JPS61105439A - Method for measuring wavelength dispersion of optical fiber - Google Patents

Method for measuring wavelength dispersion of optical fiber

Info

Publication number
JPS61105439A
JPS61105439A JP22717884A JP22717884A JPS61105439A JP S61105439 A JPS61105439 A JP S61105439A JP 22717884 A JP22717884 A JP 22717884A JP 22717884 A JP22717884 A JP 22717884A JP S61105439 A JPS61105439 A JP S61105439A
Authority
JP
Japan
Prior art keywords
wavelength
optical fiber
modulation
measured
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22717884A
Other languages
Japanese (ja)
Other versions
JPH0672834B2 (en
Inventor
Yoshiaki Yamabayashi
由明 山林
Norihisa Oota
太田 紀久
Junichi Yamada
順一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22717884A priority Critical patent/JPH0672834B2/en
Publication of JPS61105439A publication Critical patent/JPS61105439A/en
Publication of JPH0672834B2 publication Critical patent/JPH0672834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/338Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring dispersion other than PMD, e.g. chromatic dispersion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/333Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To make possible simple measurement with high accuracy by making incident the light signal subjected to intensity modulation and wavelength modulation on an optical fiber to be measured from one end thereof and measuring the max. phase shift or max. frequency shift of the phase modulation component of the exit light from the other end. CONSTITUTION:A measuring instrument is constituted of a light source 1 consisting of an LED, an intensity modulating circuit 4, a wavelength modulator 5, lenses 6, 8, the optical fiber 7 to be measured, a photoelectric converter 9 and a spectrum analyzer 11, etc. After the length L of the fiber 7 is measured, the light subjected to the simultaneous double modulations, i.e., the intensity modulation of a modulating angle frequency omegac and wavelength modulation of a modulating angle frequency omegam, central wavelength lambda and wavelength amplitude DELTAlambda is made incident on said fiber from one end thereof. The max. phase shift beta of the phase modulation component of the exit light from the other end is measured and the absolute value ¦D¦ of the wavelength dispersion value is calculated by the equation ¦D¦=beta/L.DELTAlambda.omegac, by which the easy measurement of the wavelength dispersion of the fiber 7 over the wide wavelength region with high accuracy is made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ファイバの基本特性の一つである波長分散
の測定方法に関する。特に、強度変調および波長変調さ
せた光信号を被測定光ファイバに入射させて、この被測
定光ファイバの波長分散を容易に測定できる波長分散測
定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring chromatic dispersion, which is one of the basic characteristics of optical fibers. In particular, the present invention relates to a chromatic dispersion measuring method that allows intensity-modulated and wavelength-modulated optical signals to be incident on an optical fiber to be measured, thereby easily measuring the chromatic dispersion of the optical fiber to be measured.

〔従来の技術〕[Conventional technology]

光フアイバ中を光信号が伝搬する速度は光信号の波長に
よって異なる。したがって、波長法がりがある光源から
送出された光パルス信号のパルス幅は、光ファイバを伝
搬した後′に広がるために、帯域幅を狭めなければなら
ず光信号の伝送速度が制限される。このために、光ファ
イバの遅延時間の波長依存性、すなわち光の波長に依存
して群速度が異なることにより生ずる波長分散を評価す
ることは、光通信装置を設計する上で大変重要である。
The speed at which an optical signal propagates through an optical fiber varies depending on the wavelength of the optical signal. Therefore, the pulse width of an optical pulse signal transmitted from a light source with a wavelength difference widens after propagating through an optical fiber, so the bandwidth must be narrowed and the transmission speed of the optical signal is limited. For this reason, it is very important to evaluate the wavelength dependence of the delay time of an optical fiber, that is, the chromatic dispersion caused by the difference in group velocity depending on the wavelength of light, in designing optical communication equipment.

このように波長分散は、光フアイバ内を伝搬する光信号
の群速度が、光の波長によって異なることを意味し、光
ファイバの帯域を決定する量である。波長λ1、λ1の
光が受ける単位ファイバ長あたりの群遅延時間τは、波
長(λ1+λ、)/2における波長分散値D (ps−
nm−’ −ko+−’)を用いて、 τ=D・1λ、−λb l  Cps/)rn+ )に
より求められる。
In this way, chromatic dispersion means that the group velocity of an optical signal propagating within an optical fiber differs depending on the wavelength of the light, and is a quantity that determines the band of the optical fiber. The group delay time τ per unit fiber length that the light with wavelengths λ1 and λ1 receives is given by the chromatic dispersion value D (ps−
nm-'-ko+-'), and τ=D·1λ, -λb l Cps/)rn+).

従来の光ファイバの波長分散測定方法には、■パルス法
、■干渉法、■差分法、■位相差法などがある。
Conventional methods for measuring wavelength dispersion of optical fibers include ■pulse method, ■interference method, ■difference method, and ■phase difference method.

パルス法は、波長の異なる光パルスを被測定光フrイバ
に入射し9、それぞれの光パルスの遅延時間差(到達時
間差)を測定して波長分散を算出する方法である。
The pulse method is a method in which optical pulses with different wavelengths are input into an optical fiber to be measured 9, and the delay time difference (arrival time difference) of each optical pulse is measured to calculate chromatic dispersion.

ト渉法は、光源の波長を変えることにより光フアイバ伝
搬光の光路長が変化するので、その干渉縞の鮮明度を測
定し波長分散を求める方法である。
The optical interference method is a method in which the optical path length of light propagating through an optical fiber changes by changing the wavelength of the light source, and the clarity of the interference fringes is measured to determine wavelength dispersion.

差分法は、正弦波で強度変調された光が、光フアイバ伝
搬後に光源波長に対して位相変化する変化亭を測定して
波長分散を算出する方法である。
The differential method is a method of calculating chromatic dispersion by measuring the change in phase of sinusoidally intensity-modulated light with respect to the light source wavelength after propagation through an optical fiber.

位相差法は、波長が異なる光を同一周波数で変調し、被
測定光ファイバに入射させ、光ファイバ伝殿中に受けた
変調信号の遅延位相差を測定して波長分散を算出する方
法である。
The phase difference method is a method in which lights of different wavelengths are modulated at the same frequency, made incident on an optical fiber to be measured, and the delay phase difference of the modulated signal received during propagation through the optical fiber is measured to calculate chromatic dispersion.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような従来の波長分散測定方法では、次
のような問題点がある。
However, such conventional wavelength dispersion measurement methods have the following problems.

パルス法では、その測定精度が光パルス幅、測定電気系
のジッタおよび帯域で制限され50ps以下であり、ま
た光パルス発生のために広帯域の送受信回路が必要にな
るなどの問題点がある。   ゛干渉法では、高速回路
を必要としない点では有利であるが、位相の基準になる
空中伝播光と、光フアイバ伝播光との間の光路差がコヒ
ーレンス長を越えると干渉縞が消失するために、布設さ
れた長尺光ファイバには不適当である。また、干渉実験
用の除震台などの特殊な実験環境が必須であり、現場環
境で簡単に測定できるものではない。
The pulse method has problems such as its measurement accuracy is limited to 50 ps or less due to the optical pulse width, jitter and band of the measurement electrical system, and it requires a wideband transmitting/receiving circuit to generate optical pulses.゛Interferometry has the advantage of not requiring high-speed circuits, but interference fringes disappear if the optical path difference between the air-propagating light, which serves as the phase reference, and the optical fiber-propagating light exceeds the coherence length. Therefore, it is unsuitable for long optical fibers installed. In addition, a special experimental environment such as a seismic isolation table for interference experiments is required, and it is not something that can be easily measured in a field environment.

差分法および位相差法は、波長可変レーザ装置および光
変調器などの大規模な光源装置が必要である欠点がある
。また、レーザ装置の波長制御技術が十分に確立してい
ない難点もあり、さらに布設後の光ファイバの場合には
、参照信号光を別途に光ファイバの入出力端間を伝送し
なければならない問題点がある。
The difference method and the phase difference method have the disadvantage that large-scale light source devices such as a wavelength tunable laser device and an optical modulator are required. Another drawback is that the wavelength control technology for laser equipment has not been sufficiently established, and in the case of optical fibers after installation, there is the problem that reference signal light must be separately transmitted between the input and output ends of the optical fibers. There is a point.

本発明は、このような従来の問題点に着目してなされた
もので、光ファイバの波長分散を広い波長領域にわたり
簡単にかつ高精度に測定することができる新規な波長分
散測定方法を提供することを目的とする。
The present invention has been made by focusing on such conventional problems, and provides a novel chromatic dispersion measurement method that can easily and highly accurately measure the chromatic dispersion of an optical fiber over a wide wavelength range. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、被測定光ファイバの長さしを測定し、この被
測定光ファイバの一端から、変調角周波数ωゎの強度変
調が施された入射光を入射させ、上記被測定光ファイバ
の他端から出射する出射光を電気信号に変換し、上記入
射光または上記出射光に変11目角周波数ωc、波長変
調振幅Δλ、中心波長Xの波長変調を施し、上記電気信
号の位相変調成分の最大位相偏移βを測定して、この値
から波長分散値の絶対値|D|を とし°ζ求める。
The present invention measures the length of an optical fiber to be measured, makes incident light intensity modulated with a modulation angular frequency ωゎ enter from one end of the optical fiber to be measured, and The output light emitted from the end is converted into an electrical signal, and the input light or the output light is subjected to wavelength modulation with a variable eye angle frequency ωc, a wavelength modulation amplitude Δλ, and a center wavelength X, and the phase modulation component of the electrical signal is The maximum phase shift β is measured, and the absolute value |D| of the chromatic dispersion value is determined from this value.

電気信号の位相変調成分の最大周波数偏移Δfを測定し
て、この値から波長分散値りをとして求める。
The maximum frequency shift Δf of the phase modulation component of the electrical signal is measured, and the chromatic dispersion value is determined from this value.

〔作 用〕[For production]

本発明は、被測定光ファイバの一端から、強度変調およ
び波長変調された光信号を入射させる。
In the present invention, an intensity-modulated and wavelength-modulated optical signal is input from one end of an optical fiber to be measured.

この伝搬光は、強度変調角周波数ωmの正弦波信号が波
長変調角周波数ωmの位相変調を受けているために、こ
の位相変調の最大位相偏移または最大周波数偏移を測定
することにより、波長分散値を算出することができる。
Since the sine wave signal of intensity modulation angular frequency ωm is subjected to phase modulation of wavelength modulation angular frequency ωm, this propagating light can be determined by measuring the maximum phase shift or maximum frequency shift of this phase modulation. The variance value can be calculated.

波長変調器は被測定光ファイバの出射端側に設置しても
、本発明を実施することができる。
The present invention can be practiced even if the wavelength modulator is installed on the output end side of the optical fiber to be measured.

また、最大位相偏移または最大周波数偏移を測定し波長
分散値を算出するには、演算処理装置に入力して行う必
要がある。
Furthermore, in order to measure the maximum phase shift or the maximum frequency shift and calculate the chromatic dispersion value, it is necessary to input the data into an arithmetic processing device.

〔実施例〕〔Example〕

本発明は、まず被測定光ファイバの長さLを測定し、こ
の被測定光ファイバの一端から、変調角周波数ωゎの強
度変調、および変調角周波数ω1、中心波長X、波長振
幅Δλの波長変調の二重同時変調を受けた光を入射させ
る。このような変調を受けた光が、この被測定光ファイ
バを伝搬し、他端から出射した後に光検出器で光強度に
比例した電気信号に変換される。この電気信号は、被測
定光ファイバの分散がない場合には、強度変調角周波数
ωmの正弦波であるが、中心波長Xにおいて有限の波長
分散りが存在する場合には、強度変調角周波数ωcの正
弦波信号が波長変調角周波数ωcの位相変調を受ける。
The present invention first measures the length L of the optical fiber to be measured, and from one end of the optical fiber to be measured, the intensity modulation of the modulation angular frequency ωゎ, the modulation angular frequency ω1, the center wavelength X, and the wavelength of the wavelength amplitude Δλ is performed. Inject light that has undergone double simultaneous modulation. The light that has undergone such modulation propagates through this optical fiber to be measured, and after exiting from the other end, is converted by a photodetector into an electrical signal proportional to the light intensity. This electrical signal is a sine wave with an intensity modulation angular frequency ωm when there is no dispersion in the optical fiber to be measured, but when a finite chromatic dispersion exists at the center wavelength X, the intensity modulation angular frequency ωc The sinusoidal signal of is subjected to phase modulation at wavelength modulation angular frequency ωc.

この位相変調の度合を表す最大位相偏移(変調指数)β
には、 β=|D|  ・L・Δλ・ωm    −−−−−−
−(11の関係があるので、(1)式より波長分散|D
|を求めることができる。
Maximum phase deviation (modulation index) β that represents the degree of this phase modulation
For, β=|D| ・L・Δλ・ωm −−−−−−
−(Since there is a relationship of 11, from equation (1), chromatic dispersion |D
| can be found.

ここで、長さくL)20usの被測定光ファイバに、変
調周波数(ωc/2π) 100 MHzで強度変調さ
れ、同時に波長振幅(Δλ)100rv、変調周波数(
ωm/2π) 10 kHzで波長変調された光を入射
させた場合を示す、中心波長Xにおける波長分散の絶対
値(|D|)が2X10−”  (ps#++w/1u
l)とすると、被測定光ファイバを伝搬して出射された
光を二乗検波して得られる電気信号は、強度変調角周波
数(ωC)を中心として変調指数(β)2.51の位相
変調スペクトルが観測される。これらのスペクトルは、
100 MHzの0火成分のまわりに10 kHzの整
数倍の高次成分スペクトルから構成される。スペクトラ
ムアナライザで観測すると、第3図に示すようなスペク
トルが得られる。あるいは、波長振幅(Δλ)を零から
次第に大きくしてゆき、スペクトルの挙動を観測しても
よい。この場合には、変調指数(β)が2.405を満
たす波長振幅(Δλ)に達したときに、0火成分が零に
なることから(1)式を用いて波長分散|D|を求める
ことができる。
Here, an optical fiber to be measured with a length L) 20 us is intensity-modulated at a modulation frequency (ωc/2π) 100 MHz, and at the same time a wavelength amplitude (Δλ) 100 rv and a modulation frequency (
ωm/2π) The absolute value of chromatic dispersion (|D|) at the center wavelength X is 2X10-"(ps#++w/1u
l), the electrical signal obtained by square law detection of the light emitted after propagating through the optical fiber under test has a phase modulation spectrum with a modulation index (β) of 2.51 centered on the intensity modulation angular frequency (ωC). is observed. These spectra are
It is composed of higher-order component spectra of integral multiples of 10 kHz around a 0-fire component of 100 MHz. When observed with a spectrum analyzer, a spectrum as shown in FIG. 3 is obtained. Alternatively, the behavior of the spectrum may be observed by gradually increasing the wavelength amplitude (Δλ) from zero. In this case, when the modulation index (β) reaches the wavelength amplitude (Δλ) that satisfies 2.405, the zero component becomes zero, so use equation (1) to find the chromatic dispersion |D| be able to.

以下、本発明の実施例方式を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例測定装置を示すブロック構
成図である。第1図において、光源1は発振器2および
電流源3を接続する強度変調回路4に接続される。この
光源1の出力光は波長変調器5に入射され、その出力光
はレンズ6を介して被測定光ファイバ7に入射する。被
測定光ファイバ7からの出射光は、レンズ8を介して光
電気変換器9に入射され、その出力は増幅器IOを介し
てスペクトラムアナライザ11に人力する。
FIG. 1 is a block diagram showing a measuring device according to an embodiment of the present invention. In FIG. 1, a light source 1 is connected to an intensity modulation circuit 4 which connects an oscillator 2 and a current source 3. In FIG. The output light from this light source 1 is input to a wavelength modulator 5, and the output light is input to an optical fiber 7 to be measured via a lens 6. The light emitted from the optical fiber 7 to be measured is input to a photoelectric converter 9 via a lens 8, and its output is input to a spectrum analyzer 11 via an amplifier IO.

光源1は広い波長帯で発光する発光ダイオードが適当で
ある。光源1は、発振器2からの正弦波信号と電流源3
からのバイアス電流とを重畳する強度変調回路4により
駆動される。強度変調された光源lの出力光は、波長変
調器5に入射し波長変調を受ける。波長変調器5は、通
常の分光器に光偏向器を備えたもので実現できる。波長
変調器5からの出力光は、被測定光ファイバ7を伝搬し
て光電気変換器9で光信号に比例した電気信号に変換さ
れる。この電気信号は、適当な利得をもつ増幅器10で
増幅されたのちスペクトラムアナライザ11に入力し、
強度変調信号が被測定光ファイバ7の波長分散特性によ
って受けた位相変調度を最大位相偏移β(変調指数)を
パラメータにして測定する。この値をもとに(11式か
ら波長分散値ID+が算出される。このときの波長分散
値|D|は、である。
The light source 1 is suitably a light emitting diode that emits light in a wide wavelength band. A light source 1 receives a sinusoidal signal from an oscillator 2 and a current source 3.
It is driven by an intensity modulation circuit 4 that superimposes a bias current from The intensity-modulated output light from the light source I enters the wavelength modulator 5 and undergoes wavelength modulation. The wavelength modulator 5 can be realized by a normal spectrometer equipped with an optical deflector. The output light from the wavelength modulator 5 propagates through the optical fiber 7 to be measured and is converted by the opto-electrical converter 9 into an electrical signal proportional to the optical signal. This electrical signal is amplified by an amplifier 10 with an appropriate gain and then input to a spectrum analyzer 11.
The degree of phase modulation that the intensity modulation signal receives due to the wavelength dispersion characteristics of the optical fiber 7 to be measured is measured using the maximum phase shift β (modulation index) as a parameter. Based on this value, the chromatic dispersion value ID+ is calculated from equation (11).The chromatic dispersion value |D| at this time is.

位相変調信号は、換言すれば周波数変調を受けた信号と
も見做すことができる。この場合の最大周波数偏移Δr
は、 Δf=β・ω1/2π      −・・−(3)の関
係を満たすので、最大周波数偏移Δfを測定しても、(
2)式および(3)式より波長分散値|D|を算出する
ことができる。このときの波長分散値りは、 である。
In other words, the phase modulated signal can also be regarded as a frequency modulated signal. Maximum frequency deviation Δr in this case
satisfies the relationship Δf=β・ω1/2π −・・−(3), so even if the maximum frequency deviation Δf is measured, (
The chromatic dispersion value |D| can be calculated from equations 2) and 3. The wavelength dispersion value at this time is as follows.

ここで、最大位相偏移βあるいは最大周波数偏移Δfを
求めるには、スペクトラムアナライザー1に接続された
演算処理装置に入力して行い、さらに波長分散値りを算
出する方法をとる。
Here, in order to obtain the maximum phase shift β or the maximum frequency shift Δf, a method is used in which the input is input to an arithmetic processing device connected to the spectrum analyzer 1, and then the chromatic dispersion value is calculated.

第2図は、波長変調器5の構成例を示す概略図であり、
以下に波長振幅Δλの決定について説明する。
FIG. 2 is a schematic diagram showing an example of the configuration of the wavelength modulator 5,
Determination of the wavelength amplitude Δλ will be explained below.

第2図において、回折格子21により回折した光が、光
偏向素子22により正弦波的に出射スリ・ノド23(幅
2W)を走査するように構成する。このとき、光偏向素
子22と出射スリット23との間の距離をhとする。回
折格子21の回折角変化Δθに対応する波長変化Δλは
、 (【λ   CO3a    d を満たす。ここで、θは回折角(出射光と回折格子面上
の法線とがなす角)、mは回折次数、dは回折格子間隔
である。
In FIG. 2, the light diffracted by the diffraction grating 21 is configured to scan the output slot 23 (width 2W) in a sinusoidal manner by the optical deflection element 22. At this time, the distance between the optical deflection element 22 and the output slit 23 is assumed to be h. The wavelength change Δλ corresponding to the diffraction angle change Δθ of the diffraction grating 21 satisfies ([λ CO3a d. Here, θ is the diffraction angle (the angle between the emitted light and the normal on the diffraction grating surface), and m is The diffraction order, d, is the diffraction grating spacing.

仮に、m= 1 、 d = 1 /600  (mm
) 、2 W=100(−) 、h =50 (cm)
およびcosθ=1/6とすると、出射スリットから出
射される光の波長変動振幅Δλは10  (、+111
1)になる。実際の分光器では回折格子21と出射スリ
ット23との間に結像系が挿入されるが、本実施例では
木質的な影響がないので省略している。
For example, m = 1, d = 1/600 (mm
), 2 W=100(-), h=50 (cm)
and cosθ=1/6, the wavelength fluctuation amplitude Δλ of the light emitted from the exit slit is 10 (, +111
1). In an actual spectrometer, an imaging system is inserted between the diffraction grating 21 and the exit slit 23, but in this embodiment, it is omitted because there is no woody effect.

また、波長変調器5は被測定光ファイバ7の出射端側に
設置しても、同様に本発明を実施することができる。
Further, even if the wavelength modulator 5 is installed on the output end side of the optical fiber 7 to be measured, the present invention can be implemented in the same manner.

さらに、波長変調領域内に被測定光ファイバ7の零分散
波長がある場合には、測定結果に誤差が生じるので、こ
れを考慮して波長変調を行うことが望ましい。
Furthermore, if the zero dispersion wavelength of the optical fiber 7 to be measured is within the wavelength modulation region, an error will occur in the measurement results, so it is desirable to perform wavelength modulation taking this into account.

被測定光ファイバの長さしを測定する方法は、メジャー
などで実測してもよいが、その一端から光パルスを入射
させて、その伝搬時間を測定することによる光学長を用
いる方法がより正確である。
The length of the optical fiber to be measured can be measured using a tape measure, but it is more accurate to use the optical length by injecting a light pulse from one end and measuring its propagation time. It is.

〔発明の効果〕〔Effect of the invention〕

本発明の波長分散測定方法は、極めて小さい二つの光信
号の時間差を測定する必要がないので、広波長帯域で発
光する光源を用いることができる。
Since the chromatic dispersion measuring method of the present invention does not require measuring the extremely small time difference between two optical signals, a light source that emits light in a wide wavelength band can be used.

したがって、広い波長域での波長分散値を正確に測定す
ることができる。
Therefore, it is possible to accurately measure the chromatic dispersion value in a wide wavelength range.

また、強度変調周波数あるいは波長振幅のいずれかが可
変であれば、特定の変調成分が零になるように調整する
ことにより零位性測定が可能であり、したがってさらに
高晴度の測定も可能にすることができる。
Additionally, if either the intensity modulation frequency or the wavelength amplitude is variable, zero-level measurements can be made by adjusting a specific modulation component to zero, making it possible to measure even higher brightness. can do.

したがって、光ファイバの入力端と出力端が遠く離れて
いる測定環境、すなわち現場に布設された後の伝送路光
ファイバであっても、容易にしかも正確に波長分散を測
定することができ、光通信システムを形成する上でもよ
り効率的な運用が可能になる優れた効果がある。
Therefore, even in a measurement environment where the input end and output end of an optical fiber are far apart, that is, even in a transmission line optical fiber that has been installed on site, it is possible to easily and accurately measure chromatic dispersion. This has an excellent effect of enabling more efficient operation in forming a communication system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例測定装置を示すブロック構成
図。 第2図は波長変調器の構成例を示す概略図。 第3図は観測される位相変調スペクトル例を示す図(β
=2.51)。 l・・・光源、2・・・発振器、3・・・電流源、4・
・・強度変調回路、5・・・波長変調器、6.8・・・
レンズ、7・・・被測定光ファイバ(単一モード光ファ
イバ)、9・・・光電気変換器、10・・・増幅器、1
1・・・スベクトラムアナライザ、21・・・回折格子
、22・・・光偏向素子、23・・・出射スリット。
FIG. 1 is a block diagram showing a measuring device according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing an example of the configuration of a wavelength modulator. Figure 3 is a diagram showing an example of the observed phase modulation spectrum (β
=2.51). l... light source, 2... oscillator, 3... current source, 4...
...Intensity modulation circuit, 5...Wavelength modulator, 6.8...
Lens, 7... Optical fiber to be measured (single mode optical fiber), 9... Optoelectric converter, 10... Amplifier, 1
DESCRIPTION OF SYMBOLS 1... Spectrum analyzer, 21... Diffraction grating, 22... Light deflection element, 23... Output slit.

Claims (4)

【特許請求の範囲】[Claims] (1)被測定光ファイバの長さLを測定し、この被測定
光ファイバの一端から、変調角周波数ω_cの強度変調
が施された入射光を入射させ、上記被測定光ファイバの
他端から出射する出射光を電気信号に変換し、 上記入射光または上記出射光に変調角周波数ω_m、波
長変調振幅Δλの波長変調を施し、 上記電気信号の位相変調成分の最大位相偏移βを測定し
て、この値から波長分散値の絶対値|D|を |D|=β/L・Δλ・ω_c として求める 光ファイバの波長分散測定方法。
(1) Measure the length L of the optical fiber to be measured, enter the incident light that has been intensity-modulated at the modulation angular frequency ω_c from one end of the optical fiber to be measured, and enter the incident light from the other end of the optical fiber to be measured. Convert the emitted light to an electrical signal, perform wavelength modulation on the incident light or the emitted light with a modulation angular frequency ω_m and a wavelength modulation amplitude Δλ, and measure the maximum phase shift β of the phase modulation component of the electrical signal. Then, from this value, the absolute value |D| of the chromatic dispersion value is determined as |D|=β/L・Δλ・ω_c.
(2)電気信号の位相変調成分の最大周波数偏移Δfを
測定して、この値から波長分散値Dを D=2π・Δf/L・Δλ・ω_c・ω_mとして求め
る 特許請求の範囲第(1)項に記載の光ファイバの波長分
散測定方法。
(2) Measure the maximum frequency deviation Δf of the phase modulation component of the electrical signal, and calculate the chromatic dispersion value D from this value as D=2π・Δf/L・Δλ・ω_c・ω_m ) The method for measuring chromatic dispersion of an optical fiber as described in item 1.
(3)変調角周波数ω_mおよび波長変調振幅Δλの波
長変調を被測定光ファイバの入射光に与える特許請求の
範囲第(1)項または第(2)項に記載の光ファイバの
波長分散測定方法。
(3) A method for measuring chromatic dispersion of an optical fiber according to claim (1) or (2) of applying wavelength modulation of modulation angular frequency ω_m and wavelength modulation amplitude Δλ to the incident light of the optical fiber to be measured. .
(4)変調角周波数ω_mおよび波長変調振幅Δλの波
長変調を被測定光ファイバの出射光に与える特許請求の
範囲第(1)項または第(2)項に記載の光ファiバの
波長分散測定方法。
(4) Chromatic dispersion of the optical fiber i according to claim 1 or 2, which imparts wavelength modulation of modulation angular frequency ω_m and wavelength modulation amplitude Δλ to the output light of the optical fiber to be measured. Measuring method.
JP22717884A 1984-10-29 1984-10-29 Chromatic dispersion measurement device Expired - Fee Related JPH0672834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22717884A JPH0672834B2 (en) 1984-10-29 1984-10-29 Chromatic dispersion measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22717884A JPH0672834B2 (en) 1984-10-29 1984-10-29 Chromatic dispersion measurement device

Publications (2)

Publication Number Publication Date
JPS61105439A true JPS61105439A (en) 1986-05-23
JPH0672834B2 JPH0672834B2 (en) 1994-09-14

Family

ID=16856706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22717884A Expired - Fee Related JPH0672834B2 (en) 1984-10-29 1984-10-29 Chromatic dispersion measurement device

Country Status (1)

Country Link
JP (1) JPH0672834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369433A (en) * 2000-07-10 2002-05-29 Advantest Corp System to measure optical characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369433A (en) * 2000-07-10 2002-05-29 Advantest Corp System to measure optical characteristics
GB2369433B (en) * 2000-07-10 2002-11-13 Advantest Corp Optical characteristic measuring apparatus,the method thereof,and recording medium
US6519028B2 (en) 2000-07-10 2003-02-11 Advantest Corporation Optical characteristic measuring apparatus, the method thereof and recording medium

Also Published As

Publication number Publication date
JPH0672834B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
KR101000974B1 (en) Measurement Method of Chromatic Dispersion of Optical Beam Waveguide Using Interference Fringe Measurement system
US4556314A (en) Dispersion determining method and apparatus
CN103837188B (en) A kind of photodetector frequency response measurement device and measuring method thereof
RU102256U1 (en) DEVICE FOR MEASURING PHYSICAL FIELD PARAMETERS
CA2403847C (en) Method and apparatus for estimating chromatic dispersion in fibre bragg gratings
US7460785B2 (en) Performance monitoring in an optical communication system
CN109084909A (en) A kind of fibre optic temperature sensor demodulating system
KR100483147B1 (en) System and method for measuring length of optical fiber
JPH0354292B2 (en)
US7253906B2 (en) Polarization state frequency multiplexing
CN110243477A (en) A kind of spectrographic pulse laser polarization analyzer complete in real time
JPH05248996A (en) Wavelength dispersion measuring device for optical fiber
KR100963237B1 (en) Apparatus for calculating chromatic dispersion, and method therefor, and system for measuring chromatic dispersion, and method therefor, and the recording media storing the program performing the said methods
JPS61105439A (en) Method for measuring wavelength dispersion of optical fiber
Jeon et al. Optical fiber chromatic dispersion measurement using bidirectional modulation of an optical intensity modulator
CN111735610A (en) Method and device for measuring refractive index of optical waveguide group
KR100947731B1 (en) Apparatus for and method of measuring chromatic dispersion of optical fiber and otical waveguide using spectral interferometer
JPH04177141A (en) Wave length dispersion measurement method of optical fiber
CN115225147B (en) High-resolution large-measurement-range optical delay measurement system and method
CN116865854B (en) Wavelength detection device capable of being integrated on photon integrated chip
JPH0321916A (en) Optical modulator
JP2019022102A (en) Inspection method of optical receiver and inspection apparatus of optical receiver
JPH0953999A (en) Optical external force detector
Schanner et al. Low-Complexity Method for Optical Fiber Nonlinear Coefficient Measurement
JPH0670593B2 (en) Optical frequency modulation characteristic measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees