considered from this phenomenon is DHF
Noble metal (Cu,
Etc.) are considered to have adhered. The following experiment was conducted to elucidate the cause. Metal impurities in the ionic water on the anode side produced with the Pt electrode were measured by ICP-MS. The measurement levels are shown below.

【0021】 純水通水(配管洗浄のため)約1時間 ↓ 電気分解OFF 薬液添加ON(HCl、40m
M)・・5分経過後、サンプリング ↓ 電気分解ON 薬液添加ON(HCl、40m
M)・・5分経過後、サンプリング ↓ 電気分解OFF 薬液添加ON(HCl、40m
M)・・5分経過後、サンプリング ↓ 純水通水 薬液添加ON(HCl、40m
M)・・5分経過後、サンプリング ICP−MSでの評価結果を表1に示す。この結果か
ら、Pt電極で電気分解を行うことによりPtが溶出し
ていることが判明した。溶出したPtが原因となりライ
フタイムを低下させている可能性が非常に高い。
Approximately 1 hour of pure water flow (for pipe cleaning) ↓ Electrolysis OFF Chemical solution addition ON (HCl, 40m
M) Sampling after 5 minutes ↓ Electrolysis ON Chemical solution addition ON (HCl, 40m)
M) ・ ・ ・ Sampling after 5 minutes ↓ Electrolysis OFF Chemical solution addition ON (HCl, 40m)
M) ・ ・ Sampling after 5 minutes ↓ Pure water flow Chemical liquid addition ON (HCl, 40m
M) After 5 minutes, Table 1 shows the results of evaluation by sampling ICP-MS. From this result, it was found that Pt was eluted by electrolysis at the Pt electrode. It is very likely that the lifetime is reduced due to the eluted Pt.

【0022】[0022]

【表2】 第2実施例 次に、本発明の第二の実施例について説明する。図1の
ウエット処理装置を用いて、電極材としてIrを使用し
(純度99.999%)、アノード側の電解イオン水を
生成した。物質輸送システム9より電解質として40m
MのHClを添加し、アノード側の電解イオン水を生成
した。比較実験として、電極材料Pt、電解質として4
0mMのHClを添加し、アノード側の電解イオン水を
生成した。そして、自然酸化膜除去後のウェーハを洗浄
した。この際の洗浄液の液温は常温とした。通常のAP
M+HPMとAPM+SPMのそれぞれでの洗浄も行っ
た。
[Table 2] Second Embodiment Next, a second embodiment of the present invention will be described. Using the wet processing apparatus shown in FIG. 1, Ir was used as an electrode material (purity: 99.999%) to produce electrolytic ion water on the anode side. 40m as electrolyte from mass transport system 9
M HCl was added to generate electrolytic ionized water on the anode side. As a comparative experiment, an electrode material Pt and an electrolyte of 4 were used.
0 mM HCl was added to generate electrolytic ionized water on the anode side. Then, the wafer after the removal of the natural oxide film was washed. The temperature of the cleaning liquid at this time was normal temperature. Normal AP
Cleaning with M + HPM and APM + SPM respectively was also performed.

【0023】この際の洗浄液の液温は65℃とした。洗
浄後のウェーハ表面をフッ酸蒸気で分解し、回収液(D
HF+H22 )で走査回収後、原子吸光分析にて、各
種洗浄処理後の金属不純物を測定した。測定結果を表3
に示す。既存のAPM+HPMとAPM+SPM洗浄で
は、Ca,Cu,Al等の汚染が見られた。それに対し
て、電解イオン水は電極間の差によらず、概ね良好であ
った。若干、Pt電極ではCuが多い傾向にあった。こ
れは、選択的に酸化性のオゾンガスや塩素酸類の発生が
Ir電極の方が生成されやすいために洗浄効果の差異と
して起こる現象と考えられる。
At this time, the temperature of the cleaning liquid was 65 ° C. The wafer surface after cleaning is decomposed with hydrofluoric acid vapor, and the recovered liquid (D
After collecting by scanning with HF + H 2 O 2 ), metal impurities after various washing treatments were measured by atomic absorption analysis. Table 3 shows the measurement results.
Shown in In the existing APM + HPM and APM + SPM cleaning, contamination of Ca, Cu, Al and the like was observed. In contrast, the electrolytic ionic water was generally good regardless of the difference between the electrodes. The Pt electrode tended to contain a large amount of Cu. This is considered to be a phenomenon in which oxidizing ozone gas and chloric acids are selectively generated more easily in the Ir electrode than in the cleaning effect.

【0024】[0024]

【表3】 第3の実施例 次に、本発明の第三の実施例について説明する。図1の
ウエット処理装置を用いて、アノード側の電解イオン水
を生成した。物質輸送システムより電解質として40m
MのHClを添加し、アノード側の電解イオン水を生成
した。電極材は高純度Ir(99.999%)のものと
Ir(99.9%)を使用した。洗浄処理は両者とも常
温で行った。表4に二種類のイオン水で処理したあとの
ウェーハ表面残留金属不純物量の測定結果を示す。Ir
電極の純度が低い場合は、DHF処理無しではほぼ検出
限界以下レベルであるが、DHF処理有りの場合は、溶
出が見られた。その他、Cr,Ti等の溶出も見られ
た。それに対して、Ir電極の純度が高い場合では、D
HFの処理に関わらず、測定金属は検出限界以下レベル
であった。また、同水準のウェーハを熱処理後に、ライ
フタイムの測定結果を図4に示す。DHF有り無しの両
水準では、Ir電極の純度が低いと約3分の1程度低下
した。
[Table 3] Third Embodiment Next, a third embodiment of the present invention will be described. Using the wet processing apparatus of FIG. 1, electrolytic ionized water on the anode side was generated. 40m as electrolyte from mass transport system
M HCl was added to generate electrolytic ionized water on the anode side. Electrode materials used were high-purity Ir (99.999%) and Ir (99.9%). The cleaning treatment was performed at room temperature. Table 4 shows the measurement results of the amount of metal impurities remaining on the wafer surface after treatment with two types of ionized water. Ir
When the purity of the electrode was low, the level was substantially below the detection limit without DHF treatment, but elution was observed with DHF treatment. Elution of Cr, Ti, etc. was also observed. On the other hand, when the purity of the Ir electrode is high, D
Regardless of the HF treatment, the measured metal was below the detection limit. FIG. 4 shows the measurement results of the lifetime after heat treatment of the same level wafer. At both levels with and without DHF, the purity was reduced by about one third when the purity of the Ir electrode was low.

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
所望の電解水を速やかに生成することができる。また、
所望の電解水を得るために無駄になってしまったエネル
ギーを大幅に削減することができる。更に、印加電圧を
上げなくても電解水生成効率を上げることができる。洗
浄処理時の温度は常温で行うことが出来る。さらに、電
極材等からの不純物の溶出を削除できるので、洗浄性能
も上がり、ORPの厳しい管理が削減される。この結
果、化学薬品の使用量を削減し、廃棄物を減らし、廃棄
物の回収、処理にかかる設備を簡素化することによっ
て、環境保全を図りながらコストを削減することができ
る。
As described above, according to the present invention,
Desired electrolyzed water can be generated promptly. Also,
Energy wasted to obtain the desired electrolyzed water can be significantly reduced. Further, the efficiency of electrolytic water generation can be increased without increasing the applied voltage. The temperature at the time of the cleaning process can be performed at room temperature. Furthermore, since elution of impurities from the electrode material or the like can be eliminated, cleaning performance is improved, and strict management of ORP is reduced. As a result, it is possible to reduce costs while reducing environmental impact by reducing the amount of chemicals used, reducing waste, and simplifying equipment for collecting and treating waste.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体洗浄処理装置概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of a semiconductor cleaning processing apparatus of the present invention.

【図2】本発明の実施例1の各種洗浄処理後の少数キャ
リアライフタイムの測定結果を示すグラフである。
FIG. 2 is a graph showing a measurement result of a minority carrier lifetime after various cleaning processes in Example 1 of the present invention.

【図3】本発明の実施例1の比較例の各種洗浄処理後の
少数キャリアライフタイムの測定結果を示すグラフであ
る。
FIG. 3 is a graph showing a measurement result of a minority carrier lifetime after various cleaning processes of a comparative example of Example 1 of the present invention.

【図4】本発明の実施例3の各種洗浄処理後の少数のキ
ャリアライフタイムの測定結果を示すグラフである。
FIG. 4 is a graph showing measurement results of a small number of carrier lifetimes after various cleaning processes according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電解槽 2 隔膜 3a 陽極(アノード) 3b 陰極(カソード) 4a 処理槽(アノード側) 4b 処理槽(カソード側) 5 直流電源 6 廃液処理槽 7 純水供給口 8 イオン交換器 9 物質添加システム 10 純水導入間 DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Diaphragm 3a Anode (anode) 3b Cathode (cathode) 4a Processing tank (anode side) 4b Processing tank (cathode side) 5 DC power supply 6 Waste liquid processing tank 7 Pure water supply port 8 Ion exchanger 9 Material addition system 10 Between pure water introduction

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−309357(JP,A) 特開 平6−260480(JP,A) 特開 平7−256259(JP,A) 特開 平7−263391(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 C02F 1/46 C25B 11/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-309357 (JP, A) JP-A-6-260480 (JP, A) JP-A-7-256259 (JP, A) JP-A-7-256 263391 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/304 C02F 1/46 C25B 11/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解質を添加した純水を電解槽に供給
し、前記電解槽中に設けた電極間に電圧を印加して電解
水を生成する半導体基板の洗浄処理装置において、前記
電極材が99.999%以上の高純度イリジウムである
ことを特徴とする半導体基板の洗浄処理装置。
1. A cleaning apparatus for a semiconductor substrate, wherein pure water to which an electrolyte is added is supplied to an electrolytic cell, and a voltage is applied between electrodes provided in the electrolytic cell to generate electrolytic water. An apparatus for cleaning a semiconductor substrate, which is made of high-purity iridium of 99.999% or more.
【請求項2】 電解質を添加した純水を電解槽に供給
し、前記電解槽中に設けた電極間に電圧を印加して電解
水を生成する半導体基板の洗浄処理装置において、前記
電極材が99.999%以上の高純度オスミウムである
ことを特徴とする半導体基板の洗浄処理装置。
2. A cleaning apparatus for a semiconductor substrate, wherein pure water to which an electrolyte is added is supplied to an electrolytic cell, and a voltage is applied between electrodes provided in the electrolytic cell to generate electrolytic water. A cleaning apparatus for a semiconductor substrate, characterized in that it is high purity osmium of 99.999% or more.
【請求項3】 前記の電解質はHCl、HBr、HI、
Cl、Br、Iを含むアンモニウム塩のいずれか1つで
ある請求項1または2に記載の半導体基板の洗浄処理装
置。
3. The electrolyte of claim 1, wherein the electrolyte is HCl, HBr, HI,
The semiconductor substrate cleaning apparatus according to claim 1, wherein the apparatus is any one of ammonium salts containing Cl, Br, and I. 4.
【請求項4】 前記電解質の濃度範囲は5mM〜100
mMである請求項3に記載の半導体基板の洗浄処理装
置。
4. The concentration range of the electrolyte is from 5 mM to 100 mM.
4. The apparatus for cleaning a semiconductor substrate according to claim 3, wherein the concentration is mM.
【請求項5】 請求項1乃至4のうち、いずれか1項に
記載の半導体基板の洗浄処理装置で、半導体基板を常温
で洗浄処理することを特徴とする半導体基板の洗浄処理
方法。
5. The method according to claim 1, wherein:
A method for cleaning a semiconductor substrate, comprising cleaning the semiconductor substrate at room temperature using the apparatus for cleaning a semiconductor substrate according to any one of the preceding claims.
JP8124508A 1996-05-20 1996-05-20 Semiconductor substrate cleaning processing apparatus and cleaning processing method Expired - Fee Related JP3039372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8124508A JP3039372B2 (en) 1996-05-20 1996-05-20 Semiconductor substrate cleaning processing apparatus and cleaning processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8124508A JP3039372B2 (en) 1996-05-20 1996-05-20 Semiconductor substrate cleaning processing apparatus and cleaning processing method

Publications (2)

Publication Number Publication Date
JPH09306885A JPH09306885A (en) 1997-11-28
JP3039372B2 true JP3039372B2 (en) 2000-05-08

Family

ID=14887228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8124508A Expired - Fee Related JP3039372B2 (en) 1996-05-20 1996-05-20 Semiconductor substrate cleaning processing apparatus and cleaning processing method

Country Status (1)

Country Link
JP (1) JP3039372B2 (en)

Also Published As

Publication number Publication date
JPH09306885A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
JP2743823B2 (en) Semiconductor substrate wet treatment method
US6039815A (en) Cleaning method and apparatus for the same
EP0605882B1 (en) Method and apparatus for wet treatment of solid surfaces
KR100389917B1 (en) Wet process for fabrication of semiconductor device using electrolytically ionized anode water and/or cathod water and electrolytically ionized anode water and/or cathode water used therein
US20130068260A1 (en) Method of cleaning electronic material and cleaning system
JP2677235B2 (en) Semiconductor substrate cleaning apparatus, cleaning method, and cleaning liquid generation method
JP2859081B2 (en) Wet processing method and processing apparatus
US20050139487A1 (en) Method for the oxidative treatment of components comprised of or containing elementary silicon and/or substantially inorganic silicon compounds
CN103681414A (en) Treatment apparatus, method for manufacturing treatment liquid, and method for manufacturing electronic device
JPH08283976A (en) Electrolytic water generating method, device therefor and semiconductor producing device
TW200306284A (en) Functional water, method and apparatus of producing the same, and method and apparatus of rinsing electronic parts therewith
JP2897637B2 (en) Wet processing equipment
TW508681B (en) Cleaning method of semiconductor manufacture process for preventing metal corrosion
Ryoo et al. Electrolyzed water as an alternative for environmentally benign semiconductor cleaning
JP3039372B2 (en) Semiconductor substrate cleaning processing apparatus and cleaning processing method
JP3437716B2 (en) Semiconductor substrate cleaning method and cleaning apparatus used therefor
Shiramizu et al. Removal of Metal and Organic Contaminants from Silicon Substrates Using Electrolysis‐Ionized Water Containing Ammonium Chloride
JP3590273B2 (en) Semiconductor device manufacturing method and processing liquid generating apparatus
JP3209223B2 (en) Wet treatment method
JP2003290729A (en) Method and apparatus for cleaning electronic part
JP3594282B2 (en) Electrolytic ionic water generating apparatus, electrolytic ionic water generating method and cleaning method
JP4495572B2 (en) Stain film removal method
JP3663048B2 (en) Wet treatment method
JP3191700B2 (en) Wet treatment method
JP2003290767A (en) Functional water, method and device for manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees