JPS60241211A - Forming method of transfer path for magnetic bubble - Google Patents

Forming method of transfer path for magnetic bubble

Info

Publication number
JPS60241211A
JPS60241211A JP59097770A JP9777084A JPS60241211A JP S60241211 A JPS60241211 A JP S60241211A JP 59097770 A JP59097770 A JP 59097770A JP 9777084 A JP9777084 A JP 9777084A JP S60241211 A JPS60241211 A JP S60241211A
Authority
JP
Japan
Prior art keywords
ions
implanted
magnetic
transfer path
magnetic bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59097770A
Other languages
Japanese (ja)
Inventor
Hisao Matsudera
久雄 松寺
Osamu Okada
修 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59097770A priority Critical patent/JPS60241211A/en
Publication of JPS60241211A publication Critical patent/JPS60241211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve uniformity in a film surface by repeating a process, in which a mask shielding implanting ions is formed on a magnetic garnet film, ions in quantity less than the last quantity of ions implanted are implanted and the ions are annealed, twice. CONSTITUTION:Ions are implanted to a magnetic garnet film, thus forming a magnetic bubble transfer path for a magnetic bubble element. A process in which a mask shielding implanting ions is shaped on the magnetic garnet film, ions in quantity less than the last quantity of ions implanted are implanted and the ions are annealed is repeated at least twice at that time. Accordingly, an X-ray diffraction peak is sharpened remarkably, thus improving uniformity in a film surface.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁性ガーネット膜上にイオン注入によって形成
する磁気バブル転送路形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a magnetic bubble transfer path on a magnetic garnet film by ion implantation.

(従来技術とその問題点) 従来イオン注入による磁気バブル転送路形成に於ては注
入イオン種としてヘリウムイオンやネオンイオンや水素
イオン等が用いられている。
(Prior Art and its Problems) In conventional ion implantation to form a magnetic bubble transfer path, helium ions, neon ions, hydrogen ions, etc. are used as implanted ion species.

しかしながら、イオン注入層が充分な歪量と、異方性磁
界の変化を生じるようにイオン注入量を増加させてゆく
と、アニール後XIIJ二結晶法による回折波形が純化
する傾向が生じることがわかった。これはイオン注入層
の歪の不均一性が増加することを意味しており、素子特
性に悪影響を及ぼしている。
However, it has been found that when the ion implantation amount is increased so that the ion implantation layer becomes sufficiently strained and the anisotropic magnetic field changes, the diffraction waveform obtained by the XIIJ two-crystal method tends to become purified after annealing. Ta. This means that the non-uniformity of strain in the ion-implanted layer increases, which has an adverse effect on device characteristics.

(発明の目的) 本発明けこのような点に鑑みてなされたものでその目的
はイオン注入による磁気バブル転送路形成において、充
分大きな格子歪量をもつ注入層を形成した場合に於ても
、注入層の歪の不均一性が増加せず、良好な特性が維持
できる磁気バブル転送路形成方法を提供するにある。
(Object of the Invention) The present invention was made in view of the above points, and its purpose is to form a magnetic bubble transfer path by ion implantation, even when an implanted layer with a sufficiently large amount of lattice strain is formed. It is an object of the present invention to provide a method for forming a magnetic bubble transfer path that does not increase the non-uniformity of strain in an injection layer and maintains good characteristics.

(発明の構成) 即ち、本発明は磁性ガーネット膜にイオン注入すること
によって形成する磁気バブル素子の磁気バブル転送路形
成方法において、磁性ガーネット膜上に注入イオンを遮
蔽するマスクを形成1〜たのち、最終イオン注入量より
少ない量をイオン注入し、アニールする工程を少なくと
も2回繰返すことを特徴2する磁気バブル転送路形成方
法。
(Structure of the Invention) That is, the present invention provides a method for forming a magnetic bubble transfer path of a magnetic bubble element formed by implanting ions into a magnetic garnet film. 2. A method for forming a magnetic bubble transfer path, characterized in that the steps of implanting ions in an amount smaller than the final ion implantation amount and annealing are repeated at least twice.

(構成の詳細な説明) 水素イオンあるいはヘリウムイオンあるいはネオンイオ
ンを一定量注入する際、一度に注入せずに、注入途中で
少くとも一度以上注人工程を中断し、ガーネット膜をア
ニールした後再度注入する。
(Detailed explanation of the configuration) When implanting a certain amount of hydrogen ions, helium ions, or neon ions, the implantation process is not implanted all at once, but the implantation process is interrupted at least once during the implantation, and the garnet film is annealed and then restarted. inject.

一定量の注入が完了したのちに最後にアニールする工程
は従来と同様で良い。
The final annealing process after a certain amount of implantation is completed may be the same as the conventional process.

このように一定量の注入が完了する以前に少くとも一度
以上アニールすることにより、注入層の均一性が良好に
なる機構は必ずしも明らかではないが、以下のように考
えられる。
The mechanism by which the uniformity of the implanted layer is improved by annealing at least once before a certain amount of implantation is completed is not necessarily clear, but it is thought to be as follows.

所要注入量に達する前に注入を中断し、アニールするこ
とにより、所要注入量連続して注入した場合に生じてい
た積層欠陥の発生が抑制され、しかも、それまでの注入
による結晶の拶傷の一部け゛アニールにより回復し、注
入層の結晶特性は積層欠陥による致命的な損傷を残さず
、比較的軽微な損傷による結晶格子歪だけが残る。
By interrupting the implantation and annealing before the required implantation amount is reached, the occurrence of stacking faults that would occur when the required implantation amount was continuously implanted is suppressed, and furthermore, the damage to the crystal caused by the previous implantation is suppressed. Partially recovered by annealing, the crystal properties of the implanted layer do not remain fatally damaged due to stacking faults, and only crystal lattice distortion due to relatively minor damage remains.

この状態のガーネット膜に再びイオン注入し、その後従
来と同様にアニールをすることにより、所定の格子歪量
になるようにすることにより、注入層の結晶性の劣化を
抑制した注入層が形成できる。
By implanting ions into the garnet film in this state again and then annealing it in the same way as before, it is possible to form an implanted layer that suppresses deterioration of the crystallinity of the implanted layer by achieving a predetermined amount of lattice strain. .

あるいけ、所要注入量に達する前にアニールすることに
より、注入イオンを膜外へ放出することがで六、注入量
が増加した時に生じる注入イオンの膜内での集中を抑制
御〜、注入層の結晶性の劣化を抑制することができる。
In other words, by annealing before the required implantation amount is reached, the implanted ions can be released outside the film, thereby suppressing the concentration of implanted ions within the film that occurs when the implantation amount increases. Deterioration of crystallinity can be suppressed.

(実施例) 以下では本発明を実施例により更に詳細に説明する。(Example) The present invention will be explained in more detail below with reference to Examples.

GGG基板上に液相法で成長した負の磁歪定数をもつ磁
性ガーネット膜(YSmI、ucaBi) s (Fe
Oe)s0□ (膜厚1.2μm、特性長13 = 0
.12 pm 。
A magnetic garnet film (YSmI, ucaBi) with a negative magnetostriction constant grown by a liquid phase method on a GGG substrate (Fe
Oe)s0□ (film thickness 1.2μm, characteristic length 13 = 0
.. 12 pm.

飽和磁束密度660Gauss 、 Ku 460(1
0erg/d、λ・、に−2,8X 10”−’)にヘ
リウムイオンを加速エネルギー1001(eV、ドーズ
量2.35 X 10’:ンd及ヒ加速エネルギー45
KeV、)”−ズ量7.5 x IQ14crl及び加
速エネルギー25KeV ドーズ量5X10’ンdで3
重に注入した後、空気中で400℃ で1時間アニール
後加速エネルギー100Kev、ドーズ量3.13x1
0Is/d及ヒ加速−+−ネルキー45KeV )” 
−ズ量1 x IQ ” /all及び加速エネルギー
25KVドーズ量6.7 X 10 I4/c<で3重
に注入し再び空気中で400℃のアニールを1時間した
Saturation magnetic flux density 660 Gauss, Ku 460 (1
Acceleration energy of helium ions to 1001 (eV, dose 2.35
KeV,)''-dose 7.5 x IQ14crl and acceleration energy 25KeV, dose 5X10'nd = 3
After heavy injection, annealing in air at 400℃ for 1 hour, acceleration energy 100Kev, dose 3.13x1
0Is/d and acceleration −+− Nerky 45KeV)”
Triple implantation was performed with a dose of 1 x IQ''/all and an acceleration energy of 25 KV and a dose of 6.7 x 10 I4/c, and annealing was performed again at 400°C in air for 1 hour.

このイオン注入層の格子歪量をX#二結晶法で測定した
ときのX#の回折波形を第1図に示す。比較例として同
一特性の磁性ガーネット膜にヘリウムイオンを加速エネ
ルギー100Ke V、ドーズ量5.48 X 10”
/ m及び加速エネルギー4sKeV。
FIG. 1 shows the diffraction waveform of X# when the amount of lattice strain in this ion-implanted layer was measured by the X# two-crystal method. As a comparative example, helium ions were accelerated on a magnetic garnet film with the same characteristics at an energy of 100 Ke V and a dose of 5.48 x 10".
/ m and acceleration energy 4sKeV.

ドーズ量1,75 x 10 ”lcI&及び加速エネ
ルギー25KeV 、)”−Xtl、17xlO”7m
 で注入(D*空気中で4QO℃のアニールを1時間し
た後の格子歪量をX紳二結晶法で測定したときのX#回
折波形を第2図に示す。
Dose: 1,75 x 10"lcI & acceleration energy: 25KeV, )"-Xtl, 17xlO"7m
Figure 2 shows the X# diffraction waveform when the amount of lattice strain was measured by the X-ray crystal method after annealing at 4QO 0 C in air for 1 hour.

(発明の効果) 本実施例七比較例との比較で明らかなように、本発明に
よってX線回折ピークは著しく鋭くなり膜面内の均一性
が改善されている。
(Effects of the Invention) As is clear from the comparison with Example 7 and Comparative Example, the present invention results in significantly sharper X-ray diffraction peaks and improved in-plane uniformity of the film.

又、注入層の特性値格子歪量、及び異方性磁界の変化量
は、従来の比較例の場合と同様な値を得ることができ、
バブル転送路の転送特性も向上し製造上に益するところ
非常に大きい。
In addition, the characteristic value lattice strain amount of the injection layer and the amount of change in the anisotropic magnetic field can obtain values similar to those in the conventional comparative example,
The transfer characteristics of the bubble transfer path are also improved, which greatly benefits manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法によるX#回折波形図である。 第2図は従来法によるXa回折波形図である。 オ 1 図 −0,3−0,2−0,10 7I−2図 一〇、3 −0.2 −0.1 0 八〇(度) FIG. 1 is an X# diffraction waveform diagram obtained by the method of the present invention. FIG. 2 is an Xa diffraction waveform diagram obtained by the conventional method. Figure 1 -0,3-0,2-0,10 Figure 7I-2 10, 3 -0.2 -0.1 0 Eighty (degrees)

Claims (1)

【特許請求の範囲】[Claims] 磁性ガーネット膜にイオン注入することによって形成す
る磁気バブル素子の磁気バブル転送路形成方法において
、磁性ガーネット膜上に注入イオンを遮蔽するマスクを
形成したのち、最終イ・オン注入量よシ少ない量をイオ
ン注入し、アニールする工程を少なくとも2回時返すこ
とを特徴とする磁気バブル転送路形成方法。
In a method for forming a magnetic bubble transfer path in a magnetic bubble element formed by implanting ions into a magnetic garnet film, a mask is formed on the magnetic garnet film to shield implanted ions, and then an amount smaller than the final amount of ions is implanted. A method for forming a magnetic bubble transfer path, characterized in that the steps of ion implantation and annealing are repeated at least twice.
JP59097770A 1984-05-16 1984-05-16 Forming method of transfer path for magnetic bubble Pending JPS60241211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097770A JPS60241211A (en) 1984-05-16 1984-05-16 Forming method of transfer path for magnetic bubble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097770A JPS60241211A (en) 1984-05-16 1984-05-16 Forming method of transfer path for magnetic bubble

Publications (1)

Publication Number Publication Date
JPS60241211A true JPS60241211A (en) 1985-11-30

Family

ID=14201088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097770A Pending JPS60241211A (en) 1984-05-16 1984-05-16 Forming method of transfer path for magnetic bubble

Country Status (1)

Country Link
JP (1) JPS60241211A (en)

Similar Documents

Publication Publication Date Title
DE2425382C2 (en) Process for the production of insulated gate field effect transistors
DE2752439A1 (en) METHOD FOR PRODUCING SILICON SEMI-CONDUCTOR ARRANGEMENTS USING AN ION IMPLANT AND ASSOCIATED SEMICONDUCTOR ARRANGEMENT
Fuchs et al. Influence of the electronic stopping power on the damage rate of yttrium-iron garnets irradiated by high-energy heavy ions
DE3213768A1 (en) METHOD FOR IMPLANTING A MAGNET GARNET FILM WITH AN ION
DE112013001656T5 (en) Improved implantation procedure for the formation of fragility of substrates
US4476152A (en) Method for production of magnetic bubble memory device
JPS60241211A (en) Forming method of transfer path for magnetic bubble
US4372985A (en) Ion implantation for hard bubble suppression
US4701385A (en) Ion-implanted magnetic bubble device and a method of manufacturing the same
Washburn et al. Ion implant profiles in garnet films
US4568561A (en) Process for producing ion implanted bubble device
DE4339465C2 (en) Process for treating the surface of a silicon substrate exposed to dry etching
JPS598699A (en) Preparation of magnetic bubble element
JPS60229292A (en) Forming method of magnetic bubble transfer path
JPS5897863A (en) Manufacture of semiconductor device
JPS59117182A (en) Manufacture of hall element
EP0895512B1 (en) Pin layer sequence on a perovskite
JPS60229293A (en) Forming method of magnetic bubble transfer path
JPH05251788A (en) Material for magnetostatic wave device
JPS6081823A (en) Manufacture of semiconductor device
JPS58150188A (en) Manufacture of magnetic bubble element
JPS6360475B2 (en)
JPS6242390A (en) Method of increasing induced anisotropic magnetic field
JPS6087496A (en) Magnetic bubble transfer line forming method
JPS5996594A (en) Manufacture of ion implantation type magnetic bubble device