JP3045933B2 - Apparatus and method for decontaminating radioactive metal waste - Google Patents

Apparatus and method for decontaminating radioactive metal waste

Info

Publication number
JP3045933B2
JP3045933B2 JP6206644A JP20664494A JP3045933B2 JP 3045933 B2 JP3045933 B2 JP 3045933B2 JP 6206644 A JP6206644 A JP 6206644A JP 20664494 A JP20664494 A JP 20664494A JP 3045933 B2 JP3045933 B2 JP 3045933B2
Authority
JP
Japan
Prior art keywords
cylindrical
metal waste
anode
cathode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6206644A
Other languages
Japanese (ja)
Other versions
JPH0868894A (en
Inventor
正見 遠田
克美 保坂
仁志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6206644A priority Critical patent/JP3045933B2/en
Priority to TW084100830A priority patent/TW288145B/zh
Priority to DE69527560T priority patent/DE69527560T2/en
Priority to EP95101360A priority patent/EP0669625B1/en
Publication of JPH0868894A publication Critical patent/JPH0868894A/en
Priority to US08/786,931 priority patent/US5865965A/en
Priority to US08/870,450 priority patent/US5877388A/en
Application granted granted Critical
Publication of JP3045933B2 publication Critical patent/JP3045933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は原子力施設の運転、定期
検査時および廃止措置時に発生する配管や板材等の金属
廃棄物を低減するための放射性金属廃棄物の除染装置お
よびその除染方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for decontaminating radioactive metal waste for reducing metal waste such as pipes and plate materials generated during operation, periodic inspection and decommissioning of nuclear facilities. About.

【0002】[0002]

【従来の技術】原子力施設の運転、定期検査時および廃
止措置時に発生する放射性金属廃棄物を徹底除染する方
法としては、特開昭62-46297号公報、同 60-186799号公
報等に開示されているように、酸性および中性塩溶液を
用いた電解除染(接触式)が国内外で開発され実用化さ
れている。
2. Description of the Related Art Methods for thoroughly decontaminating radioactive metal waste generated during the operation, periodic inspection and decommissioning of nuclear facilities are disclosed in JP-A-62-46297 and JP-A-60-186799. As described above, electrodischarge dyeing (contact type) using an acidic and neutral salt solution has been developed and put into practical use in Japan and overseas.

【0003】電解除染は板状、円筒状等の比較的単純な
形状の金属廃棄物に対して効果的であり、金属廃棄物を
陽極として除染面に対峙して陰極を設置し、金属廃棄物
と陰極間に直流電圧を印加して除染面の母材を研磨し、
金属廃棄物から放射能を除去するものである。
[0003] Electrolytic dyeing is effective for metal waste having a relatively simple shape such as a plate or a cylinder, and a metal waste is used as an anode, and a cathode is installed facing the surface to be decontaminated. Apply a DC voltage between the waste and the cathode to polish the base material of the decontamination surface,
It removes radioactivity from metal waste.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述した
電解除染はつぎのような課題を有している。 金属廃棄物と陽極との接続部分が溶解しないため汚
染が残留し、掴み換えを行って再除染する必要があるた
め除染作業が煩雑である。 大型の機器を除染する場合は、表面積に比例して電
流値が大きくなるため機器と陽極との接続は、接触面積
を考慮した陽極治具が必要とある。従って、機器の形状
に合わせて陽極治具の交換を頻繁に行う必要がある。 大量の機器を処理する場合は、電極の掴み換え、陽
極治具の交換が必要であるため作業員の被ばくが増加す
る。
However, the above-described electrodischarge dyeing has the following problems. Since the connection portion between the metal waste and the anode does not dissolve, contamination remains, and it is necessary to perform recontamination by regripping and the decontamination work is complicated. When decontaminating a large device, the current value increases in proportion to the surface area, so the connection between the device and the anode requires an anode jig in consideration of the contact area. Therefore, it is necessary to frequently exchange the anode jig according to the shape of the device. When processing a large amount of equipment, it is necessary to replace the electrode and replace the anode jig, so that the worker's exposure increases.

【0005】本発明は上記課題を解決するためになされ
たもので、電極の掴み換え、除染前後の電極の着脱作業
を必要とせず、金属廃棄物の放射能を短時間に除去もし
くは放射能レベルを低下できる放射性金属廃棄物の除染
装置およびその除染方法を提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and does not require the re-gripping of electrodes and the attachment / detachment work of electrodes before and after decontamination. Provided is a radioactive metal waste decontamination apparatus and a decontamination method capable of reducing the level.

【0006】なお、本発明の非接触電解反応を用いて金
属廃棄物を除染する方法は、特5-297192号、特
6-242295号および特7-218694号として出願したが、
本発明はこの先願方法の一層の高機能・高性能化を図ろ
うとするものである。
[0006] The method for decontaminating metal wastes using a non-contact electrolytic reaction of the present invention, JP-open flat 5-297192, JP-Open Rights
6-242295 and No. has been filed as Japanese Open flat No. 7-218694,
The present invention seeks to further improve the functions and performance of the prior application method.

【0007】[0007]

【課題を解決するための手段】本発明は、電解液中での
複極現象を利用し、放射能で汚染された金属廃棄物を非
接触で電解して前記金属廃棄物の母材を溶解し放射能を
除去する装置において、円筒状陽極内に円筒状金属廃棄
物を設置し、前記円筒状金属廃棄物内に棒状陰極を設置
し、前記円筒状陽極と前記棒状陰極は直流電源に接続さ
れていることを特徴とし、前記円筒状陽極と前記棒状陰
極間に接続された直流電源から直流電圧を印加して、前
記円筒状金属廃棄物外面を負極に、内面を正極に帯電さ
せて内面の金属母材を溶解することを特徴とする。
SUMMARY OF THE INVENTION The present invention utilizes a bipolar phenomenon in an electrolytic solution to electrolyze radioactively contaminated metal waste in a non-contact manner to dissolve the base material of the metal waste. In the apparatus for removing radioactivity, a cylindrical metal waste is installed in a cylindrical anode, a rod-shaped cathode is installed in the cylindrical metal waste, and the cylindrical anode and the rod-shaped cathode are connected to a DC power supply. It is characterized by applying a DC voltage from a DC power supply connected between the cylindrical anode and the rod-shaped cathode, the cylindrical metal waste outer surface to the negative electrode, the inner surface to the positive electrode to charge the inner surface Wherein the metal base material is dissolved.

【0008】電解液中での複極現象を利用し、放射性物
質で汚染された金属廃棄物を非接触で電解して前記金属
廃棄物の母材を溶解し放射能を除去する装置において、
円筒状絶縁性遮蔽体の内壁に円筒状陽極を、前記円筒状
絶縁性遮蔽体の外壁に円筒状陰極を設置し、前記円筒状
陽極内に円筒状金属廃棄物を設置し、前記円筒状陽極と
前記円筒状陰極は直流電源に接続されていることを特徴
とし、また前記円筒状の絶縁性遮蔽体の上下に開口部を
有する絶縁性の円板を設置したことを特徴とする。
[0008] An apparatus for removing radioactivity by dissolving a base material of the metal waste by non-contact electrolysis of a metal waste contaminated with a radioactive material by utilizing a bipolar phenomenon in an electrolyte,
A cylindrical anode is installed on the inner wall of the cylindrical insulating shield, a cylindrical cathode is installed on the outer wall of the cylindrical insulating shield, and a cylindrical metal waste is installed in the cylindrical anode. The cylindrical cathode is connected to a DC power supply, and an insulating disk having openings above and below the cylindrical insulating shield is provided.

【0009】また、前記円筒状陽極と前記円筒状陰極間
に接続された直流電源から直流電圧を印加して、前記円
筒状金属廃棄物の外面を負極に、内面を正極に帯電させ
て内面の金属母材を溶解し、前記円筒状金属廃棄物が内
外面とも汚染している場合は、前記直流電源の極性を逆
転させ前記陽極を陰極に、前記陰極を陽極に変換して前
記円筒状金属廃棄物の外面を溶解することを特徴とす
る。
Further, a DC voltage is applied from a DC power supply connected between the cylindrical anode and the cylindrical cathode to charge the outer surface of the cylindrical metal waste to the negative electrode and the inner surface to the positive electrode to charge the inner surface to the inner surface. When the metal base material is dissolved and the cylindrical metal waste is contaminated on both the inner and outer surfaces, the polarity of the DC power source is reversed to convert the anode to a cathode, and convert the cathode to an anode to convert the cylindrical metal waste into a cylindrical metal. Dissolving the outer surface of the waste.

【0010】前記円筒状金属廃棄物内面の金属母材の溶
解と、前記円筒状金属廃棄物内面に形成された酸化被膜
の還元・破壊を直流電源の極性を交互に逆転させて繰り
返すことを特徴とする。
The dissolution of the metal base material on the inner surface of the cylindrical metal waste and the reduction and destruction of the oxide film formed on the inner surface of the cylindrical metal waste are repeated by alternately reversing the polarity of the DC power supply. And

【0011】電解液中での複極現象を利用し、放射性物
質で汚染された金属廃棄物を非接触で電解して前記金属
廃棄物の母材を溶解し放射能を除去する装置において、
電解槽内に上部に開口部を有する絶縁性遮蔽容器を設置
し、前記電解槽の底部に陰極を、前記絶縁性遮蔽容器の
底部に陽極を設置し、前記金属廃棄物を上部に開口部を
有する支持容器で保持してなり、前記支持容器の側面は
絶縁性材料で、前記支持容器の底部は金属性で構成さ
れ、また前記支持容器の側面は、電解液流通のために網
目状の多数の孔を有し、前記上部に開口部を有する絶縁
性遮蔽容器内に設置したことを特徴する。
An apparatus for removing radioactivity by dissolving a base material of the metal waste by non-contact electrolysis of a metal waste contaminated with a radioactive substance by utilizing a bipolar phenomenon in an electrolyte,
An insulating shielding container having an opening at the top is installed in the electrolytic cell, a cathode is provided at the bottom of the electrolytic cell, an anode is provided at the bottom of the insulating shielding container, and the metal waste is provided with an opening at the top. The supporting container has a side surface made of an insulating material, a bottom portion of the supporting container made of metal, and a side surface of the supporting container having a mesh-like shape for flowing an electrolytic solution. Characterized by being installed in an insulating shielding container having an opening at the top.

【0012】また、前記陽極と陰極間に直流電圧を印加
して前記陽極と対面した前記支持容器の底部の金属材を
負極に、前記支持容器で保持した前記金属廃棄物の上面
を正極に帯電させて金属母材を溶解することを特徴とす
る。
Further, a DC voltage is applied between the anode and the cathode to charge the metal material at the bottom of the support container facing the anode to the negative electrode and the upper surface of the metal waste held by the support container to the positive electrode. And melting the metal base material.

【0013】[0013]

【作用】本発明によれば、金属廃棄物を非接触で電解し
て金属廃棄物を除染する装置およびその除染方法におい
て、金属廃棄物の除染性能および形状適応性の一層の向
上を図ることができる。
According to the present invention, in a device and a decontamination method for decontaminating metal waste by non-contact electrolysis of metal waste, the decontamination performance and shape adaptability of metal waste are further improved. Can be planned.

【0014】すなわち、本発明は円筒状陽極内に配管等
の円筒状金属廃棄物を設置し、この円筒状金属廃棄物内
に棒状の陰極を挿入して前記陽極と陰極間に接続された
直流電源から直流電圧を印加して、前記円筒状金属廃棄
物の内面を正極に帯電させて内面の金属母材を溶解する
ものである。従って、従来の接触式電解除染のように陽
極と金属廃棄物を接続する必要がないため、接続作業に
伴う作業員の放射線被ばく量が低減する。
That is, according to the present invention, a cylindrical metal waste such as a pipe is installed in a cylindrical anode, a rod-shaped cathode is inserted into the cylindrical metal waste, and a direct current connected between the anode and the cathode is inserted. A DC voltage is applied from a power supply to charge the inner surface of the cylindrical metal waste to a positive electrode to dissolve the metal base material on the inner surface. Therefore, there is no need to connect the anode and the metal waste unlike the conventional contact-type electro-discharge dyeing, so that the radiation exposure of the workers involved in the connection work is reduced.

【0015】円筒状絶縁性遮蔽体の内壁に円筒状陽極
を、前記円筒状絶縁性遮蔽体の外壁に円筒状陰極を設置
し、前記円筒状陽極内に円筒状金属廃棄物を設置し、前
記陽極と陰極間に接続された直流電源から直流電圧を印
加して、前記円筒状の金属廃棄物の内面を正極に帯電さ
せて内面の金属母材を溶解するものである。
A cylindrical anode is installed on the inner wall of the cylindrical insulating shield, a cylindrical cathode is installed on the outer wall of the cylindrical insulating shield, and a cylindrical metal waste is installed in the cylindrical anode. A DC voltage is applied from a DC power supply connected between the anode and the cathode to charge the inner surface of the cylindrical metal waste to the positive electrode and dissolve the metal base material on the inner surface.

【0016】また、円筒状絶縁性遮蔽体の上下に開口部
を有する絶縁性円板を設置することにより陽極と陰極間
で電気分解が抑制され、効率よく円筒状の金属廃棄物の
金属母材を溶解することができる。
Further, by disposing an insulating disc having openings above and below the cylindrical insulating shield, electrolysis between the anode and the cathode is suppressed, and the metal base material of the cylindrical metal waste is efficiently produced. Can be dissolved.

【0017】従って、従来の接触式電解除染のように円
筒状金属廃棄物内に陰極を挿入しなくても円筒内面の除
染面を効率よく正極に帯電させて溶解するため、円筒状
金属廃棄物内面に付着している放射能を含む酸化被膜
は、または母材に浸透している放射能は金属母材の溶解
とともに除去される。
Accordingly, the decontamination surface of the inner surface of the cylinder is efficiently charged to the positive electrode and dissolved without the necessity of inserting the cathode into the cylindrical metal waste as in the conventional contact-type electro-discharge dyeing. The radioactive oxide film adhering to the inner surface of the waste, or the radioactivity penetrating the base material is removed as the metal base material dissolves.

【0018】円筒状金属廃棄物の内外面とも汚染してい
る場合は、直流電源の極性を逆転することにより外面を
正極に帯電させることができるため、容易に金属母材を
溶解することができ、金属廃棄物から放射能を除去する
ことができる。
When the inner and outer surfaces of the cylindrical metal waste are also contaminated, the outer surface can be charged to the positive electrode by reversing the polarity of the DC power supply, so that the metal base material can be easily dissolved. In addition, radioactivity can be removed from metal waste.

【0019】また、炭素鋼のように酸化被膜が厚く、強
固に付着し、放射能が除去しがたい円筒状金属廃棄物に
対しては、直流電圧の極性を交互に逆転させて前記金属
母材の溶解と金属母材表面の酸化被膜の還元・破壊を繰
り返すことにより、少ない溶解量で放射能を除去するこ
とができ、除染に伴う二次廃棄物の発生量を低減するこ
とができる。
For cylindrical metal waste such as carbon steel, which has a thick oxide film, adheres firmly, and is difficult to remove radioactivity, the polarity of the DC voltage is alternately reversed to obtain the metal base. By repeating dissolution of the material and reduction / destruction of the oxide film on the surface of the metal base material, radioactivity can be removed with a small amount of dissolution, and the amount of secondary waste generated due to decontamination can be reduced. .

【0020】さらに、湾曲した板状の金属廃棄物や金属
廃棄物を切断した後の切れ端、工具等の雑物を除染する
場合は、電解槽内に上部に開口部を有する絶縁性遮蔽容
器を設置し、前記電解槽の底部に陰極を絶縁性遮蔽容器
の底部に陽極を設置し、湾曲した板状の金属廃棄物や雑
物を上部に開口部を有する支持容器内に入れ、支持容器
の側面は絶縁性材料で前記支持容器の底部は不溶解性の
金属で構成する。
Further, in the case of decontaminating curved plate-shaped metal waste or a cut piece after cutting the metal waste, a tool, or other foreign matter, an insulating shielding container having an opening at an upper portion in an electrolytic cell. Is installed, a cathode is provided at the bottom of the electrolytic cell, an anode is provided at the bottom of the insulating shielding container, and a curved plate-shaped metal waste or miscellaneous material is placed in a supporting container having an opening at the top, and the supporting container is provided. Is made of an insulating material, and the bottom of the supporting container is made of an insoluble metal.

【0021】また、支持容器の側面は、電解液流通のた
めに網目状の多数の孔を有し、上部に開口部を有する絶
縁性遮蔽容器内に設置し、前記陽極と陰極間に直流電圧
を印加し、前記陽極と対面した前記支持容器の底部の不
溶解性金属を負極に、支持容器内に入れた湾曲した板状
金属廃棄物や雑物の上面(汚染面)を正極に帯電させて
金属母材を溶解する。支持容器底部を不溶解性金属で構
成することにより、湾曲した板状金属廃棄物や雑物の汚
染面を均一に溶解することができる。
Further, the side surface of the supporting container is provided in an insulating shielding container having a large number of mesh-like holes for flowing an electrolytic solution and having an opening at an upper portion, and a DC voltage is applied between the anode and the cathode. To charge the insoluble metal at the bottom of the support container facing the anode to the negative electrode, and charge the upper surface (contaminated surface) of the curved plate-like metal waste or miscellaneous material placed in the support container to the positive electrode. To dissolve the metal matrix. By configuring the bottom of the support container with an insoluble metal, it is possible to uniformly dissolve the contaminated surface of the curved plate-shaped metal waste or miscellaneous material.

【0022】[0022]

【実施例】本発明に係る放射性金属廃棄物の除染装置の
第1の実施例を図1から図3を参照しながら説明する。
図1は第1の実施例を説明するための装置の一例を示し
た電解槽の縦断面図であり、図中符号1は電解槽で、こ
の電解槽1内には電解液2が満たされている。電解液2
中に円筒状陽極3と、この円筒状陽極3内に除染対象物
である放射性金属廃棄物の円筒状金属4と、円筒状金属
4内に棒状陰極5が設置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of an apparatus for decontaminating radioactive metal waste according to the present invention will be described with reference to FIGS.
FIG. 1 is a vertical sectional view of an electrolytic cell showing an example of an apparatus for explaining the first embodiment. In the figure, reference numeral 1 denotes an electrolytic cell, and the electrolytic cell 1 is filled with an electrolytic solution 2. ing. Electrolyte solution 2
A cylindrical anode 3, a cylindrical metal 4 of radioactive metal waste to be decontaminated in the cylindrical anode 3, and a rod-shaped cathode 5 installed in the cylindrical metal 4.

【0023】円筒状金属4は架台6上に固定され、円筒
状陽極3と棒状陰極5はそれぞれ直流電源7に接続され
ている。また、電解槽1の上部には電解槽1から円筒状
金属4を出し入れするためのハンドリング機構8が設置
されている。
The cylindrical metal 4 is fixed on a gantry 6, and the cylindrical anode 3 and the bar-shaped cathode 5 are connected to a DC power source 7, respectively. A handling mechanism 8 for taking the cylindrical metal 4 in and out of the electrolytic cell 1 is provided above the electrolytic cell 1.

【0024】つぎに円筒状陽極3と円筒状金属4と棒状
陰極5の位置関係の詳細を図2(a),(b)により説
明する。同(a)は装置の平面図、(b)は(a)の縦
断面図である。円筒状陽極3の中央部に円筒状金属4
が、円筒状金属4の中央部に棒状陰極5が設置され、円
筒状陽極3と棒状陰極5にはそれぞれ直流電源7が接続
されている。
Next, the positional relationship among the cylindrical anode 3, the cylindrical metal 4, and the bar-shaped cathode 5 will be described in detail with reference to FIGS. 2 (a) and 2 (b). 2A is a plan view of the device, and FIG. 2B is a longitudinal sectional view of FIG. At the center of the cylindrical anode 3 is a cylindrical metal 4
However, a bar-shaped cathode 5 is installed at the center of the cylindrical metal 4, and a DC power supply 7 is connected to the cylindrical anode 3 and the bar-shaped cathode 5, respectively.

【0025】この状態で、直流電源7から円筒状陽極3
と棒状陰極5との間に所定の電流密度の直流電圧を印加
すると、円筒状陽極3表面と棒状陰極5および円筒状金
属4の内外面では、図3に示した反応が起こる。これら
の反応は以下に示す通りである。 (円筒状陽極) H2 O→2H+ + 1/2O2 ↑+2e- …(1) (棒状陰極) H+ +2e- →H2 ↑……………………(2) (円筒状金属外面) H+ +2e- →H2 ↑……………………(3) (円筒状金属内面) M→Mn++ne- ……………………(4)
In this state, the DC power source 7 supplies the cylindrical anode 3
When a DC voltage having a predetermined current density is applied between the cylindrical cathode 3 and the rod-shaped cathode 5, the reaction shown in FIG. 3 occurs on the surface of the cylindrical anode 3 and the inner and outer surfaces of the rod-shaped cathode 5 and the cylindrical metal 4. These reactions are as shown below. (Cylindrical anode) H 2 O → 2H + + 1 / 2O 2 ↑ + 2e (1) (Bar-shaped cathode) H + + 2e 2H 2 ↑ (2) (Cylindrical metal outer surface) H + + 2e - → H 2 ↑ ........................ (3) ( a cylindrical metal inner surface) M → M n + + ne - ........................ (4)

【0026】円筒状金属4外面は円筒状の陽極3と対面
しているため誘電作用により負極に帯電し、また円筒状
金属4内面は棒状陰極5と対面しているため分極されて
正極に帯電し、内面の金属母材が溶解する。
Since the outer surface of the cylindrical metal 4 faces the cylindrical anode 3, it is charged to the negative electrode by dielectric action, and the inner surface of the cylindrical metal 4 is polarized and charged to the positive electrode because it faces the rod-shaped cathode 5. Then, the metal base material on the inner surface dissolves.

【0027】これにより円筒状金属4内面に固着または
母材に浸透している放射能は、母材を溶解することによ
り円筒状金属4から除去されて電解液2に移行し、円筒
状金属5の放射能を除去もしくは放射能レベルを低下さ
せることができる。
As a result, the radioactivity fixed on the inner surface of the cylindrical metal 4 or penetrating into the base material is removed from the cylindrical metal 4 by dissolving the base material and transferred to the electrolytic solution 2, and is transferred to the electrolytic solution 2. Radioactivity can be removed or the radioactivity level can be reduced.

【0028】本発明に係る放射能金属廃棄物の除染装置
の第2の実施例を図4から図6を参照しながら説明す
る。図4は第2の実施例を説明するための装置の一例を
示した電解槽の縦断面図であり、図中符号1は電解槽で
電解槽1内には電解液2が満たされている。
A second embodiment of the apparatus for decontaminating radioactive metal waste according to the present invention will be described with reference to FIGS. FIG. 4 is a vertical sectional view of an electrolytic cell showing an example of an apparatus for explaining the second embodiment. In the drawing, reference numeral 1 denotes an electrolytic cell, and the electrolytic cell 1 is filled with an electrolytic solution 2. .

【0029】電解液2中に円筒状電極治具9と、円筒状
電極治具9内に除染対象物である円筒状金属4が設置さ
れ、円筒状金属4は架台6上に固定され、円筒状電極治
具9は直流電源7に接続されている。また、電解槽1の
上部には電解槽1から円筒状金属4を出し入れするため
のハンドリング機構8が設置されている。
A cylindrical electrode jig 9 and a cylindrical metal 4 to be decontaminated are set in the electrolytic solution 2, and the cylindrical metal 4 is fixed on a gantry 6. The cylindrical electrode jig 9 is connected to the DC power supply 7. A handling mechanism 8 for taking the cylindrical metal 4 in and out of the electrolytic cell 1 is provided above the electrolytic cell 1.

【0030】つぎに円筒状電極治具9の詳細を図5
(a),(b)により説明する。なお、(a)は平面
図,(b)は縦断面図である。円筒状電極治具9は、円
筒状絶縁性遮蔽体10の内壁に円筒状陽極3を、円筒状絶
縁性遮蔽体10の外壁に円筒状陰極11が設置され、円筒状
金属4は円筒状陽極3内に設置され、円筒状陽極3と円
筒状陰極11にはそれぞれ直流電源7が接続されている。
Next, details of the cylindrical electrode jig 9 are shown in FIG.
This will be described with reference to (a) and (b). (A) is a plan view and (b) is a longitudinal sectional view. The cylindrical electrode jig 9 has a cylindrical anode 3 on the inner wall of a cylindrical insulating shield 10 and a cylindrical cathode 11 on the outer wall of the cylindrical insulating shield 10. The DC power supply 7 is connected to the cylindrical anode 3 and the cylindrical cathode 11, respectively.

【0031】この状態で、直流電源7から円筒状陽極3
と円筒状陰極11との間に所定の電流密度の直流電圧を印
加すると、円筒状陽極3表面と円筒状陰極11表面および
円筒状金属4の内外面では、図6に示した反応が起こ
る。これらの反応は(1)〜(4)式に示した通りであ
る。なお、ここでは、(2)式に示した棒状陰極は、円
筒状陰極に置き換わる。
In this state, the DC power source 7 supplies the cylindrical anode 3
When a DC voltage having a predetermined current density is applied between the cylindrical anode 3 and the cylindrical cathode 11, the reaction shown in FIG. 6 occurs on the surface of the cylindrical anode 3, the surface of the cylindrical cathode 11, and the inner and outer surfaces of the cylindrical metal 4. These reactions are as shown in equations (1) to (4). Here, the rod-shaped cathode shown in the expression (2) is replaced with a cylindrical cathode.

【0032】円筒状金属4外面は円筒状陽極3と対面し
ているため誘電作用により負極に帯電し、また円筒状金
属4内面は分極されて正極に帯電し、内面の金属母材が
溶解する。
Since the outer surface of the cylindrical metal 4 faces the cylindrical anode 3, the negative electrode is charged by the dielectric action, and the inner surface of the cylindrical metal 4 is polarized and charged to the positive electrode, and the metal base material on the inner surface is melted. .

【0033】これにより円筒状金属4内面に固着または
母材に浸透している放射能は、母材を溶解することによ
り円筒状金属4から除去されて電解液2に移行し、円筒
状金属4の放射能を除去もしくは放射能レベルを低下さ
せることができる。
As a result, the radioactivity fixed on the inner surface of the cylindrical metal 4 or penetrating into the base metal is removed from the cylindrical metal 4 by dissolving the base metal and transferred to the electrolytic solution 2, and is transferred to the electrolytic solution 2. Radioactivity can be removed or the radioactivity level can be reduced.

【0034】つぎに本発明の第3の実施例を図7を用い
て説明する。図7はステンレス鋼製円筒状金属4内面を
従来の接触電解(内挿陰極)で溶解して結果と、本発明
の第1の実施例である内挿陰極により溶解した結果、本
発明の第2の実施例である円筒状陰極11により溶解した
結果を溶解速度比(実験値/理論値)で示したものであ
る。なお、理論値はFaraday の法則により求めることが
できる値である。
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 7 shows the result of melting the inner surface of the stainless steel cylindrical metal 4 by the conventional contact electrolysis (interpolated cathode) and the result of melting by the interpolated cathode of the first embodiment of the present invention. The result of dissolution by the cylindrical cathode 11 of Example 2 is shown as a dissolution rate ratio (experimental value / theoretical value). The theoretical value is a value that can be obtained by Faraday's law.

【0035】本第3の実施例では電解液として燐酸を選
定し、燐酸濃度40%、電解液温度60℃、チタンに白金コ
ーティングを施した陽極と陰極との間に直流電圧を印加
して電流密度0.6/cm2 で電解を実施した。
In the third embodiment, phosphoric acid was selected as the electrolyte, the concentration of the phosphoric acid was 40%, the temperature of the electrolyte was 60 ° C., and a direct current voltage was applied between the anode and the cathode, which were coated with platinum on titanium. Electrolysis was performed at a density of 0.6 / cm 2 .

【0036】図からわかるように従来の接触電解と比較
して溶解速度は劣るものの、本発明の電解法でも円筒状
金属内面を溶解できるため金属廃棄物の放射能を除去も
しくは放射能レベルを低下させることができる。
As can be seen from the figure, although the dissolution rate is lower than that of the conventional contact electrolysis, even the electrolysis method of the present invention can dissolve the inner surface of the cylindrical metal, so that the radioactivity of the metal waste is removed or the radioactivity level is lowered. Can be done.

【0037】以上のように、本発明の第1の実施例に示
したように円筒状金属に陽極を接続しなくても内面を溶
解できるため、除染の作業性が向上し、作業員の被ばく
量を低減できる。また第2の実施例で示したように円筒
状金属内に陰極を挿入しなくても内面を溶解できるた
め、電解槽1からの金属の出し入れが容易となるととも
に、ハンドリング機構等を用いた装置の自動化が容易と
なり、作業従事者の被ばくをさらに低減できる。
As described above, since the inner surface can be melted without connecting the anode to the cylindrical metal as shown in the first embodiment of the present invention, the workability of decontamination is improved, and Exposure can be reduced. Further, as shown in the second embodiment, since the inner surface can be melted without inserting the cathode into the cylindrical metal, the metal can be easily taken in and out of the electrolytic cell 1, and an apparatus using a handling mechanism or the like can be used. This makes it easier to automate the operation, and further reduces the exposure of workers.

【0038】つぎに本発明に係る第4の実施例を図8を
用いて説明する。図8は第2の実施例において直流電源
の極性を逆転させてステンレス鋼製の円筒状金属4の内
外面を溶解した結果を溶解速度比(実験値/理論値)を
示したもので、本実施例では燐酸濃度40%、電解液温度
60℃、チタンに白金コーティングを施した陽極と陰極と
の間に直流電圧を印加して電流密度 0.6A/cm2 で電解を
実施した。
Next, a fourth embodiment according to the present invention will be described with reference to FIG. FIG. 8 shows the result of melting the inner and outer surfaces of the cylindrical metal 4 made of stainless steel by reversing the polarity of the DC power supply in the second embodiment, showing the dissolution rate ratio (experimental value / theoretical value). In the embodiment, the phosphoric acid concentration is 40% and the electrolyte temperature is
At 60 ° C., a DC voltage was applied between the anode and the cathode in which titanium was coated with platinum, and electrolysis was performed at a current density of 0.6 A / cm 2 .

【0039】本実施例からわかるように直流電源の極性
を逆転させることにより円筒状金属の内外面をほぼ同じ
溶解速度で溶解することができる。以上のように、直流
電源の極性を逆転させたのみで円筒状金属の内外面を溶
解することができるため、円筒状金属の放射能を除去も
しくは放射能レベルを低下させることができる。
As can be seen from this embodiment, by reversing the polarity of the DC power supply, the inner and outer surfaces of the cylindrical metal can be melted at almost the same melting rate. As described above, since the inner and outer surfaces of the cylindrical metal can be melted only by reversing the polarity of the DC power supply, the radioactivity of the cylindrical metal can be removed or the radioactivity level can be reduced.

【0040】つぎに本発明に係る第5の実施例を説明す
る。円筒状金属4が炭素鋼の場合は、母材表面に酸化被
膜、錆等が厚く強固に形成され、この酸化被膜は単純に
陽極電解しただけでは除去されにくい。放射能のほとん
どはこの酸化被膜に含まれるため、円筒状金属4から放
射能を除去するのに長時間を要していた。
Next, a fifth embodiment according to the present invention will be described. When the cylindrical metal 4 is carbon steel, an oxide film, rust and the like are thickly and firmly formed on the surface of the base material, and this oxide film is difficult to be removed simply by anodic electrolysis. Since most of the radioactivity is contained in the oxide film, it took a long time to remove the radioactivity from the cylindrical metal 4.

【0041】炭素鋼製の円筒状金属4から放射能を短時
間に除去するためには、前述の直流電源7の極性を交互
に逆転させる方法が有効である。炭素鋼製の円筒状金属
4の内面(汚染面)を負極に帯電させることにより、以
下に示す反応が起こり表面の酸化被膜、錆等が還元、破
壊される。 (負極帯電面) 酸化被膜、錆等の還元、破壊 Fe3 4 + 8H+ + 2e →3Fe2+ + 4H2 O…(5) Fe2 3 + 6H+ + 2e →2Fe2+ + 3H2 O…(6)
In order to remove the radioactivity from the carbon steel cylindrical metal 4 in a short time, it is effective to alternately reverse the polarity of the DC power supply 7 described above. By charging the inner surface (contaminated surface) of the cylindrical metal 4 made of carbon steel to the negative electrode, the following reaction occurs, and the oxide film, rust, etc. on the surface are reduced and destroyed. (Negative electrode charged surface) Reduction and destruction of oxide film, rust, etc. Fe 3 O 4 + 8H + + 2e → 3Fe 2+ + 4H 2 O (5) Fe 2 O 3 + 6H + + 2e → 2Fe 2+ + 3H 2 O… (6)

【0042】このように、円筒状金属4の汚染面の酸化
被膜または錆等が還元、破壊されるとともに酸化被膜中
の放射能が除去される。また、直流電源7の極性を交互
に逆転させるため、汚染面は正極にも帯電して酸化被膜
が除去された後に露出した金属母材が溶解され、金属母
材に浸透した汚染も除去される。
As described above, the oxide film or rust on the contaminated surface of the cylindrical metal 4 is reduced and destroyed, and the radioactivity in the oxide film is removed. Further, since the polarity of the DC power source 7 is alternately reversed, the contaminated surface is also charged to the positive electrode, and after the oxide film is removed, the exposed metal base material is dissolved, and the contamination permeating the metal base material is also removed. .

【0043】したがって、円筒状金属4の酸化被膜とと
もに付着または母材に浸透している放射能は、酸化被膜
の還元、破壊と母材を溶解することにより少ない溶解量
で円筒状金属4から除去されて電解液2に移行し、円筒
状金属4の放射能を除去もしくは放射能レベルを低下さ
せるとともに、除染に伴う二次廃棄物の発生量を低減で
きる。
Therefore, the radioactivity adhered or penetrated into the base material together with the oxide film of the cylindrical metal 4 is removed from the cylindrical metal 4 with a small amount of dissolution by reducing and destroying the oxide film and dissolving the base material. Then, the solution is transferred to the electrolyte solution 2 to remove the radioactivity of the cylindrical metal 4 or to lower the radioactivity level, and to reduce the amount of secondary waste generated due to the decontamination.

【0044】つぎに本発明の放射性金属廃棄物の除染装
置に係る第6の実施例を図9(a),(b)を用いて説
明する。図9(a)は円筒状絶縁性遮蔽体10の上下に開
口部を有する絶縁性円板12を取り付けた状態の平面図
で、同(b)は縦断面図である。円筒状絶縁性遮蔽体10
の内壁に円筒状陽極3を、円筒状絶縁性遮蔽体10の外壁
に円筒状陰極11が付設され、円筒状金属4は円筒状陽極
3内に設置され、円筒状陽極3と円筒状陰極10にはそれ
ぞれ直流電源7が接続されている。
Next, a sixth embodiment of the radioactive metal waste decontamination apparatus of the present invention will be described with reference to FIGS. 9 (a) and 9 (b). FIG. 9A is a plan view showing a state in which an insulating disk 12 having openings above and below a cylindrical insulating shield 10 is attached, and FIG. 9B is a longitudinal sectional view. Cylindrical insulating shield 10
The cylindrical anode 3 is attached to the inner wall of the cylinder, the cylindrical cathode 11 is attached to the outer wall of the cylindrical insulating shield 10, and the cylindrical metal 4 is installed in the cylindrical anode 3. Are connected to a DC power supply 7, respectively.

【0045】この状態で、第2の実施例と同様な操作で
直流電源7から前記円筒状陽極3と円筒状陰極11との間
に所定の電流密度の電圧を印加すると前記(1)〜
(4)式に示した反応が起こり、円筒状金属4の内面が
正極に帯電して内面の金属母材が溶解する。
In this state, when a voltage having a predetermined current density is applied between the cylindrical anode 3 and the cylindrical cathode 11 from the DC power supply 7 by the same operation as in the second embodiment, the above-mentioned (1) to (5) are applied.
The reaction shown in the equation (4) occurs, the inner surface of the cylindrical metal 4 is charged to the positive electrode, and the metal base material on the inner surface is dissolved.

【0046】つぎに本発明の第6の実施例を図10を用い
て説明する。図10は第2の実施例で示した円筒状絶縁性
遮蔽体10を用いた場合と、第5の実施例の円筒状絶縁性
遮蔽体10の上下に上部に開口部を有する絶縁製円板12を
取り付けた場合のステンレス鋼製の円筒状金属4内面を
溶解した結果を溶解速度比(実験値/理論値)で示し
た。
Next, a sixth embodiment of the present invention will be described with reference to FIG. FIG. 10 shows a case where the cylindrical insulating shield 10 shown in the second embodiment is used, and an insulating disk having openings above and below the cylindrical insulating shield 10 of the fifth embodiment. The result of melting the inner surface of the stainless steel cylindrical metal 4 when 12 was attached was shown as a dissolution rate ratio (experimental value / theoretical value).

【0047】第6の実施例では電解液2として燐酸を選
定し、燐酸濃度40%、電解液温度60℃、チタンに白金コ
ーティングを施した円筒状陽極3と円筒状陰極11との間
に直流電圧を印加して電流密度 0.6A/cm2 で電解を実施
した。
In the sixth embodiment, phosphoric acid was selected as the electrolytic solution 2, a phosphoric acid concentration of 40%, an electrolytic solution temperature of 60 ° C., and a direct current between the cylindrical anode 3 and the cylindrical cathode 11 coated with platinum on titanium. Electrolysis was performed at a current density of 0.6 A / cm 2 by applying a voltage.

【0048】図からわかるように円筒状絶縁性遮蔽体10
の上下に絶縁性円板12を取り付けると溶解速度は約 1.3
倍向上した。これは、円筒状絶縁性遮蔽体10の上下に絶
縁性円板12を取り付けることにより、陽極3と陰極11に
漏洩する電流が遮蔽され、電極間での電気分解が抑制さ
れたためである。
As can be seen from the figure, the cylindrical insulating shield 10
When the insulating disk 12 is attached above and below
Doubled. This is because, by attaching the insulating disks 12 above and below the cylindrical insulating shield 10, the current leaking to the anode 3 and the cathode 11 is shielded, and electrolysis between the electrodes is suppressed.

【0049】以上のように円筒状絶縁性遮蔽体10の上下
に絶縁性円板12を取り付けると金属の溶解速度が向上
し、円筒状金属4の放射能を短時間に除去もしくは放射
能レベルを低下させることができる。
When the insulating disks 12 are attached above and below the cylindrical insulating shield 10 as described above, the melting speed of the metal is improved, and the radioactivity of the cylindrical metal 4 is removed in a short time or the radioactivity level is reduced. Can be reduced.

【0050】つぎに本発明に係る第7の実施例を図11を
参照しながら説明する。図11は本実施例における電解槽
1の縦断面図を示し、符号13は上部に開口部を有する支
持容器であり、支持容器13は電解槽1の上部に設置され
たハンドリング機構8により電解槽1内に吊り下げられ
ている。
Next, a seventh embodiment according to the present invention will be described with reference to FIG. FIG. 11 shows a vertical cross-sectional view of the electrolytic cell 1 in the present embodiment. Reference numeral 13 denotes a supporting container having an opening at the top, and the supporting container 13 is provided by a handling mechanism 8 installed on the upper part of the electrolytic cell 1. 1 is suspended inside.

【0051】この支持容器13の側面は電解液流通のため
に網目状の多数の孔を有した絶縁性材料で、底部が金属
材18で構成され、また支持容器13内には放射性金属廃棄
物の板状金属14が収納されている。
The side surface of the supporting container 13 is made of an insulating material having a large number of mesh-like holes for flowing the electrolytic solution, and the bottom portion is made of a metal material 18. Is stored.

【0052】支持容器13は上部に開口部を有する絶縁性
の遮蔽容器15内に設置され、この遮蔽容器15の底部には
板状陽極16が遮蔽容器15の底部を間に挟んで電解槽1の
底部に板状陰極17が設置されている。
The supporting container 13 is installed in an insulating shielding container 15 having an opening at the top, and a plate-like anode 16 is provided on the bottom of the shielding container 15 with the bottom of the shielding container 15 interposed therebetween. A plate-like cathode 17 is provided at the bottom.

【0053】この状態で板状陽極16と板状陰極17との間
に直流電圧を印加すると絶縁性遮蔽容器15を間に挟んで
電位差が生じるため、板状陽極16に対面した支持容器13
の底部に設けた金属材18の表面は負極に帯電する。一
方、金属14は支持容器13の底部の金属材18と接触してい
るため、金属14は分極されて、金属14の上面は正極に帯
電して金属14の母材を溶解することができる。
When a DC voltage is applied between the plate anode 16 and the plate cathode 17 in this state, a potential difference is generated with the insulating shielding container 15 interposed therebetween.
The surface of the metal material 18 provided at the bottom of the is charged to the negative electrode. On the other hand, since the metal 14 is in contact with the metal material 18 at the bottom of the support container 13, the metal 14 is polarized, and the upper surface of the metal 14 is charged to the positive electrode to dissolve the base material of the metal 14.

【0054】つぎに本発明の第8に実施例を図12を用い
て説明する。図12(a)は、第7の実施例の支持容器13
の底部をチタンに白金コーティングを施した不活性金属
で構成した場合(例2)と、図12(b)は底部を電解液
流通のために網目状の多数の孔を有した絶縁性材料で構
成した場合(例1)の板状ステンレス鋼の溶解速度分布
を溶解速度比(各位置での溶解速度/平均溶解速度)で
示したものである。
Next, an eighth embodiment of the present invention will be described with reference to FIG. FIG. 12A shows a support container 13 according to the seventh embodiment.
And FIG. 12 (b) shows a case where the bottom is made of an inert metal obtained by applying a platinum coating to titanium (Example 2). FIG. 3 shows the dissolution rate distribution of the plate-shaped stainless steel in the case of the configuration (Example 1) in terms of a dissolution rate ratio (dissolution rate at each position / average dissolution rate).

【0055】本第8の実施例では酸性電解液として燐酸
を選定し、燐酸が濃度40%、電解液温度が室温、チタン
に白金コーティングを施した陽極と陰極との間に直流電
圧を印加して電流密度 0.6A/cm2 で電解を実施した。
In the eighth embodiment, phosphoric acid was selected as the acidic electrolyte, the concentration of the phosphoric acid was 40%, the temperature of the electrolyte was room temperature, and a direct current voltage was applied between the anode and the cathode of which platinum was coated on titanium. Electrolysis was performed at a current density of 0.6 A / cm 2 .

【0056】図12(b)からわかるように、支持容器の
底部を金属材で構成するとステンレス鋼表面をほぼ均一
に溶解させることができるが、図12(b)に示すように
網目状の多数の孔を有した絶縁性材料で構成した場合
は、端部が溶解されにくい。
As can be seen from FIG. 12 (b), when the bottom of the supporting container is made of a metal material, the surface of the stainless steel can be substantially uniformly dissolved. However, as shown in FIG. When it is made of an insulating material having the above holes, the end portions are not easily dissolved.

【0057】これは、非接触電解反応により金属を溶解
する場合は、金属溶解反応の平衡電位より大きい電位が
金属表面に印加されなければならないが、陽極と陰極間
に漏洩する電流の影響により、金属表面の中央部では電
位が高く、端部は低いため、溶解されにくいものであ
る。
This is because when dissolving a metal by a non-contact electrolytic reaction, a potential higher than the equilibrium potential of the metal dissolution reaction must be applied to the metal surface, but due to the effect of current leaking between the anode and the cathode, Since the potential is high at the center of the metal surface and low at the end, it is difficult to dissolve.

【0058】以上のように、支持容器13の底部を金属材
18で構成すると、金属表面を均一に溶解できるため湾曲
した板状の金属廃棄物や、金属廃棄物を切断した後の切
れ端、工具等の雑物等は均一に除染することができ、こ
れら金属廃棄物の放射能を除去もしくは放射能レベルを
低下させることができる。
As described above, the bottom of the support container 13 is made of a metal material.
If it is composed of 18, the metal surface can be uniformly dissolved, so that curved plate-shaped metal waste, scraps after cutting the metal waste, and miscellaneous materials such as tools can be uniformly decontaminated. The radioactivity of the metal waste can be removed or the radioactivity level can be reduced.

【0059】また、上部に開口部を有する絶縁性の支持
容器を用いることにより1バッチ当たりの金属廃棄物の
除染処理量を増加させることができ、さらに、絶縁性の
支持容器は駆動機構を用いて電解槽から容易に出し入れ
することができるため、大量処理する場合の自動化が容
易となる。
Further, by using an insulating support container having an opening at the top, the amount of metal waste decontamination treatment per batch can be increased, and the insulating support container has a drive mechanism. Since it can be easily taken in and out of the electrolytic cell when used, automation in the case of mass processing is facilitated.

【0060】これまで説明した実施例においては電解液
として燐酸を用いたが、その他に硫酸、硝酸、硫酸ナト
リウムおよび硝酸ナトリウム等を用いても同様な結果が
得られた。
In the embodiments described so far, phosphoric acid was used as the electrolytic solution. However, similar results were obtained by using sulfuric acid, nitric acid, sodium sulfate, sodium nitrate and the like.

【0061】また、本発明の除染方法および装置におい
て、電解槽の構造材が金属の場合は誘電作用により電解
槽壁面で電気分解が起こるため金属廃棄物表面を効率よ
く正極または負極に帯電させることができない。
In the decontamination method and apparatus of the present invention, when the structural material of the electrolytic cell is metal, electrolysis occurs on the wall surface of the electrolytic cell due to the dielectric action, so that the surface of the metal waste is efficiently charged to the positive electrode or the negative electrode. Can not do.

【0062】従って、電解槽の構造材、円筒状金属廃棄
物用の絶縁性遮蔽体、絶縁性円板、および板状金属廃棄
物用の絶縁性遮蔽容器、フッ素樹脂またはFRP等のよ
うに耐薬品性および耐熱性に優れた絶縁性材料を単体で
用いるか、金属に絶縁性材料をライニングしたものを用
いる。
Accordingly, the structural material of the electrolytic cell, the insulating shield for cylindrical metal waste, the insulating disk, and the insulating shielding container for plate metal waste, such as fluororesin or FRP, are resistant. Either a single insulating material having excellent chemical properties and heat resistance or a metal lined with an insulating material is used.

【0063】絶縁性円板の開口部は、円筒状金属が通過
する程度の孔を有していればよいが、上部の円板は取り
外しが容易であるため、下部の円板を固定し、上部の円
板は円筒状の金属の外径に合わせて開口部径が異なるも
のを任意に取り付けることもできる。
The opening of the insulating disc only needs to have a hole through which the cylindrical metal passes, but the upper disc is easy to remove, so that the lower disc is fixed. The upper disk may be arbitrarily attached with a different opening diameter according to the outer diameter of the cylindrical metal.

【0064】電極の材質は実施例に用いたチタンに白金
コーティングを施した電極の他に、銅にチタンをライニ
ングし、その上に白金コーティングを施した電極、白金
単独電極、チタン以外の金属に白金コーティングを施し
た電極、鉛酸化物電極等も使用可能である。
The material of the electrode is, in addition to the titanium-coated platinum electrode used in the examples, a copper-lined titanium-lined platinum-coated electrode, a platinum-only electrode, and a metal other than titanium. Electrodes with a platinum coating, lead oxide electrodes and the like can also be used.

【0065】さらに、金属廃棄物収納用の支持容器は、
上述の電極材料で構成し、支持容器の側面をフッ素樹脂
またはFRP等のように耐薬品性および耐熱性に優れた
絶縁性材料をライニングした方がよい。
Further, the supporting container for storing metal waste is
It is preferable that the side surface of the supporting container be lined with an insulating material having excellent chemical resistance and heat resistance, such as a fluororesin or FRP.

【0066】[0066]

【発明の効果】金属廃棄物を電解液中で非接触で電解し
て誘電作用に金属母材を溶解して放射能を除去する方法
において、金属廃棄物の除染性能および形状適応性の向
上を図ったもので、本発明によれば以下の効果がある。
According to the method for removing radioactivity by dissolving a metal base material in a dielectric action by electrolyzing metal waste in an electrolytic solution in a non-contact manner, the decontamination performance and shape adaptability of the metal waste are improved. According to the present invention, the following effects can be obtained.

【0067】(1)円筒状陽極内に円筒状金属廃棄物
を、棒状陰極を円筒状金属廃棄物内に挿入して内面を正
極に帯電させて金属母材を溶解できるため、金属廃棄物
の放射能を除去もしくは放射能レベルを低下させること
ができるとともに、陽極と金属廃棄物の接続作業が不必
要となるため、接続作業に伴う作業員の放射線被ばく量
が低減する。
(1) A cylindrical metal waste can be inserted into a cylindrical anode, and a rod-shaped cathode can be inserted into the cylindrical metal waste to charge the inner surface to a positive electrode and dissolve the metal base material. The radioactivity can be removed or the radioactivity level can be reduced, and the connection work between the anode and the metal waste is unnecessary, so that the radiation exposure of the workers involved in the connection work is reduced.

【0068】(2)円筒状の絶縁性遮蔽体の内壁に円筒
状の陽極を、外壁に円筒状の陰極を設置することによ
り、円筒状の金属廃棄物内に陰極を挿入しなくても内面
を正極に帯電させて金属母材を溶解できるため、金属廃
棄物の放射能を除去もしくは放射能レベルを低下させる
ことができるとともに、従来の電解除染と比較して電解
槽内への金属廃棄物の設置作業性が容易となり、除染作
業に伴う作業員の放射線被ばく量を低減できる。
(2) By installing a cylindrical anode on the inner wall of the cylindrical insulating shield and a cylindrical cathode on the outer wall, the inner surface can be inserted into the cylindrical metal waste without inserting the cathode. Can be charged to the positive electrode to dissolve the metal base material, so that the radioactivity of the metal waste can be removed or the radioactivity level can be reduced. The workability of installing the objects becomes easy, and the radiation exposure of the workers involved in the decontamination work can be reduced.

【0069】(3)円筒状の絶縁性遮蔽体の上下に絶縁
性円板を設置することにより陽極と陰極間に漏洩する電
流が遮蔽され、円筒状の金属廃棄物内面の金属母材の溶
解速度が速められるため、金属廃棄物の放射能を短時間
に除去もしくは放射能レベルを低下させることができ
る。
(3) By disposing the insulating disks above and below the cylindrical insulating shield, the current leaking between the anode and the cathode is shielded, and the metal base material on the inner surface of the cylindrical metal waste is dissolved. Since the speed is increased, the radioactivity of the metal waste can be removed or the radioactivity level can be reduced in a short time.

【0070】(4)円筒状の金属廃棄物の内外面が汚染
している場合は、直流電源の極性を逆転させることによ
り円筒状の金属廃棄物の内外面を溶解できるため、従来
の電解除染のように外面専用の電極治具が不必要とな
る。従って、電極の交換および掴み換え作業がなくな
り、除染作業に伴う作業員の放射線被ばく量を低減する
ことができる。
(4) When the inner and outer surfaces of the cylindrical metal waste are contaminated, the polarity of the DC power source can be reversed to melt the inner and outer surfaces of the cylindrical metal waste. No electrode jig dedicated to the outer surface is required like dyeing. Therefore, there is no need to replace and grip the electrodes, and it is possible to reduce the amount of radiation exposure of workers involved in the decontamination work.

【0071】(5)炭素鋼のように酸化被膜が厚く、強
固に付着し、放射能が除去し難い円筒状の金属廃棄物に
対しては、直流電圧の極性を交互に逆転させて還元処理
と酸化処理を施すことにより酸化被膜の還元、破壊と金
属母材の溶解が起こるため、少ない金属母材の溶解量で
放射能を除去することができ、除染に伴う二次廃棄物の
発生量を低減することができる。
(5) For a cylindrical metal waste, such as carbon steel, which has a thick oxide film, adheres firmly, and has difficulty in removing radioactivity, a reduction treatment is performed by alternately reversing the polarity of the DC voltage. In addition, the reduction and destruction of the oxide film and the dissolution of the metal base material occur due to the oxidation treatment, so that radioactivity can be removed with a small amount of dissolved metal base material, and secondary waste associated with decontamination is generated. The amount can be reduced.

【0072】(6)板状の金属廃棄物や金属廃棄物を切
断した後の切れ端、工具などの雑物に対しては、側面が
絶縁性材料、底部が金属材で構成される上部に開口部を
有する支持容器内に収納して除染を行うことにより、金
属表面を均一に溶解することができるため、局部的に放
射能が残留することなく金属廃棄物の放射能を除去もし
くは放射能レベルを低下させることができる。
(6) For metal wastes in the form of a plate, scraps obtained by cutting metal wastes, and miscellaneous materials such as tools, the side surface is made of an insulating material and the bottom is made of a metal material. Since the metal surface can be uniformly dissolved by carrying out decontamination by storing it in a supporting container having a part, the radioactivity of the metal waste is removed or the radioactivity is removed without leaving radioactivity locally. The level can be reduced.

【0073】(7)またハンドリング機構等を用いた除
染装置の自動化が容易であるため、大量の金属廃棄物の
除染処理を迅速に行うことができる。
(7) Since the decontamination apparatus using a handling mechanism or the like can be easily automated, a large amount of metal waste can be quickly decontaminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る放射性金属廃棄物の除染装置およ
びその除染方法の第1の実施例を説明するための除染装
置を概略的に示す構成図。
FIG. 1 is a configuration diagram schematically showing a decontamination apparatus for explaining a first embodiment of a decontamination apparatus and a decontamination method for radioactive metal waste according to the present invention.

【図2】(a)は図1における電解槽内要部を概略的に
示す横断面図、(b)は(a)の概略的縦断面図。
2A is a cross-sectional view schematically showing a main part in the electrolytic cell in FIG. 1, and FIG. 2B is a schematic vertical cross-sectional view of FIG.

【図3】図2(b)における電解反応を説明するための
模式図。
FIG. 3 is a schematic diagram for explaining an electrolytic reaction in FIG. 2 (b).

【図4】本発明に係る第2の実施例を説明する除染装置
を概略的に示す構成図。
FIG. 4 is a configuration diagram schematically showing a decontamination apparatus for explaining a second embodiment according to the present invention.

【図5】(a)は図4における電解槽の内部を概略的に
示す横断面図、(b)は(a)の概略的縦断面図。
5A is a cross-sectional view schematically showing the inside of the electrolytic cell in FIG. 4, and FIG. 5B is a schematic vertical cross-sectional view of FIG.

【図6】図5(b)における電解反応を説明するための
模式図。
FIG. 6 is a schematic diagram for explaining an electrolytic reaction in FIG. 5 (b).

【図7】本発明に係る第1および第3の実施例と従来例
との溶解速度比を比較して示す棒線図。
FIG. 7 is a bar chart showing a comparison between the dissolution rate ratios of the first and third embodiments according to the present invention and a conventional example.

【図8】本発明に係る第4の実施例における内面と外面
との溶解速度比を比較して示す棒線図。
FIG. 8 is a bar chart showing a comparison of the dissolution rate ratio between an inner surface and an outer surface in a fourth embodiment according to the present invention.

【図9】(a)は本発明に係る第5実施例を詳細に説明
するための概略的横断面図、(b)は(a)の概略的縦
断面図。
9A is a schematic cross-sectional view for explaining a fifth embodiment according to the present invention in detail, and FIG. 9B is a schematic vertical cross-sectional view of FIG.

【図10】本発明に係る第6の実施例における円板の有
無による溶解速度比を比較して示す棒線図。
FIG. 10 is a bar chart showing a comparison of dissolution rate ratios with and without a disc in a sixth embodiment according to the present invention.

【図11】本発明の第7の実施例を説明する除染装置を
概略的に示す構成図。
FIG. 11 is a configuration diagram schematically showing a decontamination apparatus for explaining a seventh embodiment of the present invention.

【図12】(a)は本発明の第8の実施例における例1
を説明するための溶解分布特性図、(b)は同じく例2
を説明するための溶解分布特性図。
FIG. 12A shows Example 1 in an eighth embodiment of the present invention.
(B) is the same as in Example 2. FIG.
FIG. 3 is a dissolution distribution characteristic diagram for explaining the following.

【符号の説明】[Explanation of symbols]

1…電解槽、2…電解液、3…円筒状陽極、4…円筒状
金属、5…棒状陰極、6…架台、7…直流電源、8…ハ
ンドリング機構、9…円筒状電極治具、10…円筒状絶縁
性遮蔽体、11…円筒状陰極、12…絶縁性円板、13…支持
容器、14…板状金属、15…遮蔽容器、16…板状陽極、17
…板状陰極、18…金属材。
DESCRIPTION OF SYMBOLS 1 ... Electrolysis tank, 2 ... Electrolyte solution, 3 ... Cylindrical anode, 4 ... Cylindrical metal, 5 ... Bar-shaped cathode, 6 ... Stand, 7 ... DC power supply, 8 ... Handling mechanism, 9 ... Cylindrical electrode jig, 10 ... cylindrical insulating shield, 11 ... cylindrical cathode, 12 ... insulating disk, 13 ... support container, 14 ... plate metal, 15 ... shielding container, 16 ... plate anode, 17
... plate cathode, 18 ... metal material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−249600(JP,A) 特開 平5−297192(JP,A) 特開 平6−242295(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21F 9/28 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-249600 (JP, A) JP-A-5-297192 (JP, A) JP-A-6-242295 (JP, A) (58) Field (Int.Cl. 7 , DB name) G21F 9/28

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解槽と、この電解槽内の電解液中に設
置した円筒状陽極と、この円筒状陽極内に設置した円筒
状金属廃棄物と、この円筒状金属廃棄物内に設置した棒
状陰極と、前記円筒状陽極と前記棒状陰極を接続した直
流電源とを具備したことを特徴とする放射性金属廃棄物
の除染装置。
1. An electrolytic cell, a cylindrical anode disposed in an electrolytic solution in the electrolytic cell, a cylindrical metal waste disposed in the cylindrical anode, and a cylindrical metal waste disposed in the cylindrical metal waste. An apparatus for decontaminating radioactive metal waste, comprising: a rod-shaped cathode; and a DC power supply connected to the cylindrical anode and the rod-shaped cathode.
【請求項2】 電解液中に設けられた円筒状陽極および
この円筒状陽極内に設けられた棒状陰極に対し、前記円
筒状陽極と前記棒状陰極との間に円筒状金属廃棄物を設
置し、前記円筒状陽極と前記棒状陰極間に接続された直
流電源から直流電圧を印加して、前記円筒状金属廃棄物
外面を負極に、内面を正極に帯電させて前記金属廃棄物
の内面母材を溶解することを特徴とする放射性金属廃棄
物の除染方法。
2. The method according to claim 1, wherein the cylindrical anode provided in the electrolytic solution and the rod-shaped cathode provided in the cylindrical anode are arranged in a circle.
A cylindrical metal waste is placed between a cylindrical anode and the rod-shaped cathode, and a DC voltage is applied from a DC power supply connected between the cylindrical anode and the rod-shaped cathode to form an outer surface of the cylindrical metal waste. A method for decontaminating radioactive metal waste, comprising: charging a negative electrode and an inner surface to a positive electrode to dissolve an inner base material of the metal waste.
【請求項3】 電解槽と、この電解槽内の電解液中に設
置した円筒状絶縁性遮蔽体と、この円筒状絶縁性遮蔽体
の内壁に設置した円筒状陽極と、前記円筒状絶縁性遮蔽
体の外壁に設置した円筒状陰極と、前記円筒状陽極内に
設置した円筒状金属廃棄物と、前記円筒状陽極と前記円
筒状陰極を接続した直流電源とを具備したことを特徴と
する放射性金属廃棄物の除染装置。
3. An electrolytic cell, a cylindrical insulating shield provided in an electrolytic solution in the electrolytic cell, a cylindrical anode provided on an inner wall of the cylindrical insulating shield, and the cylindrical insulating member. A cylindrical cathode installed on the outer wall of the shield, a cylindrical metal waste installed in the cylindrical anode, and a DC power supply connecting the cylindrical anode and the cylindrical cathode are provided. Decontamination equipment for radioactive metal waste.
【請求項4】 前記円筒状絶縁性遮蔽体の両端上下に開
口部を有する絶縁性円板を設置してなることを特徴とす
る請求項3記載の放射性金属廃棄物の除染装置。
4. The apparatus for decontaminating radioactive metal waste according to claim 3, wherein an insulating disk having openings at both upper and lower ends of the cylindrical insulating shield is provided.
【請求項5】 電解液中に設けられた円筒状絶縁性遮蔽
体の内壁および外壁に設けられた円筒状陽極および円筒
状陰極に対し、前記円筒状陽極内に円筒状金属廃棄物を
設置し、前記円筒状陽極と前記円筒状陰極間に直流電源
を接続し、この直流電源から直流電圧を印加して、前記
円筒状金属廃棄物の外面を負極に、内面を正極に帯電さ
せて前記金属廃棄物の内面母材を溶解することを特徴と
する放射性金属廃棄物の除染方法。
To 5. A cylindrical anode and cylindrical cathode provided on the inner and outer walls of the cylindrical insulating shield body provided in the electrolytic solution, a cylindrical metal waste placed in the cylindrical inner anode A DC power supply is connected between the cylindrical anode and the cylindrical cathode, and a DC voltage is applied from the DC power supply to charge the outer surface of the cylindrical metal waste to a negative electrode and the inner surface to a positive electrode to charge the metal. A method for decontaminating radioactive metal waste, comprising dissolving an inner base material of the waste.
【請求項6】 前記円筒状金属廃棄物が内外面とも汚染
している場合は、前記直流電源の陰極を逆転させ前記陽
極を陰極に、前記陰極を陽極に変換して前記円筒状金属
廃棄物の外面を溶解することを特徴とする請求項2およ
び請求項5記載の放射性金属廃棄物の除染方法。
6. When the cylindrical metal waste is contaminated both inside and outside, the cathode of the DC power supply is reversed to convert the anode into a cathode and the cathode into an anode to convert the cylindrical metal waste into a cathode. 6. The method for decontaminating radioactive metal waste according to claim 2, wherein the outer surface of the radioactive metal is dissolved.
【請求項7】 前記円筒状金属廃棄物内面の金属母材の
溶解と、前記円筒状金属廃棄物内面に形成された酸化被
膜の還元・破壊を直流電源の極性を交互に逆転させて繰
り返すことを特徴とする請求項2および請求項5記載の
放射性金属廃棄物の除染方法。
7. A method in which the melting of the metal base material on the inner surface of the cylindrical metal waste and the reduction and destruction of the oxide film formed on the inner surface of the cylindrical metal waste are repeated by alternately reversing the polarity of the DC power supply. The method for decontaminating radioactive metal waste according to claim 2 or 5, characterized in that:
【請求項8】 電解槽と、この電解槽内に設置した上部
に開口部を有する絶縁性遮蔽容器と、前記電解槽の底部
に設置した陰極と、前記絶縁性遮蔽容器の底部に設置し
た陽極と、前記絶縁性遮蔽容器内に設置した金属廃棄物
を保持する上部に開口部を有する支持容器とを具備し、
この支持容器は側面が絶縁性材料で、底部が金属材料で
構成され、また前記支持容器の側面は、電解液流通のた
めに網目状の多数の孔を有することを特徴とする放射性
金属廃棄物の除染装置。
8. An electrolytic cell, an insulative shielding container having an opening at the top provided in the electrolytic cell, a cathode disposed at the bottom of the electrolytic cell, and an anode disposed at the bottom of the insulative shielding container. And a supporting container having an opening at an upper portion for holding metal waste disposed in the insulating shielding container,
The side surface of the supporting container is made of an insulating material and the bottom portion is made of a metal material, and the side surface of the supporting container has a large number of mesh-like holes for the flow of an electrolyte. Decontamination equipment.
【請求項9】 前記陽極と陰極間に直流電圧を印加して
前記陽極と対面した前記支持容器の底部の金属材を負極
に、前記支持容器で保持した前記金属廃棄物の上面を正
極に帯電させるように電気回路を構成してなることを特
徴とする請求項8記載の放射性金属廃棄物の除染装置。
9. A DC voltage is applied between the anode and the cathode to charge a metal material at the bottom of the support container facing the anode to a negative electrode and charge the upper surface of the metal waste held by the support container to a positive electrode. 9. The apparatus for decontaminating radioactive metal waste according to claim 8, wherein an electric circuit is configured to perform the operation.
JP6206644A 1994-02-01 1994-08-31 Apparatus and method for decontaminating radioactive metal waste Expired - Fee Related JP3045933B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6206644A JP3045933B2 (en) 1994-08-31 1994-08-31 Apparatus and method for decontaminating radioactive metal waste
TW084100830A TW288145B (en) 1994-02-01 1995-01-28
DE69527560T DE69527560T2 (en) 1994-02-01 1995-02-01 Device and method for decontaminating radioactive, metallic waste by electrolysis
EP95101360A EP0669625B1 (en) 1994-02-01 1995-02-01 Apparatus and method for decontamination of radioactive metallic waste by electrolysis
US08/786,931 US5865965A (en) 1994-02-01 1997-01-23 Apparatus for electrochemical decontamination of radioactive metallic waste
US08/870,450 US5877388A (en) 1994-02-01 1997-06-06 Apparatus and method for electrochemical decontamination of radioactive metallic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6206644A JP3045933B2 (en) 1994-08-31 1994-08-31 Apparatus and method for decontaminating radioactive metal waste

Publications (2)

Publication Number Publication Date
JPH0868894A JPH0868894A (en) 1996-03-12
JP3045933B2 true JP3045933B2 (en) 2000-05-29

Family

ID=16526769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6206644A Expired - Fee Related JP3045933B2 (en) 1994-02-01 1994-08-31 Apparatus and method for decontaminating radioactive metal waste

Country Status (1)

Country Link
JP (1) JP3045933B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292373B1 (en) * 2012-11-29 2013-08-19 (주)코라솔 Electrochemical decontaminating system of radioactive metal waste and the system using the same

Also Published As

Publication number Publication date
JPH0868894A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
EP1220233A2 (en) Chemical decontamination method and treatment method and apparatus of chemical decontamination solution
JP2019523406A (en) Electrolytic treatment for nuclear decontamination
US5865964A (en) Apparatus for stripping ions from concrete and soil
JP2002357696A (en) Decontamination method and device for solid waste
US5877388A (en) Apparatus and method for electrochemical decontamination of radioactive metallic waste
JP3045933B2 (en) Apparatus and method for decontaminating radioactive metal waste
JP7016826B2 (en) Decontamination equipment for radioactive metal waste and jigs used for it
JP2004286471A (en) Method and device for chemical decontamination of radioactivity
JP2002250794A (en) Chemical decontamination method
JP3840073B2 (en) Method and apparatus for treating chemical decontamination liquid
US7384529B1 (en) Method for electrochemical decontamination of radioactive metal
JP3074108B2 (en) Method and apparatus for decontaminating radioactive metal waste
CN112176393B (en) Electrochemical decontamination electrolyte and preparation method and application thereof
US5865965A (en) Apparatus for electrochemical decontamination of radioactive metallic waste
JPH06242295A (en) Method and device for decontaminating radioactive metal waste
US5102511A (en) Method of decontaminating radioactive metallic wastes
JP4053179B2 (en) Decontamination method and apparatus for radioactive contamination materials
US3515655A (en) Electrolytic decontamination of radioactively contaminated equipment
JPH05297192A (en) Decontaminating method for radioactive metallic waste
JP2701631B2 (en) Method and apparatus for electrodischarge dyeing of radioactive metal waste
JPS61231496A (en) Method of decontaminating radioactive metallic waste
JPH03249600A (en) Electrolytic decontaminating device of radioactive contamination metal
Gal et al. Decreasing Level Activities and Releasing Wastes: It’s Now Possible Thanks to a New Electrodecontamination Implementation
JPS60186799A (en) Method and device for electrolytically decontaminating radioactive contaminated metallic piping
JPH0672954B2 (en) Dissolution method of oxide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees