JPS611052A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS611052A
JPS611052A JP12143484A JP12143484A JPS611052A JP S611052 A JPS611052 A JP S611052A JP 12143484 A JP12143484 A JP 12143484A JP 12143484 A JP12143484 A JP 12143484A JP S611052 A JPS611052 A JP S611052A
Authority
JP
Japan
Prior art keywords
base region
region
type
layer
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12143484A
Other languages
Japanese (ja)
Inventor
Akio Kashiwanuma
栢沼 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP12143484A priority Critical patent/JPS611052A/en
Publication of JPS611052A publication Critical patent/JPS611052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the withstand of the junction of an emitter region and a base region by forming the portion adjacent to the bonding end of the emitter and base regions terminated on the surface of a semiconductor layer of the base region in a low impurity density. CONSTITUTION:An n<+> type buried layer 2 is formed in a p type Si substrate 1, and n type epitaxial layer 3 is formed on the substrate 1. Then, a p type base region 5 and a p<+> type graft base region 6 are formed in the layer 3. Then, an n type impurity such as As is implanted to the surface of the layer 3 through a thin SiO2 film 11 formed on the surface of the layer 3, and heat treated. Then, after the film 11 is removed, an SiO2 film 7 and As-doped polycrystalline Si film 8 are formed in the layer 3, heat treated to form an n<+> type emitter region 9. In an npn type bipolar transistor formed in this manner, the impurity density of the portion adjacent to the surface of the layer 3 of the region 5 decreases. Thus, the reverse withstand in the bonding end 14a of the emitter and base junction 14 can be enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体基層中に形成式れている第1導1!型
のベース領域と、この第1導電型のベース領域中に形成
されている第2導電型のエミッタ領域とをそれぞれ具備
する半導体装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a first conductor formed in a semiconductor substrate! The present invention relates to a semiconductor device including a mold base region and a second conductivity type emitter region formed in the first conductivity type base region, and a method for manufacturing the same.

背景技術と七の問題点 バイポーラLSIを高性能比するために、LSI%構成
する素子としてのバイポーラトランジスタの平面的な寸
法のみならず縦方向(深さ方向)の寸法の動小が行われ
ている。その結果、ベース領域及びエミッタ領域の接合
かシャロー化されるため、これらのベース領域及びエミ
ッタ領域にその表面不N物濃度か高くなると共に、不純
物濃度分布も急峻となる。
BACKGROUND TECHNOLOGY AND SEVEN PROBLEMS In order to improve the performance of bipolar LSIs, not only the planar dimensions but also the vertical (depth direction) dimensions of bipolar transistors as elements constituting the LSI have been changed. There is. As a result, the junction between the base region and the emitter region becomes shallower, so that the surface impurity concentration in the base region and the emitter region increases and the impurity concentration distribution also becomes steeper.

ところで、バイポーラL、SIを構成する素子としての
バイポーラトランジスタは、従来例えば次のような方法
により製造されていた。即ち、第1A図に示すように、
まずp型シリコン基板1にn+型の埋込層2を形成し、
次いでp型シリコン基板1上にn澄のエピタキシャル成
長層3を形成する。
By the way, bipolar transistors as elements constituting bipolar L and SI have conventionally been manufactured by, for example, the following method. That is, as shown in FIG. 1A,
First, an n+ type buried layer 2 is formed on a p-type silicon substrate 1,
Next, an n-type epitaxial growth layer 3 is formed on the p-type silicon substrate 1.

次にこのエピタキシャル成長層3中にp型のベース領域
5と、このベース領域5に連なるp中型のクラフト・ベ
ース領域6とを形成する。次に第1B図に示すように、
エピタキシャル成長層3上に例えばOVD法によす5i
n2  膜7を被着形成し、次いでこのSiO2膜7の
所定部分をエツチング除去して開ロアaを形成する。次
にOVD法(こより例えばヒ素As  T、y高α度1
こドープした多結晶シリコン膜を全面に被着形成し、次
いでこの多結晶シリコン膜の所定部分をエツチング除去
して所定形状の多結晶シリコン膜8を形成した後、所定
の熱処理(エミッタ拡散)を行うことにより上記多結晶
シリコン膜8中のAs  をlエピタキシャル成長層3
に拡散させて1型のエミッタ領域9を形成する。
Next, a p-type base region 5 and a p-type craft base region 6 connected to the base region 5 are formed in this epitaxial growth layer 3. Next, as shown in Figure 1B,
For example, 5i is deposited on the epitaxial growth layer 3 by the OVD method.
An N2 film 7 is deposited and then a predetermined portion of this SiO2 film 7 is etched away to form an open lower a. Next, the OVD method (for example, arsenic As T, y high α degree 1
A doped polycrystalline silicon film is deposited on the entire surface, and then a predetermined portion of the polycrystalline silicon film is etched away to form a polycrystalline silicon film 8 having a predetermined shape, and then a predetermined heat treatment (emitter diffusion) is performed. By doing this, As in the polycrystalline silicon film 8 is removed from the epitaxially grown layer 3.
A type 1 emitter region 9 is formed by diffusion.

なおベース領域5と埋込層2との間に存在するエピタキ
シャル成長層31こよってn型のコレクタ領域10が構
成されている。この後、エミッタ領域9、ベース領域5
及びコレクタ領域10のための電極(図示せず)をそれ
ぞれ形成して、npn型のバイボー2トランジスタを完
成させる。
Note that the epitaxial growth layer 31 existing between the base region 5 and the buried layer 2 constitutes an n-type collector region 10. After this, emitter region 9, base region 5
and an electrode (not shown) for the collector region 10, respectively, to complete an npn type bibor 2 transistor.

上述の第1B図1こ示す従来のnpn型バイポーラトラ
ンジスタ番こおける矢印A、 B方間の不純物汲度分布
をエピタキシャル成長層3の表面を原点として第2図に
示す。この第2図から明らかなようにベース領域5の矢
印入方向の不所物濃度はエピタキシャル成長層3の入面
でその最大値をとり、深でか大きくなるfこつれ°C不
純物衾度が徐々に減少するような分布となっている。こ
のベース領域5の上記矢印入方向の不純物濃度は、例え
ばベース領域5の接合深嘔Xjbを0.2μm 程度も
しくはそれ以下にした場合、七の光面不純物濃度が例え
ば1019α″″3以上となると共に、深場か犬さくな
ると共に不fJI!物議度が急激に減少する極めて急峻
な不純物濃度分節となる。ところで、エミッタ領   
□域9とベース領域5との接合(ICE接合)の逆方向
耐圧はベース領域5の不純wlJa度が調い桂〆低くな
る。このため、EB接合の逆方向耐圧は、ベース領域5
の不純物濃度が最も高い接合端における逆方向耐圧によ
って決められてし1うので、例えばベース領域5の接合
を上述のようにシャロー化した場合ににEB接合の逆方
向耐圧か低下してしまうという問題があった。なおベー
ス領域5の不純物濃度かiQ18cm−3以上の場合、
BB接合の逆方向特性においてはツェナー破壊が支配的
となることが知られている。
FIG. 2 shows the impurity concentration distribution between arrows A and B in the conventional npn type bipolar transistor shown in FIG. As is clear from FIG. 2, the impurity concentration in the direction of the arrow in the base region 5 reaches its maximum value at the entrance surface of the epitaxial growth layer 3, and increases as the depth increases. The distribution is such that it decreases to . The impurity concentration in the direction indicated by the arrow in the base region 5 is, for example, when the junction depth Xjb of the base region 5 is set to about 0.2 μm or less, the impurity concentration at the optical surface of the base region 5 is, for example, 1019α″3 or more. At the same time, as the depths become smaller, FJI! This results in an extremely steep impurity concentration segment where the degree of controversy decreases rapidly. By the way, the emitter region
The reverse breakdown voltage of the junction (ICE junction) between the □ region 9 and the base region 5 becomes lower as the degree of impurity wlJa of the base region 5 is adjusted. Therefore, the reverse breakdown voltage of the EB junction is
The reverse breakdown voltage of the EB junction is determined by the reverse breakdown voltage at the junction end where the impurity concentration is highest, so for example, if the junction of the base region 5 is made shallow as described above, the reverse breakdown voltage of the EB junction will decrease. There was a problem. Note that if the impurity concentration of the base region 5 is iQ18cm-3 or more,
It is known that Zener destruction is dominant in the reverse characteristics of a BB junction.

発明の目的 本発明は、上述の問題にかんがみ、従来のバイポーラト
ランジスタが有する上述のような欠点を是正した半導体
装置及びその製造方法を提供することを目的とする。
OBJECTS OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a semiconductor device and a method for manufacturing the same, which corrects the above-mentioned drawbacks of conventional bipolar transistors.

発明の概要 本発明に係る半導体装置は、半導体基層中に形成されて
いる第1導電型のベース領域と、この第1導電型のベー
ス領域中に形成さルている第2導電型のエミッタ領域と
をそれぞれ具備する半導体装置において、上記ベース領
域のうちの、上記半導体基層の表面に終端する上記エミ
ッタ領域と上記ベース領域との接合端に隣接する部分を
低不純物濃度としている。このように構成することによ
って、エミッタ領域とベース領域との接合の耐圧を従来
に比べて高くすることかできる。
Summary of the Invention A semiconductor device according to the present invention includes a base region of a first conductivity type formed in a semiconductor base layer, and an emitter region of a second conductivity type formed in the base region of the first conductivity type. In the semiconductor device, a portion of the base region adjacent to a junction end between the emitter region and the base region, which terminates on the surface of the semiconductor base layer, has a low impurity concentration. With this configuration, the breakdown voltage of the junction between the emitter region and the base region can be made higher than in the prior art.

また本発明fこ係る半導体装置の製造方法は、半導体基
層中に形成されている第1導電型のベース領域と、この
第1導電型のベース領域中(こ形成されている第2導電
型のエミッタ領域とをそれぞれ具備する半導体装置の製
造方法において、上記ベース領域のうちの、上記半導体
基層の表面に終端する上記エミッタ領域と上記ベース領
域との接合端に隣接する部分番こ第2導電型不純物を導
入し、これにより上記ベース領域の上記接合端に隣接す
る部分を低不純物濃度とするようにしている。このよう
にすることによって、エミッタ領域とベース領域との接
合の耐圧か従来に比べて高い半導体装Rを製造すること
かできる。
In addition, the method of manufacturing a semiconductor device according to the present invention is characterized in that a base region of a first conductivity type formed in a semiconductor base layer and a base region of a second conductivity type formed in the base region of the first conductivity type are formed in the semiconductor base layer. In the method of manufacturing a semiconductor device, the portion of the base region adjacent to the junction end of the emitter region and the base region, which terminates on the surface of the semiconductor base layer, has a second conductivity type. By introducing impurities, the portion of the base region adjacent to the junction end has a low impurity concentration.By doing this, the breakdown voltage of the junction between the emitter region and the base region is lower than that of the conventional method. Therefore, it is possible to manufacture a high-quality semiconductor device R.

実施例 以下本発明に係る半導体装置及びその製造方法をLSI
を構成するnpn型のバイポーラトランジスタの製造に
適用した一実施例につき図面を参照しながら説明する。
Examples Below, a semiconductor device and a method for manufacturing the same according to the present invention will be described as an LSI.
An embodiment applied to the manufacture of an npn type bipolar transistor constituting the present invention will be described with reference to the drawings.

なお第3A図及び第3B図においては、第1A図及び第
1B図と同一部分には同一の符号を付し、必要に応じて
その説明を省略する。
Note that in FIGS. 3A and 3B, the same parts as in FIGS. 1A and 1B are designated by the same reference numerals, and the explanation thereof will be omitted as necessary.

第3A図に示すように、まず第1A図と同様にp型シリ
コン基板1にn+戯の埋込層2を形成し、次いでp型シ
リコン基板1上にn型のエピタキシャル成長層3を形成
した後、このエピタキシャル成長層3中にp型のベース
領域5及びp+ 型のグラフト・ベース領域6を形成す
る。なおベース領域5は、エピタキシャル成長層3の表
面に例えば膜厚150Aの薄いSiO2膜11全11し
、次いでこのSiO2膜11全11てエピタキシャル成
長層3中に例えば加速エネルギー3QKeV、ドーズ量
1X10146In−2の条件でBF2を選択的にイオ
ン注入することにより形成した。
As shown in FIG. 3A, first, an n+ buried layer 2 is formed on a p-type silicon substrate 1 in the same manner as in FIG. 1A, and then an n-type epitaxial growth layer 3 is formed on the p-type silicon substrate 1. , a p-type base region 5 and a p+-type graft base region 6 are formed in this epitaxial growth layer 3. The base region 5 is formed by forming a thin SiO2 film 11 with a thickness of, for example, 150A on the surface of the epitaxial growth layer 3, and then depositing this SiO2 film 11 into the epitaxial growth layer 3 under conditions of, for example, an acceleration energy of 3QKeV and a dose of 1X10146In-2. It was formed by selectively ion-implanting BF2.

次に再び上記SiO2膜11を介してエピタキシャル成
長層3の表面に例えば加速エネルギー3QKeV、ドー
ズi−2810” cIn−20)lk件TnW不Ni
?I、例1fヒiAsをイオン注入する(エピタキシャ
ル成長層3中のAsを・で表す)。この後、例えばN2
雰囲気中において7500.30分の条件で熱処理を行
うことによって、イオン注入によるエピタキシャル成長
層3の損傷を回復させると共に、上記ん及びベース領域
5中のBを電気的に活性化させる。
Next, the surface of the epitaxial growth layer 3 is again coated with TnW non-Ni via the SiO2 film 11 at an acceleration energy of 3QKeV and a dose of i-2810" cIn-20).
? I, Example 1f I As is ion-implanted (As in the epitaxial growth layer 3 is represented by .). After this, for example, N2
By performing heat treatment in an atmosphere for 7500.30 minutes, damage to the epitaxial growth layer 3 caused by ion implantation is recovered, and B in the base region 5 is electrically activated.

次に上記8iQ2膜11をエラグ・ング除去した後、第
3B図tこ示すように、第1B図と同様番こエピタキシ
ャル成長層3上に例えば膜厚3000λの5i02膜7
及び例えば膜厚500XのASをドープした多結晶シリ
コン膜8を形成した後、FitえばN2雰囲気中iこお
いて950C,15分の条件で熱処理(エミッタ拡散)
を行うことにより上記多結晶シリコン膜8中のAsをエ
ピタキシャル成長層3中に拡散させてn型のエミッタ領
域9を形成する。なおベース領域5と埋込層2との間に
存在するエビタキ     1シャル成長層3Iこよっ
てコレクタ領域10か構成されるのは従来と同様である
。この後、エミッタ領域9、ベース領域5及びコレクタ
領域10のための電極を形成して、所望のnpn型バイ
ポーラトランジスタを完成させる。
Next, after removing the 8iQ2 film 11, as shown in FIG. 3B, a 5i02 film 7 having a thickness of 3000λ, for example, is placed on the epitaxial growth layer 3, as shown in FIG. 1B.
For example, after forming an AS-doped polycrystalline silicon film 8 with a film thickness of 500X, heat treatment (emitter diffusion) is performed at 950C for 15 minutes in an N2 atmosphere.
By doing this, As in the polycrystalline silicon film 8 is diffused into the epitaxial growth layer 3 to form an n-type emitter region 9. Note that, as in the conventional case, the collector region 10 is constituted by the epitaxial growth layer 3I existing between the base region 5 and the buried layer 2. Thereafter, electrodes for the emitter region 9, base region 5, and collector region 10 are formed to complete a desired npn type bipolar transistor.

上述の実施例により製造された第3B図に示すnpn型
バイポーラトランジスタにおける矢印C1D方向の不純
物濃度分布をエピタキシャル成長層3の表面を原点とし
て第4図に示す。なおこの第4図には、比較のため第3
A図に示す工程においてんのイオン注入を行わなかった
場合の上述と同様な不純物濃度分布も併せて示した。こ
の第4図から明らかなように、ベース領域5の表面不純
物濃度051は、Mのイオン注入を行わなかった場合の
表面不純物濃度082に比べて約8×1018cIIL
−3だけ低い。またベース領域5のエピタキシャル成長
層3の表面に隣接する部分の不純物濃度も魁のイオン注
入を行わなかった場合に比べてかなり低くなっていて、
約0.03μmの深さの位置に不純物濃度のピークか存
在しているのがわかる。ベース領域5の矢印C方向の不
純物濃度分布かこのようになるのは、ベース領域5中の
BCp型不純物)カ、エピタキシャル成長層3の表面に
イオン注入されたAs(n型不純物)によって補償石れ
たためである。この結果、ベース領域5のうちのエピタ
キシャル成長層3の表面に終端するEB接合14(第3
B図参照)の接合端14aに隣接する部分5aの不純物
濃度が低くなるので、上記EB接合14の接合端14a
における逆方向耐圧をこの不純物濃度の低下分だけ従来
に比べて縄くすることかできる。従って、第4図tこ示
すようにベース領域5の接合をXjb″::O,1Sμ
m程度にシャロー化した場合においてもEB接合の逆方
向耐圧の低下か殆ど生じない。
FIG. 4 shows the impurity concentration distribution in the direction of arrow C1D in the npn type bipolar transistor shown in FIG. 3B manufactured according to the above embodiment, with the surface of epitaxial growth layer 3 as the origin. Note that this figure 4 shows the third figure for comparison.
The same impurity concentration distribution as described above is also shown when no ion implantation is performed in the process shown in Figure A. As is clear from FIG. 4, the surface impurity concentration 051 of the base region 5 is approximately 8×10 18 cIIL compared to the surface impurity concentration 082 when M ion implantation is not performed.
-3 lower. Furthermore, the impurity concentration in the portion of the base region 5 adjacent to the surface of the epitaxially grown layer 3 is considerably lower than in the case where no ion implantation was performed.
It can be seen that there is a peak of impurity concentration at a depth of approximately 0.03 μm. The reason why the impurity concentration distribution in the direction of arrow C in the base region 5 becomes like this is because the BC p-type impurity in the base region 5 and the compensation stone are caused by As (n-type impurity) ion-implanted into the surface of the epitaxial growth layer 3. This is because of this. As a result, the EB junction 14 (third
Since the impurity concentration of the portion 5a adjacent to the junction end 14a of the EB junction 14 (see figure B) is lower, the junction end 14a of the EB junction 14
The reverse breakdown voltage can be made easier than in the past by the reduction in impurity concentration. Therefore, as shown in FIG. 4, the junction of the base region 5 is
Even when shallowed to about m, there is almost no reduction in the reverse breakdown voltage of the EB junction.

また上述の実施例によれは、第4図から明らかなように
、ベース領域5のうちのエミッタ領域9の下方fこ位置
する部分5b(いわゆる1ntrinsicベース領域
)の不純v濃度分布を殆ど変えることなくベース領域5
の表面不純物濃度を低下させることかできる。
Further, according to the above embodiment, as is clear from FIG. 4, the impurity v concentration distribution in the portion 5b of the base region 5 located below the emitter region 9 (so-called 1ntrinsic base region) is almost changed. Without base area 5
The surface impurity concentration can be reduced.

さら昏こ上述の実施例によれば、第3A図1こ示す工程
において&のイオン注入を行うことによりベース領域5
の表面不純物濃度を低下させているので、製造工程か簡
単であると共に、上記表面不純物濃度を正確確実に低下
δせることかできる。
Further, according to the above-described embodiment, the base region 5 is formed by implanting & in the step shown in FIG.
Since the surface impurity concentration is reduced, the manufacturing process is simple, and the surface impurity concentration can be reduced accurately and reliably.

本発明は上述の実施ガミこ限定されるものではなく、本
発明の技術的思想に基づく抽々の変形か可能である。例
えば、第3A図(こ示す工程において行つ7tASのイ
オン注入の加速エネルギー、ドーズ量等の条件は、上述
の実施例で用いた値に限定されるものではなく、必要に
応じて変更することかできる。しかし、$4圀に示す第
3B図の矢印C方向の不純物濃度分布におけるピーク濃
度か7x1Q 18crn−3よりも大きいとnB接合
14の逆方向リーク電流(1(B接合14の逆バイアス
値は例えば3.5V)が順方向よりも大きくなって好ま
しくないので、上記イオン注入の条件は上記ピーク濃度
か7 X I Q 18(@−5以下となるようをこ選
定するのか好ましい。また上述の実【Iこおいては、M
をエピタキシャル成長層3の全面に亘ってイオン注入し
たか、これに限定されるものではなく、ベース領域5の
うちのBB接合14の接合端14aに隣接する部分に選
択的にMかイオン注入されれば、Mの注入領域を適宜変
更可能である。なお上述の実施例においてはベース領域
5の表面不純物濃度を低下させるための不純物としてA
sを用いたか、ベース領域5を構成する不純物と反対導
電型で拡散係数も比較的小さければ他の種類の不純物を
用いてもよい。
The present invention is not limited to the above-mentioned embodiments, but may be freely modified based on the technical idea of the present invention. For example, the conditions such as the acceleration energy and dose amount of the 7tAS ion implantation performed in the process shown in FIG. However, if the peak concentration in the impurity concentration distribution in the direction of arrow C in Figure 3B shown in Figure 4 is larger than 7x1Q18crn-3, the reverse leakage current of nB junction 14 (1 (reverse bias of B junction 14) For example, the value of 3.5 V) becomes larger than that in the forward direction, which is not preferable, so it is preferable that the conditions for the ion implantation are selected so that the peak concentration is 7 X I Q 18 (@-5 or less). The above fruit [I here, M
M ions are implanted over the entire surface of the epitaxial growth layer 3, or M ions are selectively implanted into a portion of the base region 5 adjacent to the junction end 14a of the BB junction 14, but is not limited to this. For example, the region where M is implanted can be changed as appropriate. In the above embodiment, A is used as an impurity to reduce the surface impurity concentration of the base region 5.
Alternatively, other types of impurities may be used as long as they have a conductivity type opposite to that of the impurities constituting the base region 5 and have a relatively small diffusion coefficient.

発明の効果 本発明に係る半導体装置によれば、ベース領域のうちの
半導体基層の表面に終端するエミッタ領域とベース領域
との接合端fこ隣接する部分を低不純物濃度としている
ので、エミッタ領域とベース領域との接合の耐圧を従来
に比べて高くすることができる。
Effects of the Invention According to the semiconductor device of the present invention, since the adjacent portion of the base region at the junction end f between the emitter region and the base region which terminates on the surface of the semiconductor base layer has a low impurity concentration, the emitter region and The breakdown voltage of the junction with the base region can be increased compared to the conventional method.

また本発明に係る半導体装置の製造方法によれば、第1
導電型のベース領域のうちの半導体基層の表面に終端す
るエミッタ領域とベース領域との接合端に隣接する部分
に第2導電型不純物を導入   ′接する部を低不純物
濃度とするようにしているので、エミッタ領域とベース
領域との接合の耐圧が従来に比べて高い半導体装置を製
造することかできる。
Further, according to the method for manufacturing a semiconductor device according to the present invention, the first
A second conductivity type impurity is introduced into a portion of the conductivity type base region adjacent to the junction end between the emitter region and the base region which terminates on the surface of the semiconductor base layer. Therefore, it is possible to manufacture a semiconductor device in which the breakdown voltage of the junction between the emitter region and the base region is higher than that of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1に図及び第1B図は従来のnpn型バイポーラトラ
ンジスタの製造方法の一例を工程J@tこ示す断面図、
第2図は第1B図に示す従来のnpn型バイポーラトラ
ンジスタにおける矢印A%B方向の不純物濃度分布をエ
ピタキシャル成長層の表面を原点として示すグラフ、第
3A図及び第3B図は本発明に係る半導体装置の製造方
法をnpn型バイポーラトランジスタの製造に適用した
一実施例を工程順に示す断面図、第4図は第3B図に示
す本発明の実施例によるnpn型バイポーラトランジス
タFこおける矢印C%D方向の不純物濃度分布をエピタ
キシャル成長層3の底面を原点として示す第2図と同様
なグラフである。 なお図面に用いた符号において、 3 ・・・・・・・・・・・・・・・ エピタキシャル
成長層(半導体基層)5・・・・・・・・・・・・・・
・ベース領域6 ・・・・・・・・−・・・・・・ グ
ラフト・ベース領域8・・・・・・・・・−・・・・・
 多結晶シリコン膜9・・・・・・・・・・・・・・・
エミッタ領域10・・・・・・・・・・・・・・・ コ
レクタ領域14・・・・・・・・・・・・・・・ 14
B接合14a・・・・・・・・・・・・接合端である。
First, Figures 1 and 1B are cross-sectional views showing steps J@t of an example of a conventional method for manufacturing an npn-type bipolar transistor.
FIG. 2 is a graph showing the impurity concentration distribution in the direction of arrow A%B in the conventional npn bipolar transistor shown in FIG. 1B, with the surface of the epitaxial growth layer as the origin, and FIGS. 3A and 3B are the semiconductor devices according to the present invention. FIG. 4 is a cross-sectional view showing the process order of an embodiment in which the manufacturing method is applied to the manufacturing of an npn-type bipolar transistor, and FIG. 2 is a graph similar to FIG. 2 showing the impurity concentration distribution of FIG. 2 with the bottom surface of the epitaxial growth layer 3 as the origin. In addition, in the symbols used in the drawings, 3 ・・・・・・・・・・・・ Epitaxial growth layer (semiconductor base layer) 5 ・・・・・・・・・・・・・・・
・Base area 6 ・・・・・・・・・・・・・・・ Graft base area 8 ・・・・・・・・・・・・・・・
Polycrystalline silicon film 9・・・・・・・・・・・・・・・
Emitter region 10・・・・・・・・・・・・ Collector area 14・・・・・・・・・・・・ 14
B junction 14a......This is a joint end.

Claims (1)

【特許請求の範囲】 1、半導体基層中に形成されている第1導電型のベース
領域と、この第1導電型のベース領域中に形成されてい
る第2導電型のエミッタ領域とをそれぞれ具備する半導
体装置において、上記ベース領域のうちの、上記半導体
基層の表面に終端する上記エミッタ領域と上記ベース領
域との接合端に隣接する部分を低不純物濃度としたこと
を特徴とする半導体装置。 2、半導体基層中に形成されている第1導電型のベース
領域と、この第1導電型のベース領域中に形成されてい
る第2導電型のエミッタ領域とをそれぞれ具備する半導
体装置の製造方法において、上記ベース領域のうちの、
上記半導体基層の表面に終端する上記エミッタ領域と上
記ベース領域との接合端に隣接する部分に第2導電型不
純物を導入し、これにより上記ベース領域の上記接合端
に隣接する部分を低不純物濃度とするようにしたことを
特徴とする半導体装置の製造方法。
[Claims] 1. A base region of a first conductivity type formed in a semiconductor base layer and an emitter region of a second conductivity type formed in the base region of the first conductivity type. A semiconductor device characterized in that a portion of the base region adjacent to a junction end between the emitter region and the base region that terminates on the surface of the semiconductor base layer has a low impurity concentration. 2. A method for manufacturing a semiconductor device comprising a base region of a first conductivity type formed in a semiconductor base layer and an emitter region of a second conductivity type formed in the base region of the first conductivity type. In the above base area,
A second conductivity type impurity is introduced into a portion adjacent to the junction end of the emitter region and the base region that terminates on the surface of the semiconductor base layer, whereby the portion of the base region adjacent to the junction end is doped with a low impurity concentration. A method of manufacturing a semiconductor device, characterized in that:
JP12143484A 1984-06-13 1984-06-13 Semiconductor device and manufacture thereof Pending JPS611052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12143484A JPS611052A (en) 1984-06-13 1984-06-13 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12143484A JPS611052A (en) 1984-06-13 1984-06-13 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS611052A true JPS611052A (en) 1986-01-07

Family

ID=14811039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12143484A Pending JPS611052A (en) 1984-06-13 1984-06-13 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS611052A (en)

Similar Documents

Publication Publication Date Title
US4283236A (en) Method of fabricating lateral PNP transistors utilizing selective diffusion and counter doping
JP3205361B2 (en) Method for manufacturing power MOS transistor with longitudinal current
US5137838A (en) Method of fabricating P-buried layers for PNP devices
US4261763A (en) Fabrication of integrated circuits employing only ion implantation for all dopant layers
US4373252A (en) Method for manufacturing a semiconductor structure having reduced lateral spacing between buried regions
EP0051534A2 (en) A method of fabricating a self-aligned integrated circuit structure using differential oxide growth
US4535529A (en) Method of making semiconductor devices by forming an impurity adjusted epitaxial layer over out diffused buried layers having different lateral conductivity types
US4669179A (en) Integrated circuit fabrication process for forming a bipolar transistor having extrinsic base regions
US4440580A (en) Method of fabricating an integrated bipolar planar transistor by implanting base and emitter regions through the same insulating layer
US4144098A (en) P+ Buried layer for I2 L isolation by ion implantation
JPH0521448A (en) Manufacture of semiconductor device
US6806159B2 (en) Method for manufacturing a semiconductor device with sinker contact region
JPS6273667A (en) Manufacturing semiconductor element
EP0605946B1 (en) Transistor process for removing narrow base effects
JPS611052A (en) Semiconductor device and manufacture thereof
US7164186B2 (en) Structure of semiconductor device with sinker contact region
KR100209765B1 (en) Method of fabricating bi-mos
KR930010118B1 (en) Making method of semiconductor device
JP2656125B2 (en) Method for manufacturing semiconductor integrated circuit
KR940005706B1 (en) Method of making semiconductor device using ion implantation
KR100194654B1 (en) Semiconductor device and manufacturing method thereof
JP2943280B2 (en) Method for manufacturing semiconductor device
KR920005127B1 (en) Method of manufacturing self-aligned bipolar transistor using seletive epitaxy
JPH04287978A (en) Varactor diode
JPH061815B2 (en) Method for manufacturing semiconductor device