JP2581403B2 - Wet processing method and processing apparatus - Google Patents

Wet processing method and processing apparatus

Info

Publication number
JP2581403B2
JP2581403B2 JP5218211A JP21821193A JP2581403B2 JP 2581403 B2 JP2581403 B2 JP 2581403B2 JP 5218211 A JP5218211 A JP 5218211A JP 21821193 A JP21821193 A JP 21821193A JP 2581403 B2 JP2581403 B2 JP 2581403B2
Authority
JP
Japan
Prior art keywords
water
electrolysis
water tank
ion
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5218211A
Other languages
Japanese (ja)
Other versions
JPH0751675A (en
Inventor
秀充 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5218211A priority Critical patent/JP2581403B2/en
Priority to EP93121011A priority patent/EP0605882B1/en
Priority to DE69306542T priority patent/DE69306542T2/en
Priority to KR94000196A priority patent/KR960009070B1/en
Priority to CN94100382A priority patent/CN1083403C/en
Publication of JPH0751675A publication Critical patent/JPH0751675A/en
Priority to US08/501,431 priority patent/US5578193A/en
Application granted granted Critical
Publication of JP2581403B2 publication Critical patent/JP2581403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、工業製品、医薬製品等
の材料処理プロセスに用いられるウェット処理方法およ
び処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet processing method and a processing apparatus used in a material processing process for industrial products, pharmaceutical products and the like.

【0002】[0002]

【従来の技術】近年、地球環境問題が新しい環境問題と
して各方面の関心を集めている。近代工業が盛んにな
り、工業廃棄物、医薬廃棄物や工業排水等が地球環境へ
放出され地球規模での環境問題を引き起こしている。特
に、工業製品や医薬製品を製造するプロセスにおいて、
洗浄またはエッチング、後処理する場合、塩素等のハロ
ゲンやフロンを含む溶液、塩酸等の酸性溶液やアルカリ
溶液、またはハロゲンやフロンを含むガスを用いて処理
が行われてきた。一方、市水を電気分解し、NaやCa
濃度が高いアルカリイオン水を生成し、健康飲料水とし
て利用したり、酸性イオン水を美容、洗顔水として利用
する装置は古くから市販されている。
2. Description of the Related Art In recent years, global environmental problems have attracted interest in various fields as new environmental problems. 2. Description of the Related Art Modern industries have become active, and industrial wastes, medical wastes, industrial wastewaters, and the like have been released into the global environment, causing environmental problems on a global scale. Especially in the process of manufacturing industrial and pharmaceutical products,
In the case of cleaning, etching, and post-processing, the processing has been performed using a solution containing halogen or chlorofluorocarbon, an acidic solution or an alkaline solution such as hydrochloric acid, or a gas containing halogen or chlorofluorocarbon. On the other hand, city water is electrolyzed and Na and Ca
Devices that generate high-concentration alkaline ionized water and use it as health drinking water, and that use acidic ionized water as beauty and face wash have been commercially available since ancient times.

【0003】[0003]

【発明が解決しようとする課題】従来、洗浄処理等で用
いられてきた塩素等のハロゲンやフロンを含む溶液、塩
酸等の酸性溶液やアルカリ溶液、またはハロゲンやフロ
ンを含むガスによって処理を施した場合には、ハロゲン
化合物やフロン化合物等が形成され、処理が難しい産業
廃棄物を生み出すことになる。本発明は、このような従
来の問題点を解決するためになされたもので、難処理産
業廃棄物による汚染を引き起こすことのない洗浄、エッ
チングまたは後処理に用いられるウェット処理方法およ
び処理装置ならびに該ウェット処理方法に用いられる電
解水生成方法を提供することを目的とする。
Conventionally, a treatment is performed using a solution containing halogen or chlorofluorocarbon such as chlorine, an acid solution or an alkaline solution such as hydrochloric acid, or a gas containing halogen or chlorofluorocarbon which has been used in a cleaning process or the like. In such a case, a halogen compound or a chlorofluorocarbon compound is formed, thereby producing industrial waste which is difficult to treat. The present invention has been made in order to solve such conventional problems, and a wet processing method and a processing apparatus and a wet processing method used for cleaning, etching or post-processing without causing contamination by difficult-to-treat industrial waste. An object of the present invention is to provide an electrolytic water generation method used in a wet treatment method.

【0004】[0004]

【課題を解決するための手段】本発明は、水を電気分解
することによって生成される新しいH+イオン水または
OH-イオン水を常時被処理物に供給することにより、
被処理物の洗浄、エッチングまたは後処理を行うウェッ
ト処理方法であって、水の電気分解が、電気分解開始時
または電気分解中に0.4μm以下の短波長光またはX
線、あるいは3μm以上の長波長光または電磁波を水ま
たは水溶液に照射しながら行われることを特徴とするウ
ェット処理方法である。
The present invention SUMMARY OF], the new H + ionized water or OH is produced by electrolysis of water - by supplying to the ion-water always object to be processed,
A wet treatment method for cleaning, etching, or post-treating an object to be treated, wherein electrolysis of water is carried out at the start of electrolysis or during electrolysis at a wavelength of 0.4 μm or less or X-rays.
This is a wet treatment method, wherein the treatment is performed while irradiating water or an aqueous solution with a line or a long wavelength light or an electromagnetic wave of 3 μm or more.

【0005】また、この方法を実施するための処理装置
は、電気分解用水槽に水を供給する導入管と、内部にH
+イオン水とOH-イオン水を分離する多孔質膜とが設け
られ、前記導入管から導入された水を電気分解する電気
分解用水槽と、該電気分解用水槽内に前記多孔質膜を介
して設けられた電極対と、該電極対に直流電流を供給す
る直流電源と、前記電気分解用水槽で得られたH+イオ
ン水とOH-イオン水をそれぞれ別々に貯溜すると共
に、その中で被処理物を処理する処理水槽と、前記電気
分解用水槽に光、X線または電磁波を照射する光源と、
前記処理水槽中のpH値および酸化還元電位を測定し、
直流電源の電解電流強度および/または前記光源の光照
射量または光強度を調整することにより、処理水槽中の
イオン濃度および酸化還元電位を制御する総合制御シス
テムが備えられていることを特徴とする。
[0005] Further, a processing apparatus for carrying out this method includes an inlet pipe for supplying water to an electrolysis water tank, and an H pipe inside.
+ Ionized water and OH - and the porous membrane is provided to separate the ionized water, through the electrolysis of electrolysis tanks the water introduced from the inlet pipe, the porous membrane in electrical cracking water tank an electrode pair provided Te, a DC power source for supplying a direct current to the electrode pairs, the H + ion water obtained by electrolysis tanks and OH - ion water as well as reservoir respectively separately, in which A treatment water tank for treating an object to be treated, and a light source for irradiating the electrolysis water tank with light, X-rays, or electromagnetic waves,
Measuring the pH value and the oxidation-reduction potential in the treated water tank,
A comprehensive control system for controlling the ion concentration and the oxidation-reduction potential in the treated water tank by adjusting the intensity of the electrolytic current of the DC power supply and / or the light irradiation amount or light intensity of the light source is provided. .

【0006】さらに、本発明によれば、電気分解開始時
または電気分解中に0.4μm以下の短波長光またはX
線、あるいは3μm以上の長波長光または電磁波を水ま
たは水溶液に照射しながら水を電気分解することを特徴
とする電解水生成方法が提供される。
Further, according to the present invention, short-wavelength light of 0.4 μm or less or X
A method for producing electrolyzed water is provided, wherein water is electrolyzed while irradiating water or an aqueous solution with a line or a long wavelength light or an electromagnetic wave of 3 μm or more.

【0007】[0007]

【作用】本発明における処理方法は、従来から用いられ
てきた、ハロゲンやフロンを含む溶液、酸性溶液やアル
カリ溶液、または、ハロゲンやフロンを含むガスを用い
ることなく、工業製品、医薬製品の材料処理を行うこと
ができる。本処理方法によれば、常時新しく供給される
+イオン水で処理することにより、半導体製造工程で
用いられるシリコンウエハ上の重金属汚染物が除去され
る。これは、重金属がアルカリ性洗浄水中でOH基を配
位子にもつ錯イオンになりやすいため、ウエハ表面に吸
着しやすいが、H+イオン水は重金属とこのような錯イ
オンを形成しないため、ウエハ表面に吸着しにくいため
である。
The treatment method of the present invention can be applied to industrial products and pharmaceutical products without using a conventionally used solution containing halogen or chlorofluorocarbon, an acidic solution or an alkaline solution, or a gas containing halogen or chlorofluorocarbon. Processing can be performed. According to this processing method, heavy metal contaminants on a silicon wafer used in a semiconductor manufacturing process are removed by always performing processing with newly supplied H + ion water. This is because, since the heavy metals OH groups in alkaline wash water tends to complex ion with a ligand, easily adsorbed on the wafer surface, the H + ion water does not form such a complex ions and heavy metals, the wafer This is because it is difficult to be adsorbed on the surface.

【0008】また、本処理方法は、電気分解時に直流電
流を調整すること、あるいは後述する電気分解効率を高
める物質の添加量を調整することによって、生成する水
のpH値を制御することができる。この場合、金属材料
は、プルベーダイヤグラムによれば、一定範囲のpH
(例えば、Fe:pH3〜10)で安定であるが、これ
より、pHが大きい場合や小さい場合には金属材料は溶
解(エッチング)する。従って、工業製品や医薬製品を
製造するプロセスにおいて、残留塩素等の残留ハロゲン
物を除去する場合、H+イオン水を用いて、規定範囲内
のpHで処理すれば、金属材料部分にダメージを与える
ことなく残留物除去ができる。たとえば、半導体製造工
程におけるアルミニウム合金膜の微細加工では、塩素系
のガスプラズマにてエッチングを施すが、エッチング
後、残留する塩素をH+イオン水にてHC1の形で除去
し、その後活性になっているアルミニウム表面をOH-
イオン水にて処理し、アルミニウム表面を安定化させる
ことができる。この処理方法では、従来から用いられて
いる純水によるウェット処理に比べ、腐食防止効果が大
きく、加工されたアルミニウム膜や下地膜へのダメージ
が少ない。また、ガスアッシング処理に比べ、アルミニ
ウム表面で直接対流を起こすため、配線膜の側面や表面
に残留している塩素の除去効果が大きい。また、規定範
囲を越えるpHで金属材料を処理する場合は、エッチン
グ溶液として利用できる。例えば、従来からHC1や燐
酸等で金属材料のウェットエッチングが行われてきた
が、これらにかわる溶液として利用できる。
Further, in the present treatment method, the pH value of the generated water can be controlled by adjusting the direct current at the time of electrolysis or by adjusting the amount of a substance which enhances the electrolysis efficiency described later. . In this case, according to the Purvey diagram, the metallic material has a certain range of pH.
(For example, Fe: pH 3 to 10), the metal material is dissolved (etched) when the pH is higher or lower. Therefore, in the process of manufacturing industrial products and pharmaceutical products, when removing residual halogens such as residual chlorine, treatment with H + ionized water at a pH within a specified range may damage metal material parts. The residue can be removed without the need. For example, in the microfabrication of an aluminum alloy film in a semiconductor manufacturing process, etching is performed using chlorine-based gas plasma. After etching, residual chlorine is removed in the form of HC1 using H + ionized water, and then activated. the aluminum surface is OH -
Treatment with ionized water can stabilize the aluminum surface. This processing method has a greater corrosion prevention effect and less damage to the processed aluminum film and the base film than the conventionally used wet processing using pure water. In addition, since convection occurs directly on the aluminum surface as compared with the gas ashing process, the effect of removing chlorine remaining on the side surface and the surface of the wiring film is large. When a metal material is treated at a pH exceeding a specified range, it can be used as an etching solution. For example, conventionally, wet etching of a metal material with HC1, phosphoric acid, or the like has been performed, but it can be used as a solution instead of these.

【0009】また、水の電気分解にあたっては、電気分
解効率を高める物質を添加した状態で電気分解を行うこ
とで、純水の抵抗値が下がり、生成効率が向上する。半
導体製造工程等の、重金属による汚染が問題となるプロ
セスでは、電気分解効率を高める物質としては二酸化炭
素または支持電解塩(第4アルキルアンモニウムとハロ
ゲン以外のアニオンの組み合わせ)が好適である。支持
電解塩の選択においては、自然酸化膜中に取り込まれや
すいFe等の金属汚染を除去する場合には、フッ化アン
モニウムを電解塩として用い、自然酸化膜と共にFeを
除去する。表面酸化膜や金属部分にダメージを与えたく
ないような場合には、酢酸アンモニウムを用い、金属部
分へのダメージを特に気にしない場合には、塩化アンモ
ニウムを使用することが好ましい。純水の電気分解にて
イオン水を生成する場合は電気分解の効率を向上するた
め、陽極と陰極間に高電解強度を印加して行うのが好ま
しい。この時の電解強度としては10〜10V/c
m程度が適当である。
In addition, in the electrolysis of water, the electrolysis is performed in a state in which a substance for increasing the electrolysis efficiency is added, so that the resistance value of pure water is reduced and the generation efficiency is improved. In a process such as a semiconductor manufacturing process in which contamination by heavy metals becomes a problem, carbon dioxide or a supporting electrolyte salt (a combination of a quaternary alkylammonium and an anion other than halogen) is suitable as the substance for improving the electrolysis efficiency. In selecting a supporting electrolytic salt, when removing metal contamination such as Fe which is easily taken into the natural oxide film, ammonium fluoride is used as an electrolytic salt to remove Fe together with the natural oxide film. It is preferable to use ammonium acetate when it is desired not to damage the surface oxide film and the metal part, and to use ammonium chloride when the metal part is not particularly concerned. When ionic water is generated by electrolysis of pure water, it is preferable to apply high electrolytic strength between the anode and the cathode in order to improve the efficiency of electrolysis. The electrolytic strength at this time is 10 3 to 10 4 V / c.
About m is appropriate.

【0010】また、洗浄、エッチングに用いるイオン水
をより効率的に生成するためには、電気分解開始時また
は電気分解中に0.4μm以下の短波長光またはX線、
あるいは3μm以上の長波長光または電磁波を水または
水溶液に照射しながら水を電気分解する。まず、電気分
解中に0.4μm以下の短波長光を照射することによ
り、水の電気分解は促進される。水の電気分解の原理の
一例を示す。例えば、0.1NのNaOH溶液を分解す
る場合、酸素発生準位のエネルギー的な位置は、通常基
準となる飽和甘こう電極電位(SEC)より0.16e
V下方にあり、水素発生準位は1.07eV上方にあ
る。従って、水の分解には理論的に1.23eV(1.
07eV+0.16eV)以上の電圧を必要とする。実
際には、上記のような溶液ではなく、より濃度が薄い溶
液または純水を用いるうえ、両電極に電流を流すために
必要な過電圧などを考慮すると、これよりかなり高い電
圧を両電極間に印加しなければならない。このエネルギ
ー準位差をエネルギーの高い光(短波長光)を照射する
ことによって支援すれば、電気分解効率が向上すること
になる。また、電気分解開始後、定常電解電流に達する
までの時間、高エネルギーを有する短波長光を電解槽に
照射することによっても効率的な電気分解を行うことが
できる。図2はこのことを示す図で、紫外線(6eV)
を照射した場合および照射しない場合における、後述す
る電解槽の電極(1−A)と(1−B)間に印加する電
圧と電解電流との関係を示す 同図から、紫外線照射し
た場合、電気分解効率が向上して電解電流が増加するこ
とが分かる。一方、長波長光は、3μm以上の遠赤外光
やマイクロ波等の高周波を照射することにより水のクラ
スターを分断すると共に、イオン化の効率を向上させる
ことができる。図3はこのことを示す図で、マイクロ波
(2.45GHz)を照射した場合および照射しない場
合における、後述する電解槽の電極(1−A)と(1−
B)間に印加する電圧と電解電流との関係を示す。同図
から、マイクロ波照射した場合、電気分解効率が向上し
て電解電流が増加することが分かる。本方法によれば、
純水またはより少ない電気分解効率を高める物質の添加
で効率的にイオン化した電解水を生成でき、流水式で
も、高いpHや高い酸化還元電位を有する電解水を得る
ことができる。
In order to more efficiently generate ionic water used for cleaning and etching, short-wavelength light or X-rays of 0.4 μm or less at the start of or during electrolysis,
Alternatively, water is electrolyzed while irradiating water or an aqueous solution with long-wavelength light or an electromagnetic wave of 3 μm or more. First, by irradiating light having a short wavelength of 0.4 μm or less during electrolysis, electrolysis of water is promoted. An example of the principle of water electrolysis is shown. For example, in the case of decomposing a 0.1N NaOH solution, the energy position of the oxygen generation level is 0.16 e from the standard saturated sweet electrode potential (SEC).
V below, and the hydrogen generation level is above 1.07 eV. Therefore, theoretically 1.23 eV (1.
07 eV + 0.16 eV) or more. Actually, instead of using the above solution, use a solution with a lower concentration or pure water, and consider the overvoltage necessary to apply current to both electrodes, and apply a considerably higher voltage between both electrodes. Must be applied. If this energy level difference is assisted by irradiating high energy light (short wavelength light), the electrolysis efficiency will be improved. In addition, efficient electrolysis can be performed by irradiating the electrolytic cell with short-wavelength light having high energy for a period of time from the start of electrolysis until the steady electrolytic current is reached. FIG. 2 is a view showing this fact, in which ultraviolet rays (6 eV) are used.
When irradiation is performed and when irradiation is not performed.
Voltage applied between the electrodes (1-A) and (1-B) of the electrolytic cell.
The figure shows the relationship between pressure and electrolytic current.
If this occurs, the electrolysis efficiency will increase and the electrolytic current will increase.
I understand. On the other hand, by irradiating long-wavelength light with far-infrared light of 3 μm or more or high-frequency waves such as microwaves, water clusters can be separated and ionization efficiency can be improved. FIG. 3 is a diagram showing this, and the microwave
(2.45 GHz) and non-irradiation
Electrodes (1-A) and (1-
The relationship between the voltage applied during B) and the electrolytic current is shown. Same figure
From microwave irradiation, the electrolysis efficiency is improved
It can be seen that the electrolytic current increases. According to the method,
Addition of pure water or a substance that enhances the electrolysis efficiency to a lesser extent can produce ionized electrolyzed water efficiently, and can provide electrolyzed water having a high pH and a high oxidation-reduction potential even in a flowing water system.

【0011】本発明により、従来から用いられてきたハ
ロゲンやフロンを含む溶液、酸性溶液やアルカリ溶液、
またはハロゲンやフロンを含むガスを用いることなく、
工業製品、医薬製品の材料処理を行うことができる。例
えば、従来からHCl過水(HClとH とH
の混合溶液で、その配合比は、通常、HCl(30
%):H (30%):H O=1:1:3〜10
で用いられる。従って、HCl濃度が2%〜8%のかな
り濃厚な溶液となる。半導体の洗浄に一般的に用いられ
ている洗浄溶液である。)、アンモニア過水(NH
HとH とH Oの混合溶液で、その配合比は、通
常、NH OH(29%):H (3O%):H
=1:1〜8:4〜100で用いられる。従って、N
OH濃度が0.3%〜5%程度の溶液となる 半導
体の洗浄に一般的に用いられている洗浄溶液である。
や燐酸等で重金属汚染の除去やパーティクル除去等のウ
エット処理が行われてきたが、これらにかわる溶液とし
て利用できる。さらに、本発明によれば使用済の廃液
は、浄水器およびイオン交換器を通して純水とし、再利
用することで水資源の有効活用を図ることができる。
According to the present invention, conventionally used solutions containing halogen and chlorofluorocarbon, acidic solutions and alkaline solutions,
Or without using a gas containing halogen or Freon,
Material processing of industrial products and pharmaceutical products can be performed. For example, conventionally, an aqueous solution of HCl (HCl, H 2 O 2 , H 2 O
In a mixed solution of HCl (30
%): H 2 O 2 (30%): H 2 O = 1: 1: 3 to 10
Used in Therefore, if the HCl concentration is between 2% and 8%,
It becomes a thick solution. Commonly used for cleaning semiconductors
Cleaning solution. ) , Ammonia peroxide ( NH 4 O)
It is a mixed solution of H, H 2 O 2 and H 2 O.
NH 4 OH (29%): H 2 O 2 (30%): H 2
O 2 = 1: 1 to 8: 4 to 100 are used. Therefore, N
H 4 OH concentration becomes about 0.3% to 5% solution
It is a washing solution commonly used for body washing. )
Wet treatments such as heavy metal contamination removal and particle removal have been performed with sulfuric acid or phosphoric acid, but can be used as a solution instead of these. Further, according to the present invention, the used waste liquid is converted into pure water through a water purifier and an ion exchanger, and can be reused to effectively use water resources.

【0012】[0012]

【実施例】次に本発明の実施例について説明する。 実施例1 図1に本実施例のウェット処理装置の概略構成図を示
す。図1の電気分解用水槽1に、イオン交換器9を通し
て生成された純水を純水導入管から供給する。電気分解
用水槽1には、ポリシリコン等の多孔質膜2が隔膜とし
て形成されており、それぞれの水槽(1−A)、(1−
B)にはPtまたは炭素で形成された電極棒3a、3b
が設置されている。この電極棒3a、3bに可変型の直
流電源5を接続し、電解電流を流すことにより、陰極と
なる電極3aがある水槽(1−A)には陰極水(OH-
イオン水)、陽極となる電極3bがある水槽(1−B)
には陽極水(H+イオン水)を生成する。生成したOH-
イオン水は処理水槽6aに、H+イオン水は処理水槽6
bに取り出される。半導体製造工程で代表的な被処理物
となるSiウエハをウエハキャリヤー7aまたは7bに
入れて、処理水槽6aまたは処理水槽6bに浸す。この
場合、電解水(イオン水)は常時Siウエハに供給する
流水形式をとる。処理水槽6aまたは処理水槽6bから
でた廃液は廃液貯水槽8に貯め、その上澄み液は浄水器
10とイオン交換器9を通して純水にし、純水導入管か
ら電気分解用水槽1に導入して再利用する。
Next, an embodiment of the present invention will be described. Embodiment 1 FIG. 1 shows a schematic configuration diagram of a wet processing apparatus of the present embodiment. Pure water generated through the ion exchanger 9 is supplied to the electrolysis water tank 1 of FIG. 1 from a pure water introduction pipe. In the electrolysis water tank 1, a porous film 2 of polysilicon or the like is formed as a diaphragm, and the water tanks (1-A) and (1-
B) includes electrode rods 3a and 3b made of Pt or carbon.
Is installed. By connecting a variable DC power supply 5 to the electrode rods 3a and 3b and flowing an electrolytic current, a cathode water (OH ) is supplied to the water tank (1-A) having the electrode 3a serving as a cathode.
(Ionized water), a water tank (1-B) having an electrode 3b serving as an anode
Produces anode water (H + ion water). The resulting OH -
Ion water is placed in the treatment tank 6a, and H + ion water is placed in the treatment tank 6a.
b. An Si wafer, which is a typical object to be processed in a semiconductor manufacturing process, is placed in a wafer carrier 7a or 7b and immersed in the processing water tank 6a or 6b. In this case, the electrolyzed water (ionized water) takes a flowing water form that is always supplied to the Si wafer. The waste liquid from the treated water tank 6a or the treated water tank 6b is stored in a waste liquid storage tank 8, and the supernatant is purified into pure water through a water purifier 10 and an ion exchanger 9. Reuse.

【0013】ここで、電気分解用水槽1のそれぞれの水
槽(1−A,1−B)に光源13より光を照射する。こ
の光源13には、短波長発振光源として波長0.4μm
以下の光を照射できる紫外光源や、0.1μm以下の波
長を照射できるX線源またはγ線源を用いる。また、長
波長光の光源としては、3μm以上の光を発振する遠赤
外線源や1000μm以上の波長を発振するマイクロ波
源を用いる。光は、電極棒3a,3bに効果的に到達す
るよう水槽1の材質には石英等を用いる。Siウエハを
洗浄する場合は、処理水槽6aのOH-水や処理水槽6
bのH+水のみで処理を施してもよく、また、OH-水処
理の後H+水処理を施しても、H+水処理の後OH-水で
処理を施してもよい。また、イオン交換器から供給され
た純水の抵抗値を下げ、電気分解効率を高めるために、
二酸化炭素をバブリングして供給するか、もしくは酢酸
アンモニウム等の支持電解塩を純水に添加する導電物質
添加システム11を設置する。更に、処理水槽6a及び
6bに設置したpHセンサ4a、4bにてH+濃度及び
OH-濃度を検知し、還元電位センサ14および酸化電
位センサ15にて還元電位および酸化電位を測定し、こ
れらの結果を総合制御システム16を通して直流電源5
の電界電流強度や、導電物質添加システム11からの導
電物質の添加量、光源13の照射量または強度にフィー
ドバックをかける。
Here, each of the water tanks (1-A, 1-B) of the electrolysis water tank 1 is irradiated with light from the light source 13. This light source 13 has a wavelength of 0.4 μm as a short wavelength oscillation light source.
An ultraviolet light source capable of irradiating the following light, an X-ray source or a γ-ray source capable of irradiating a wavelength of 0.1 μm or less is used. As a light source of long-wavelength light, a far-infrared light source that oscillates light of 3 μm or more or a microwave source that oscillates light of 1000 μm or more is used. Quartz or the like is used for the material of the water tank 1 so that the light reaches the electrode rods 3a and 3b effectively. When cleaning the Si wafer, the treatment water tank 6a OH - water or process water tank 6
b of H + water only treated it may be subjected to, also, OH - be subjected to H + water treatment after water treatment, after the H + water treatment OH - may be subjected to a water treatment. Also, in order to lower the resistance value of pure water supplied from the ion exchanger and increase the electrolysis efficiency,
A conductive substance addition system 11 for bubbling and supplying carbon dioxide or adding a supporting electrolyte salt such as ammonium acetate to pure water is provided. Further, the H + concentration and the OH - concentration are detected by the pH sensors 4a and 4b installed in the treatment water tanks 6a and 6b, and the reduction potential and the oxidation potential are measured by the reduction potential sensor 14 and the oxidation potential sensor 15, respectively. The result is transmitted to the DC power supply 5 through the comprehensive control system 16.
Feedback is applied to the electric field current intensity of the above, the amount of the conductive substance added from the conductive substance addition system 11, and the irradiation amount or intensity of the light source 13.

【0014】[0014]

【発明の効果】工業製品や医薬製品を製造するプロセス
において、洗浄またはエッチング、後処理を行う場合、
ハロゲンやフロンまたはその化合物、あるいは難処理産
業廃棄物による汚染を引き起こしているが、本発明によ
れば、上記のような環境汚染を引き起こすことなく処理
が可能となる。また、純水に電気分解効率を高める物質
を添加した場合も、それは微量で従来から利用されてい
る酸、アルカリ溶液の役目を果たすため、プロセスコス
トの大幅な減少ができるうえ、廃棄物の量を激減でき
る。従って、地球環境へ放出され地球規模で引き起こさ
れている環境問題の根源となっている工業廃棄物、医薬
廃棄物や工業排水等を激減できる。また、処理廃液は純
水として再利用することにより、水資源の有効活用にも
なる。また、本発明による電解水生成方法によれば、流
水形式の電解槽で、より高いpHや酸化還元電位を有す
る電解水を多量に効率的に生成し、洗浄やエッチングに
利用できる。
[Effect of the Invention] In the process of manufacturing industrial products and pharmaceutical products, when cleaning, etching, and post-processing are performed,
Halogen, chlorofluorocarbon or its compound, or contamination due to difficult-to-treat industrial waste is caused. According to the present invention, treatment can be performed without causing environmental pollution as described above. Also, when a substance that enhances electrolysis efficiency is added to pure water, it can serve as a small amount of acid and alkali solutions that have been conventionally used, greatly reducing process costs and reducing the amount of waste. Can be drastically reduced. Therefore, it is possible to drastically reduce industrial waste, medical waste, industrial wastewater, and the like, which are released to the global environment and are a source of environmental problems caused on a global scale. Further, by reusing the treatment waste liquid as pure water, water resources can be effectively used. Further, according to the method for producing electrolyzed water according to the present invention, a large amount of electrolyzed water having a higher pH and oxidation-reduction potential can be efficiently produced in a flowing water type electrolytic cell, and can be used for cleaning and etching.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるウェット処理装置の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of a wet processing apparatus according to the present invention.

【図2】 紫外線を照射した時の電極印加電圧と電解電
流との関係を、紫外線照射をしない時と比較して示す図
である。
FIG. 2 is a diagram showing a relationship between an electrode applied voltage and an electrolytic current when irradiating ultraviolet rays, in comparison with a case where no ultraviolet rays are irradiated.

【図3】 マイクロ波を照射した時の電極印加電圧と電
解電流との関係を、マイクロ波を照射しない時と比較し
て示す図である。
FIG. 3 is a diagram illustrating a relationship between an electrode applied voltage and an electrolytic current when a microwave is irradiated, in comparison with a case where a microwave is not irradiated.

【符号の説明】[Explanation of symbols]

1 電気分解用水槽 1−A 陰極水(OH-イオン水)水槽 1−B 陽極水(H+イオン水)水槽 2 多孔質膜(隔膜) 3a 電極棒(陰極) 3b 電極棒(陽極) 4a,4b pHセンサ 5 直流電源 6a,6b 処理水槽 7a,7b ウエハキャリヤー 8 廃液貯水槽 9 イオン交換器 10 浄水器 11 導電物質添加システム 13 光源 14 還元電位センサ 15 酸化電位センサ 16 総合制御システムDESCRIPTION OF SYMBOLS 1 Electrolysis water tank 1-A Cathode water (OH - ion water) water tank 1-B Anode water (H + ion water) water tank 2 Porous membrane (diaphragm) 3a Electrode rod (cathode) 3b Electrode rod (anode) 4a 4b pH sensor 5 DC power supply 6a, 6b Treatment water tank 7a, 7b Wafer carrier 8 Waste liquid storage tank 9 Ion exchanger 10 Water purifier 11 Conductive substance addition system 13 Light source 14 Reduction potential sensor 15 Oxidation potential sensor 16 General control system

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水を電気分解することによって生成され
る新しいHイオン水またはOHイオン水を常時被処
理物に供給することにより、被処理物の洗浄、エッチン
グまたは後処理を行うウェット処理方法であって、水の
電気分解が、電気分解開始時または電気分解中に0.4
μm以下の短波長光またはX線、あるいは3μm以上の
長波長光または電磁波を水または水溶液に照射しながら
行われることを特徴とするウェット処理方法。
1. A wet process for washing, etching or post-processing an object by constantly supplying new H + ion water or OH ion water generated by electrolyzing water to the object. The method, wherein the electrolysis of water is carried out at the beginning of or during electrolysis.
A wet treatment method, wherein the treatment is performed while irradiating water or an aqueous solution with short-wavelength light or X-rays of 3 μm or less, or long-wavelength light or electromagnetic waves of 3 μm or more on water or an aqueous solution.
【請求項2】 電気分解用水槽に水を供給する導入管
と、内部にHイオン水とOHイオン水を分離する多
孔質膜とが設けられ、前記導入管から導入された水を電
気分解する電気分解用水槽と、該電気分解用水槽内に前
記多孔質膜を介して設けられた電極対と、該電極対に直
流電流を供給する直流電源と、前記電気分解用水槽で得
られたHイオン水とOHイオン水をそれぞれ別々に
貯溜すると共に、その中で被処理物を処理する処理水槽
と、前記電気分解用水槽に光、X線または電磁波を照射
する光源と、前記処理水槽中のpH値および酸化還元電
位を測定し、直流電源の電解電流強度および/または前
記光源の光照射量または光強度を調整することにより、
処理水槽中のイオン濃度および酸化還元電位を制御する
総合制御システムが備えられていることを特徴とするウ
ェット処理装置。
2. An introduction pipe for supplying water to an electrolysis water tank, and a porous membrane for separating H + ion water and OH ion water are provided therein, and the water introduced from the introduction pipe is used for electricity. An electrolysis water tank to be decomposed, an electrode pair provided in the electrolysis water tank via the porous membrane, a DC power supply for supplying a DC current to the electrode pair, and the electrolysis water tank. H + ion water and OH ion water are separately stored, and a treatment water tank for treating an object to be treated therein, a light source for irradiating the electrolysis water tank with light, X-rays or electromagnetic waves, By measuring the pH value and the oxidation-reduction potential in the treatment water tank, and adjusting the electrolytic current intensity of the DC power supply and / or the light irradiation amount or light intensity of the light source,
A wet treatment apparatus comprising an integrated control system for controlling ion concentration and oxidation-reduction potential in a treatment water tank.
JP5218211A 1993-01-08 1993-08-10 Wet processing method and processing apparatus Expired - Lifetime JP2581403B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5218211A JP2581403B2 (en) 1993-08-10 1993-08-10 Wet processing method and processing apparatus
EP93121011A EP0605882B1 (en) 1993-01-08 1993-12-28 Method and apparatus for wet treatment of solid surfaces
DE69306542T DE69306542T2 (en) 1993-01-08 1993-12-28 Method and device for wet treatment of solid surfaces
KR94000196A KR960009070B1 (en) 1993-01-08 1994-01-07 Method and apparatus for wet treatment of solid surfaces
CN94100382A CN1083403C (en) 1993-01-08 1994-01-08 Method and apparatus for wet treatment of solid surfaces
US08/501,431 US5578193A (en) 1993-01-08 1995-07-12 Method and apparatus for wet treatment of solid surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5218211A JP2581403B2 (en) 1993-08-10 1993-08-10 Wet processing method and processing apparatus

Publications (2)

Publication Number Publication Date
JPH0751675A JPH0751675A (en) 1995-02-28
JP2581403B2 true JP2581403B2 (en) 1997-02-12

Family

ID=16716367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5218211A Expired - Lifetime JP2581403B2 (en) 1993-01-08 1993-08-10 Wet processing method and processing apparatus

Country Status (1)

Country Link
JP (1) JP2581403B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3928980B2 (en) * 1995-04-14 2007-06-13 ペルメレック電極株式会社 Method of soil sterilization and fertilization
EP0968739B1 (en) 1998-06-22 2010-06-16 Canon Kabushiki Kaisha Method for decomposing halogenated aliphatic and aromatic compounds
DE69923280D1 (en) 1998-11-30 2005-02-24 Canon Kk Process and apparatus for the decomposition of halogenated aliphatic and aromatic compounds
US6497795B1 (en) 1998-12-16 2002-12-24 Canon Kabushiki Kaisha Method and apparatus for decomposing gaseous aliphatic hydrocarbon halide compound
US6462250B1 (en) 1999-06-22 2002-10-08 Canon Kabushiki Kaisha Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means
JP2001114727A (en) 1999-10-12 2001-04-24 Canon Inc Production process and apparatus for trichloroacetic acid
JP3825959B2 (en) 2000-06-16 2006-09-27 キヤノン株式会社 Pollutant decomposition method and apparatus
KR20010088986A (en) * 2001-08-31 2001-09-29 이강락 waste water treating method and apparatus by microwave plasma
JP2003205221A (en) 2001-11-12 2003-07-22 Canon Inc Chlorinated organic compound treating method and apparatus and soil restoring method and apparatus
US7018514B2 (en) 2001-11-12 2006-03-28 Canon Kabushiki Kaisha Method and apparatus for processing substances to be decomposed

Also Published As

Publication number Publication date
JPH0751675A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
EP0605882B1 (en) Method and apparatus for wet treatment of solid surfaces
JP2830733B2 (en) Electrolytic water generation method and electrolysis water generation mechanism
JP2743823B2 (en) Semiconductor substrate wet treatment method
JP2859081B2 (en) Wet processing method and processing apparatus
US5599438A (en) Method for producing electrolyzed water
JP4936505B2 (en) Method and apparatus for treating ammonia-containing water
JP2581403B2 (en) Wet processing method and processing apparatus
JPH07263391A (en) Wet treatment device, electrolytic active water producing method, and wet treating method
JPH0747377A (en) Method for treating ozone water and device therefor
JP4462513B2 (en) Electrolyzed water manufacturing method, cleaning water, and cleaning method
JP2897637B2 (en) Wet processing equipment
JP2923108B2 (en) Method for removing impurities from printed circuit board washing wastewater
CN205974673U (en) Chlorine reclaiming device
JP3209223B2 (en) Wet treatment method
JP3507588B2 (en) Wet processing method and processing apparatus
JP3191700B2 (en) Wet treatment method
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP4053805B2 (en) Functional water, production method and production apparatus thereof
JP3507590B2 (en) Wet processing method and processing apparatus
JP3663048B2 (en) Wet treatment method
GB2320928A (en) Producing electrolyzed water by controlling its temperature
JP3590273B2 (en) Semiconductor device manufacturing method and processing liquid generating apparatus
JP2004342841A (en) Cleaning method and cleaning equipment
JP4105081B2 (en) Water treatment equipment
JPH08197059A (en) Method for removing metallic ions in solution and apparatus therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 17

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term