JPS61104390A - Magnetic bubble memory element - Google Patents

Magnetic bubble memory element

Info

Publication number
JPS61104390A
JPS61104390A JP59221778A JP22177884A JPS61104390A JP S61104390 A JPS61104390 A JP S61104390A JP 59221778 A JP59221778 A JP 59221778A JP 22177884 A JP22177884 A JP 22177884A JP S61104390 A JPS61104390 A JP S61104390A
Authority
JP
Japan
Prior art keywords
ion
bubble
heat treatment
abnormal
acceleration energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59221778A
Other languages
Japanese (ja)
Inventor
Hidema Uchishiba
内柴 秀磨
Kazuyuki Yamaguchi
一幸 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59221778A priority Critical patent/JPS61104390A/en
Publication of JPS61104390A publication Critical patent/JPS61104390A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress stably an abnormal bubble with respect to a heat treatment, too, without deteriorating an operation margin even in case of a magnetic bubble memory element of a large storage capacity, by implanting an ion into a specified area under a prescribed condition. CONSTITUTION:An Nc<+> ion in implanted into a magnetic garnet single crystal thin film by 30-70keV acceleration energy, and 4.2X10<13>-14.3X10<13>Ne<+>/cm<2> ion implanting quantity. On the other hand, as for an ion implanting area, a relation of an ion acceleration energy and an ion implanting quantity of a logarithmic scale is between the lower limit boundary connecting by a roughly straight line each point of [30keV, 4.2X10<13>Ne<+>/cm<2>], [50keV, 7.0X10<13>Ne<+>/cm<2>], and [7.5keV, 10.5X10<13>Ne<+>/cm<2>] in the lower limit value, and the upper limit boundary connecting by a roughly straight line each point of [30keV, 5.7X10<13>Ne<+>/cm<2>], [50keV, 9.5X10<13>Ne<+>/cm<2>], and [75keV, 14.3X10<13>Nc<+>/cm<2>] in the lower limit value. By this correct condition and a correct area for suppressing an abnormal bubble, an operation margin is not deteriorated even in case of a large capacity element of 4M bit, etc., and the abnormal bubble can be suppressed stably with respect to a heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば1チツプ(約1cm)当たり4Mビッ
トの記憶容量を有するような高記憶密度の磁気バブルメ
モリ素子に係り、特に該素子の記憶 憶媒体である磁性ガーネット単結晶薄膜にNeイオンを
特定条件で注入処理してなる異常バブル発生が抑制され
た磁気バブルメモリ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high storage density magnetic bubble memory device having a storage capacity of 4 Mbits per chip (approximately 1 cm), and particularly to The present invention relates to a magnetic bubble memory element in which abnormal bubble generation is suppressed by implanting Ne ions into a magnetic garnet single crystal thin film, which is a storage medium, under specific conditions.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来の磁気バブルメモリ素子用結晶薄膜の異常バブル抑
制は、1チツプ(約1cm)当たり1Mビットの磁性ガ
ーネット単結晶薄膜においては、約薄  +    2 50keV、 1 xio Ne 7cmの注入条件で
異常バブルを抑制していた。しかし1チツプ(約1cm
)当たり4Mビットの大記憶容量を持つ結晶薄膜では、
上記の条件で処理すると動作マージンが小さくなり、 
(K、Yamagishi et al  : Tra
ns、 Magn MAG−1915+     2 .1853  (1983) ) また50ke V、
〜5 X 10 Ne 7cmでは、300℃以上で熱
処理−た場合、異常バブルが発生するという欠点がある
Conventional methods for suppressing abnormal bubbles in crystal thin films for magnetic bubble memory devices are as follows: In a magnetic garnet single crystal thin film of 1 Mbit per chip (approximately 1 cm), abnormal bubbles can be suppressed under implantation conditions of approximately 50 keV and 7 cm of 1 xio Ne. It was suppressed. However, 1 chip (about 1 cm)
), a crystalline thin film with a large storage capacity of 4 Mbit per
When processing under the above conditions, the operating margin becomes smaller,
(K, Yamagishi et al: Tra
ns, Magn MAG-1915+ 2. 1853 (1983)) Also 50ke V,
~5 x 10 Ne 7cm has the disadvantage that abnormal bubbles occur when heat treated at 300°C or higher.

本発明の技術的課題は、従来のイオン注入による異常バ
ブルの抑制方法におけるこのような問題を解消し、例え
ば1チツプ(約1cm)当たり4Mビットの大記憶容量
を有するような記憶媒体の磁性ガーネット単結晶薄膜の
異常バブルをイオン注入により抑制する際の最適イオン
注入条件を提供することにある。
The technical problem of the present invention is to solve such problems in the conventional method of suppressing abnormal bubbles by ion implantation, and to solve the problem of suppressing abnormal bubbles by, for example, magnetic garnet of a storage medium having a large storage capacity of 4 Mbits per chip (approximately 1 cm). The object of the present invention is to provide optimal ion implantation conditions for suppressing abnormal bubbles in single crystal thin films by ion implantation.

〔問題点を解決するための手段〕[Means for solving problems]

この問題点を解決するために講じた本発明による技術的
手段は、磁気バブルを発生する磁性ガーネット単結晶薄
膜中にNaイオンをイオン加速エネルギー: 30〜7
5keV、イオン注入量を4.2 Xl013  + 
  2 〜14.3 X 10  Ne/ cm  の範囲内で
、且つ該イオン・め、(50KeV、7.0X10”N
e”7cm”) オヨヒ(75KeV、10.5 x 
1013Ne”/ cm”Jの各点をほぼ直線で結んだ
下限境界と、上限値において(30Ke V、5.71
3 士 XIONe /cX’J、(50Ke V、9.5 X
 10”Ne” / c+”。
The technical means of the present invention taken to solve this problem is to accelerate Na ions into a magnetic garnet single crystal thin film that generates magnetic bubbles with an ion acceleration energy of 30 to 7.
5 keV, ion implantation dose 4.2 Xl013 +
Within the range of 2 to 14.3 X 10 Ne/cm, and the ion, (50 KeV, 7.0 X 10"N
e"7cm") Oyohi (75KeV, 10.5 x
1013Ne"/cm"J points are connected with almost straight lines at the lower limit and at the upper limit (30Ke V, 5.71
3 士XIONe /cX'J, (50Ke V, 9.5
10”Ne”/c+”.

および(75Ke v 、 14.3 x 10′3N
e”7cm”)の各点をほぼ直線で結んだ上限境界との
間の特定領域内でイオン注入してなる構成を採っている
and (75Kev, 14.3 x 10'3N
A configuration is adopted in which ions are implanted within a specific region between the upper limit boundary, which is formed by connecting each point of e"7 cm" with a substantially straight line.

即ち異常バブル抑制のためのイオン注入量を特定の範囲
内とすることにより、メモリの動作マージンを劣化させ
ず、また熱処理によって再び異常バブルが発生しないよ
うにしたものである。
That is, by setting the amount of ion implantation for suppressing abnormal bubbles within a specific range, the operating margin of the memory is not degraded, and abnormal bubbles are not generated again due to heat treatment.

〔作用〕[Effect]

この技術的手段によれば、イオン注入量が増加するにつ
れて、ハードバブル抑制効果は向上するが、バイアスマ
ージン幅はあるイオン注入量を越えると、著しく低下す
る。また磁気バブル素子作製時の熱処理に対するハード
バブル抑制効果は、イオン注入量が多いほど良い。この
ような条件を総合すると、磁気バブル材料となる磁性ガ
ーネノ+ ト単結晶薄膜中にNeイオン注入条件を、イオン加速エ
ネルギー:30〜75ke V、イオン注入量を4.2
13曹3+2 xto  〜14.3X10  Ne/c+m  の範
囲内で、且つ該イオン加速エネルギーと対数目盛の該イ
オン注入量 びC15KeV、10.5 X 10′3Ne” / 
cm”lの各点をほぼ直・ツおよび(75Ke V、1
4.3X 10I3Ne”/cm’)の各点をほぼ直線
で結んだ上限境界との間の特定領域内゛でイオン注入す
る構成が有効となる。
According to this technical means, as the ion implantation amount increases, the hard bubble suppression effect improves, but the bias margin width significantly decreases beyond a certain ion implantation amount. Furthermore, the effect of suppressing hard bubbles during heat treatment during manufacturing of the magnetic bubble element is better as the amount of ions implanted is larger. Taking all of these conditions into account, the conditions for implanting Ne ions into the single crystal thin film of magnetic gas nanotubes, which will be the magnetic bubble material, are as follows: ion acceleration energy: 30 to 75 ke V, ion implantation amount: 4.2
The ion acceleration energy and the ion implantation amount on a logarithmic scale are within the range of C13KeV, 10.5X10'3Ne/c+m, and 10.5X10'3Ne/c+m.
cm”l each point approximately directly and (75Ke V, 1
A configuration in which ions are implanted within a specific region between the upper limit boundary formed by connecting each point of 4.3×10I3Ne''/cm' by a substantially straight line is effective.

〔実施例〕〔Example〕

次に本発明によるイオン注入による異常バブルの抑制方
法が実際上どのように具体化されるかを実施例で説明す
る。
Next, how the method of suppressing abnormal bubbles by ion implantation according to the present invention is actually implemented will be explained using examples.

lチップ(約1cm)当たり4Mビットの記憶容量を持
つバブルメモリ素子用の結晶薄膜(YSmLuCa )
 3  (GeFe) s Otzにおける異常バブル
抑制効果のイオン注入量依存性は第1図に示すようにな
り、ΔHaが〜20e以下になる領域で異常バブルが抑
制される。ここでΔH,は結晶薄膜中のストライプ磁区
をパルス磁界により切断してバブルを作った場合、その
バブル消減磁界(Ho )のバラツキの最大値である。
Crystal thin film (YSmLuCa) for bubble memory devices with a storage capacity of 4 Mbit per l chip (approximately 1 cm)
The ion implantation dose dependence of the abnormal bubble suppression effect in 3 (GeFe) s Otz is as shown in FIG. 1, and abnormal bubbles are suppressed in the region where ΔHa is ~20e or less. Here, ΔH is the maximum value of the variation in the bubble extinguishing and demagnetizing field (Ho) when bubbles are created by cutting striped magnetic domains in a crystal thin film with a pulsed magnetic field.

最も低い磁界で消えたバブルのH,をHo min 、
最も高い磁界で消えたバブルのHOをH6maxとすれ
ば、ΔHo=HoIllax−H(Iminである。即
ちΔH,が小さいほど、バブルのハード性が小さく、磁
気バブル材料とじて優れている。第1図では、異常バブ
ルが抑制され3f2 始めるイオン注入量は50keV、 4 xto Ne
 7cmである。
Ho min is the bubble H, which disappears in the lowest magnetic field,
If the HO of the bubble extinguished by the highest magnetic field is H6max, then ΔHo=HoIllax-H(Imin).In other words, the smaller ΔH, the smaller the hardness of the bubble, and the better the magnetic bubble material.First In the figure, abnormal bubbles are suppressed and the ion implantation dose starting at 3f2 is 50keV, 4xtoNe
It is 7cm.

一方バプルメモリデバイスのバイアスマージン3  f 幅は、第2図に示すように50ke V、4X1ONe
/cm  でマージン幅は500e  (最大)となり
、これ14  す     2 以上の注入量で急激に減少し、I XIONe /cm
以上で1/2以下になってしまう。
On the other hand, the bias margin 3f width of the bubble memory device is 50keV, 4X1ONe as shown in FIG.
/cm, the margin width becomes 500e (maximum), and this decreases sharply with an injection amount of 14.
With the above, it becomes less than 1/2.

ところで第6図に示すように、磁気バブル素子は、GG
G基板lにLPE膜2からなるバブル材料を育成し、そ
の上に5i02などの絶縁膜3、アルミニウムなどの導
体パターン4、PLO3(ポリラダーオルガノシロキサ
ン樹脂)と呼ばれる絶縁樹脂層5.5f02層6、パー
マロイパターン7、保護用のPLO3層8の順に成膜し
た構成になっている。このPLO3からなる層の硬化処
理のために、350〜400℃程度の熱処理を要するの
で、この熱処理によるハードバブル発生を予め確認して
おく必要がある。
By the way, as shown in FIG. 6, the magnetic bubble element is GG
A bubble material consisting of an LPE film 2 is grown on a G substrate l, and on top of it an insulating film 3 such as 5i02, a conductor pattern 4 such as aluminum, and an insulating resin layer 5.5f02 layer 6 called PLO3 (polyladder organosiloxane resin). , a permalloy pattern 7, and a protective PLO3 layer 8 are formed in this order. Since heat treatment at about 350 to 400° C. is required to harden the layer made of PLO3, it is necessary to check in advance whether hard bubbles will occur due to this heat treatment.

15  す     2 そこで50ke V、5 xto Ne 7cm  の
イオン注入量で処理した結晶を300℃の温度で熱処理
した場合、第3図に示すように約10時間の熱処理で異
常バブルが発生し、400℃以上の熱処理では約1時間
で異常バブルが発生する。500℃では、30分もたた
ない内に、ハードバブルが発生している。ここでδ(Δ
Ho)は熱処理後のΔHOから熱処理前のΔH0を引い
た値である。
15 S 2 Therefore, when a crystal treated with an ion implantation amount of 50 ke V and 5 x to Ne 7 cm was heat-treated at a temperature of 300°C, abnormal bubbles were generated after about 10 hours of heat treatment, as shown in Figure 3. In the above heat treatment, abnormal bubbles are generated in about 1 hour. At 500°C, hard bubbles are generated within 30 minutes. Here δ(Δ
Ho) is the value obtained by subtracting ΔH0 before heat treatment from ΔHO after heat treatment.

また、イオン注入量を変えて熱処理による異常バブル発
生を調べた結果を第4図に示す。ここで熱処理温度は、
PLOS層の硬化処理温度よりやや高めの500℃とし
た。第4図によれば、50ke V、713   す 
   2 XIONe /c+m  のイオン注入条件で処理した
結晶は、500℃の熱処理でも異常バブル発生は完全に
抑制されていることがわかる。50ke V、6X1O
Ne”7cm2のイオン注入条件では、Hkが2971
0 eの試料では、1時間でバードバブルが発生してい
る。
Further, FIG. 4 shows the results of investigating the occurrence of abnormal bubbles due to heat treatment by varying the amount of ion implantation. Here, the heat treatment temperature is
The temperature was set at 500°C, which was slightly higher than the curing temperature for the PLOS layer. According to Figure 4, 50ke V, 713
It can be seen that in the crystal treated under the ion implantation conditions of 2XIONe/c+m, abnormal bubble generation is completely suppressed even after heat treatment at 500°C. 50ke V, 6X1O
Under the ion implantation condition of 7cm2 of Ne, Hk is 2971
In the 0 e sample, bird bubbles were generated within 1 hour.

前記のように、バブルメモリデバイス作製時には、35
0〜400℃の熱処理が必要であるため、この熱処理効
果は重要である。
As mentioned above, when manufacturing a bubble memory device, 35
This heat treatment effect is important because heat treatment at 0 to 400°C is required.

イオン加速エネルギーは、第5図のバブル材料2の膜厚
によって異なるが、1チツプ(約1cm2)当たり4M
ビットの素子として、通常使用される2μ−以下(2〜
1pII程度)の膜厚では、75keV程度以下のイオ
ン加速エネルギーが好ましい。
The ion acceleration energy varies depending on the film thickness of the bubble material 2 in Fig. 5, but it is 4M per chip (approximately 1 cm2).
2μ or less (2~
For a film thickness of about 1 pII), ion acceleration energy of about 75 keV or less is preferable.

500℃の熱処理でも異常バブル発生が完全に抑制され
るイオン注入量とイオン加速エネルギーとの関係を示す
と、下表のようになる。
The table below shows the relationship between the ion implantation amount and the ion acceleration energy, which completely suppresses the generation of abnormal bubbles even in heat treatment at 500°C.

表 これを図示すると第5図のとおりであり、点a〜fが上
限値、点g−1が下限値で、該各点を結ぶ特定領域(斜
線領域)において、500℃の熱処理でも異常バブルの
発生がない磁性ガーネット単結晶薄膜を有する磁気バブ
ルメモリ素子が得られる。なお、本特定領域以外では4
00℃以下の熱処理で異常バブルが発生する。
Table This is illustrated in Figure 5, where points a to f are the upper limit values, point g-1 is the lower limit value, and in the specific area (shaded area) connecting these points, abnormal bubbles appear even after heat treatment at 500°C. A magnetic bubble memory element having a magnetic garnet single-crystal thin film without the occurrence of is obtained. In addition, outside of this specific area, 4
Abnormal bubbles occur during heat treatment at temperatures below 00°C.

以上述べたように、異常バブル抑制効果が充分テアリ、
バブルメモリとしての実用的な動作マージンを保持し、
かつ第3図および第4図において、熱処理により再び異
常バブルが発生しないイオン注入領域を検討した結果、
総ての要求をほぼ満たす条件として、イオン加速エネル
ギー:30〜75kecm2の範囲で、且つ該イオン加
速エネルギーと対数目盛の該イオン注入量との関係が下
限値において(30Ke V、4.2 X 10”NE
” /cm’)、(50Ke V、713  + 、oxto Ne /cm”)および(75Ke V、
10.5 X 10′3Neす/cm”)の各点をほぼ
直線で結んだ下限境界と、上限値、おい”’C(30K
eV、5.7 X 10”Ne+/cn”)、〔50K
e V、9.5X10 Ne /cIII211および
(75Ke V、14.3xlONe /ca”)の各
点をほぼ直線で結んだ上限境界との間、の特定領域内を
異常バブル抑制処理条件と決定した。
As mentioned above, the effect of suppressing abnormal bubbles is sufficient.
Maintains a practical operating margin as a bubble memory,
In addition, as a result of examining the ion implantation region in which abnormal bubbles do not occur again due to heat treatment in FIGS. 3 and 4,
The conditions that almost satisfy all the requirements are that the ion acceleration energy is in the range of 30 to 75 kecm2, and the relationship between the ion acceleration energy and the ion implantation amount on the logarithmic scale is at the lower limit (30 Ke V, 4.2 x 10 “N.E.
"/cm'), (50Ke V, 713 + , oxto Ne /cm") and (75Ke V,
10.5
eV, 5.7 x 10"Ne+/cn"), [50K
The abnormal bubble suppression processing condition was determined to be within a specific region between the upper limit boundary connecting the points of e V, 9.5×10 Ne /cIII211 and (75 Ke V, 14.3×1ONe /ca”) with a substantially straight line.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、イオン加速エネルギー:
 30〜75ke V、イオン注入量を4.2 Xl0
73  f  2 〜14.3 X 10  Ne/ cm  の範囲内で
、且つ該イオン加速エネルギーと対数目盛の該イオン注
入量との3  f 関係が下限値において(30Ke V、4.2X10 
Ne /C−?)、(50Ke V、?、OX 1d3
Ne” /cm”lおよび〔75KeV、10.5 X
 10′JN’e”/cm”lの各点をほぼ直線で結ん
だ下限境界と、上限値において(30Ke V、5.7
X 10”Ne+/ (ゐ、(50KeV、9.5 x
 10”Ne” /・めおよび(75Ke V、14.
3 X 10′3Ne+/ cm”)の各点をほぼ直線
で結んだ上限境界との間の特定領域内でイオン注入する
ことにより、lチップ(約1cm)当たり4Mビットの
大記憶容量を持つ磁気バブルメモリ素子においても、動
作マージンを劣化させることなく、かつ熱処理に対して
も安定した異常バブルの抑制を行うことができる。
As described above, according to the present invention, ion acceleration energy:
30~75keV, ion implantation amount 4.2Xl0
Within the range of 73 f 2 to 14.3 × 10 Ne/cm and the 3 f relationship between the ion acceleration energy and the ion implantation amount on a logarithmic scale is at the lower limit (30 Ke V, 4.2 × 10
Ne/C-? ), (50Ke V,?, OX 1d3
Ne”/cm”l and [75KeV, 10.5X
The lower limit boundary connecting each point of 10'JN'e"/cm"l with an almost straight line and the upper limit value (30Ke V, 5.7
X 10”Ne+/ (ゐ, (50KeV, 9.5 x
10"Ne"/・me and (75Ke V, 14.
By implanting ions within a specific area between the upper limit boundary, which connects each point of 3 x 10'3 Ne+/cm'') with a nearly straight line, a magnetic Also in the bubble memory element, abnormal bubbles can be suppressed stably even under heat treatment without deteriorating the operating margin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は異常バブル抑制のイオン注入量依存性を示す特
性図、第2図はバイアスマージンのイオン注入量依存性
を示す特性図、第3図、第4図は高温放置による異品バ
ブル発生を示す特性図、第5図はイオン加速エネルギー
とイオン注入量との関係を示す特性図、第6図は磁気バ
ブル素子の層構成を示す断面図である。 図において、2はLPE膜から成るバブル材料、4は導
体パターン、5.8はPLO3!、 7はパーマロイパ
ターンをそれぞれ示す。 特許出願人      富士通株式会社代理人 弁理士
    青 柳   稔(90) ”HV 第3図 オえj141^(続5月iン ィオ瀘ンー茅ミート: 5Oke込5×Aり4λ々ビア
2〃CO:#l(/−/人−Z8f80e) 41  +2(Hk−2り730e) 井s (t−t* −zsqq oe )メ:イオン方
しχ矛イ牛3θkeV3xπ−〜ビ々〃c/、/Xノン
2−町^^斂シに二?門ピL井4 (Hk −286θ
^O ム:イオン2しN条子t: 5OkeTr、’l!;x
l(1’N//cf+:   チ      タ  、
/ x IO’W/cf第4図 +1 : #S CHd −294/ Da)、:  
#6CH4,−Zり7/ Oe)象置跨ff’l(暗闇
ン 第5@ E (JeV)
Figure 1 is a characteristic diagram showing the dependence of abnormal bubble suppression on the ion implantation amount, Figure 2 is a characteristic diagram showing the dependence of the bias margin on the ion implantation amount, and Figures 3 and 4 are the occurrence of foreign bubbles due to high temperature storage. FIG. 5 is a characteristic diagram showing the relationship between ion acceleration energy and ion implantation amount, and FIG. 6 is a sectional view showing the layer structure of the magnetic bubble element. In the figure, 2 is a bubble material made of LPE film, 4 is a conductive pattern, and 5.8 is PLO3! , 7 indicate permalloy patterns, respectively. Patent Applicant: Fujitsu Limited Agent, Patent Attorney, Minoru Aoyagi (90) l (/-/人-Z8f80e) 41 +2 (Hk-2ri730e) Is (t-t* -zsqq oe) Me: ion direction χ spear cattle 3θkeV3xπ-~bi 〃c/, /Xnon 2-Town ^^斂しにTwo?Monpi L well 4 (Hk -286θ
^O Mu: Aeon 2shi Njokot: 5OkeTr,'l! ;x
l(1'N//cf+: Chi ta,
/ x IO'W/cf Fig. 4 +1: #S CHd -294/ Da),:
#6CH4, -Zri7/ Oe) Zogi straddle ff'l (Darkness 5th @ E (JeV)

Claims (1)

【特許請求の範囲】 磁気バブルを発生する磁性ガーネット単結晶薄膜中にN
e^+イオンをイオン加速エネルギー:30〜75ke
V)イオン注入量を4.2×10^1^3〜14.3×
10^1^3Ne^+/cm^2の範囲内で、且つ該イ
オン加速エネルギーと対数目盛の該イオン注入量との関
係が下限値において〔30KeV、4.2×10^1^
3Ne^+/cm^2〕、〔50KeV、7.0×10
^1^3Ne^+/cm^2)および〔75KeV、1
0.5×10^1^3Ne^+/cm^2〕の各点をほ
ぼ直線で結んだ下限境界と、上限値において〔30Ke
V、5.7×10^1^3Ne^+/cm^2〕、〔5
0KeV、9.5×10^1^3Ne^+/cm^2〕
および〔75KeV、14.3×10^1^3Ne^+
/cm^2〕の各点をほぼ直線で結んだ上限境界との間
の特定領域内でイオン注入してなる磁気バブルメモリ素
子。
[Claims] N in a magnetic garnet single crystal thin film that generates magnetic bubbles.
Ion acceleration energy for e^+ ions: 30-75ke
V) Ion implantation amount: 4.2×10^1^3~14.3×
Within the range of 10^1^3Ne^+/cm^2, and the relationship between the ion acceleration energy and the ion implantation amount on a logarithmic scale is at the lower limit [30 KeV, 4.2 x 10^1^
3Ne^+/cm^2], [50KeV, 7.0×10
^1^3Ne^+/cm^2) and [75KeV, 1
0.5×10^1^3Ne^+/cm^2] is connected with an almost straight line, and at the upper limit [30Ke
V, 5.7 x 10^1^3 Ne^+/cm^2], [5
0KeV, 9.5×10^1^3Ne^+/cm^2]
and [75KeV, 14.3×10^1^3Ne^+
/cm^2] is formed by implanting ions within a specific region between the points and the upper limit boundary connected by a substantially straight line.
JP59221778A 1984-10-22 1984-10-22 Magnetic bubble memory element Pending JPS61104390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59221778A JPS61104390A (en) 1984-10-22 1984-10-22 Magnetic bubble memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59221778A JPS61104390A (en) 1984-10-22 1984-10-22 Magnetic bubble memory element

Publications (1)

Publication Number Publication Date
JPS61104390A true JPS61104390A (en) 1986-05-22

Family

ID=16772051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59221778A Pending JPS61104390A (en) 1984-10-22 1984-10-22 Magnetic bubble memory element

Country Status (1)

Country Link
JP (1) JPS61104390A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152299A (en) * 1974-05-29 1975-12-08
JPS55153189A (en) * 1979-05-17 1980-11-28 Fujitsu Ltd Manufacture of magnetic bubble unit
JPS57186284A (en) * 1981-05-11 1982-11-16 Hitachi Ltd Manufacture of magnetic bubble memory element
JPS58142510A (en) * 1982-02-19 1983-08-24 Hitachi Ltd Manufacture of magnetic bubble element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152299A (en) * 1974-05-29 1975-12-08
JPS55153189A (en) * 1979-05-17 1980-11-28 Fujitsu Ltd Manufacture of magnetic bubble unit
JPS57186284A (en) * 1981-05-11 1982-11-16 Hitachi Ltd Manufacture of magnetic bubble memory element
JPS58142510A (en) * 1982-02-19 1983-08-24 Hitachi Ltd Manufacture of magnetic bubble element

Similar Documents

Publication Publication Date Title
US4404233A (en) Ion implanting method
US4476152A (en) Method for production of magnetic bubble memory device
JPS61104390A (en) Magnetic bubble memory element
US4556582A (en) Method of fabricating magnetic bubble memory device
US4556583A (en) Method of fabricating magnetic bubble memory device
JPH026222B2 (en)
US4357683A (en) Magnetic bubble memory with ion-implanted layer
JPS62238674A (en) Manufacture of superconductor
JPS60229292A (en) Forming method of magnetic bubble transfer path
JPS60229293A (en) Forming method of magnetic bubble transfer path
JPS60127594A (en) Ion implantation magnetic bubble element
JPS6258544B2 (en)
JPS6149427A (en) Manufacture of semiconductor device
Terai et al. Radiation-induced defects and flux pinning property of Bi2Sr2CaCu2Oy single crystal
JPS58151020A (en) Manufacture of semiconductor device
JPS6381676A (en) Manufacture of ion implanted magnetic bubble element
JPS6362106B2 (en)
JPS62285294A (en) Manufacture of magnetic bubble memory element
JPS60241211A (en) Forming method of transfer path for magnetic bubble
JPH02218123A (en) Manufacture of semiconductor device
JPS60229291A (en) Forming method of magnetic bubble transfer path
JPS58223700A (en) Treatment of base crystal of compound semiconductor
JPS6242390A (en) Method of increasing induced anisotropic magnetic field
JPS6169174A (en) Semiconductor device
JPS58208987A (en) Magnetic bubble element