JPS60229292A - Forming method of magnetic bubble transfer path - Google Patents

Forming method of magnetic bubble transfer path

Info

Publication number
JPS60229292A
JPS60229292A JP8525284A JP8525284A JPS60229292A JP S60229292 A JPS60229292 A JP S60229292A JP 8525284 A JP8525284 A JP 8525284A JP 8525284 A JP8525284 A JP 8525284A JP S60229292 A JPS60229292 A JP S60229292A
Authority
JP
Japan
Prior art keywords
magnetic
transfer path
implantation
temperature
magnetic bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8525284A
Other languages
Japanese (ja)
Inventor
Hisao Matsudera
久雄 松寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8525284A priority Critical patent/JPS60229292A/en
Publication of JPS60229292A publication Critical patent/JPS60229292A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form a magnetic bubble transfer path having a sufficiently large difference (DELTAHk) between anisotropic magnetic fields of non-implantation area and an implantation area and an excellent temperature characteristic by annealing a film at a prescribed temperature after implantation of ions. CONSTITUTION:When ions are implanted on a magnetic garnet single crystal film covered by an implantation mask pattern 1, a magnetic bubble transfer path consisting of an ion implantation drive area 2 and a non-implantation area 3 is formed. When said film i annealed at 600 deg.C or above, a positive growth induced magnetic anisotropy is suppressed, and Curie temperature returns to a value approximate to that immediately before the ion implantation, whereas the magnetic anisotropy will not return to its original. As a result the magnetic bubble transfer path can be obtained which has the large DELTAHk and satisfactory transfer and temperature characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はイオン注入により磁気バブルの転送路を設ける
イオン注入方式S気バブル素子の転送路形成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a transfer path for an ion implantation type S gas bubble element in which a transfer path for magnetic bubbles is provided by ion implantation.

(従来技術とその間層点) 近年、高密度の記憶容量をもつ固体ファイルメモリとし
てイオン注入方式磁気バブル素子の開発がすすめられて
いる。
(Prior art and interlayer points) In recent years, the development of ion-implanted magnetic bubble elements as solid-state file memories with high-density storage capacity has been progressing.

イオン注入方式磁気バブル素子のドライブ層に必要とさ
れる特性は、該層内の磁化を面内に倒しうるように該層
内の一軸磁気異方性定数値が負になり、その下部の非注
入領域との異方性磁界の差ΔHkが充分大きいことであ
る。
The characteristics required for the drive layer of an ion-implanted magnetic bubble element are that the uniaxial magnetic anisotropy constant value in the layer is negative so that the magnetization in the layer can be tilted in-plane, and the non-implanted region below the layer is negative. The difference ΔHk between the anisotropic magnetic field and the anisotropic magnetic field is sufficiently large.

従来、本素子ではとのΔHkはイオン注、淘Cよる格子
歪から磁歪効果により得ている。
Conventionally, in this element, ΔHk is obtained by the magnetostrictive effect from lattice distortion caused by ion implantation and selection C.

従来、第1図のよ’yK磁気バブル転送路として非磁性
ガーネット基板の上に成長した磁性ガーネット単結晶薄
膜上に典型的な形状として数珠玉状の注入イオン遮蔽の
ためのマスクパターン1を形成したうえからイオン注入
することにより、イオン注入層2を形成し数珠玉状の非
注入領域3の外側境界に沿って磁気バブルが転送する磁
気バブル転送路を形成している。
Conventionally, a typical bead-shaped mask pattern 1 for shielding implanted ions was formed on a magnetic garnet single crystal thin film grown on a non-magnetic garnet substrate as a yK magnetic bubble transfer path as shown in Fig. 1. By implanting ions from above, an ion-implanted layer 2 is formed, and a magnetic bubble transfer path along which magnetic bubbles are transferred along the outer boundary of the bead-shaped non-implanted region 3 is formed.

このイオン注入工程では、注入イオンとして。In this ion implantation process, as implanted ions.

水素、ヘリウム、ネオンイオンが主に検討されているが
、充分大きなΔHkを得るためにその注入量は水素イオ
ンの場合は2 X 10 ”/cr/lから4 X 1
0”/メの注入量が、一方ヘリムウあるいけネオンイオ
ンを用いる場合は各々、4 X 10 Is/crdか
ら5×10 ”7m、7iヒ] X 10 ” /cm
カII’) 2 X IQ” 775゜要とされている
Hydrogen, helium, and neon ions are mainly being considered, but in order to obtain a sufficiently large ΔHk, the implantation amount is 2 × 10 ”/cr/l to 4 × 1 in the case of hydrogen ions.
The implantation volume is 0"/cm, while when using neon ions, it ranges from 4 x 10 Is/crd to 5 x 10" 7m, 7i] x 10"/cm, respectively.
II') 2 X IQ" 775° is required.

水素注入の場合は注入量が大きいため製造上のコストが
大きい。
In the case of hydrogen injection, manufacturing costs are high because the amount of injection is large.

いずれの場合もイオン注入工程によってイオン注入層(
ドライブ層と以下では称す)のキュリ一温度けはぼ歪量
に応じて低下し、注入量を多くし歪を大きくし、磁気異
方性の変化を大きくする程、キュリ一温度の低下は大き
くなり、素子動作が良好なように磁気異方性の変化を生
じさせるために必要な注入量の注入を行なうと、50℃
から100℃程度キーリ一温度の低下が生じ、素子温度
特性を劣化させる問題があった。
In either case, the ion implantation process results in an ion implantation layer (
The Curie temperature of the drive layer (hereinafter referred to as the drive layer) decreases according to the amount of strain, and the higher the implantation amount, the greater the strain, and the greater the change in magnetic anisotropy, the greater the decrease in the Curie temperature. Therefore, if the amount of implantation required to cause a change in magnetic anisotropy for good device operation is performed, the temperature at 50°C
There was a problem in that the temperature decreased by about 100° C. and the temperature characteristics of the device deteriorated.

(発明の目的) 本発明けこのような点に鑑みてなさhたものでその目的
は充分大きなΔHkを有し、 良好な温度特性を有する
磁気バブル転送路形成方法を提供するにある。
(Object of the Invention) The present invention has been made in view of the above points, and its object is to provide a method for forming a magnetic bubble transfer path having a sufficiently large ΔHk and good temperature characteristics.

(発明の構成) 即ち本発明は磁性ガーネット単結晶薄膜上にイオン注入
することにより形成する磁気バブル転送路の形成方法に
おいて、該磁性ガーネット単結晶薄膜上に注入イオン遮
蔽するマスクを形成したのちイオン注入し、この後60
0℃以上の温度でアニールする工程を含むことを特徴と
する磁気バブル転送路形成方法である。
(Structure of the Invention) That is, the present invention provides a method for forming a magnetic bubble transfer path by implanting ions onto a magnetic garnet single crystal thin film, after forming a mask for blocking the implanted ions on the magnetic garnet single crystal thin film. Inject and after this 60
This is a method for forming a magnetic bubble transfer path characterized by including a step of annealing at a temperature of 0° C. or higher.

(本発明の概要) 本発明ではイオン注入方式磁気バブル素子のドライブ層
のキュリ一温度の低下を抑制するためにドライブ層とし
て必要とされる、負の一軸異方性を得るために、従来の
ようにそれを専らイオン注入による歪誘導磁気異方性に
よるのではなく、その一部を磁性ガーネット膜が有して
いる正の成長誘導磁気異方性を抑制することにより達成
する。
(Summary of the present invention) In the present invention, in order to obtain the negative uniaxial anisotropy required for the drive layer in order to suppress the drop in the Curie temperature of the drive layer of the ion implantation type magnetic bubble element, the conventional This is achieved not only by the strain-induced magnetic anisotropy caused by ion implantation, but by partially suppressing the positive growth-induced magnetic anisotropy that the magnetic garnet film has.

即ち、転送路形成用のマスクを形成したのち、正の成長
誘導磁気異方性を抑制するために、イオン注入し、その
後食くとも600℃以上の温度でアニールし、このイオ
ン注入工程で生じた格子歪量を0%ないし、小さな量に
戻すこと罠より、キュリー電層も注入前のキュリ一温度
ないし、それに近い温度に戻る。しかしながら、磁気異
方性のみはアニールによっても元に戻らず磁気異方性定
数値岐小さくなる。これは注入によって、注入層内の格
子が乱された結果、成長誘導磁気異方性が抑制されたた
めである。
That is, after forming a mask for forming a transfer path, ions are implanted in order to suppress positive growth-induced magnetic anisotropy, and then annealing is performed at a temperature of at least 600° C. By returning the lattice strain amount to 0% or a small amount, the Curie electric layer also returns to the Curie temperature before implantation or a temperature close to it. However, only the magnetic anisotropy does not return to its original state even after annealing, and the magnetic anisotropy constant value decreases. This is because the growth-induced magnetic anisotropy was suppressed as a result of the injection disturbing the lattice within the injection layer.

注入による歪によるキ、 +7一温度の低下の程度は従
来罠比べ小さいため、素子温度特性の向上が図れる。
Since the degree of decrease in temperature due to strain caused by implantation is smaller than that of conventional traps, it is possible to improve the element temperature characteristics.

(実施例) 以下では本発明を実施例により更に詳細に説明する。(Example) The present invention will be explained in more detail below with reference to Examples.

GGG基板上に液相法で成長した負の礎歪定数をもつ磁
性ガーネット膜(YSmLuCaBi ) s (Pe
Ge) sOI!(膜厚1.2μm、特性長1 = 0
.12 ptn 、飽和sir密扉66nOauss 
Mu JgnOn prcy /#J )〜2.8 X
IO)K171期4μmの数珠玉状のバブル転送路用の
マスクを厚さ1μWのS io、をプラズマCVDで形
成したのちネオンイオンを加速エネルギー250KeV
)”−X量5.OX 10’ンd 及び加速エネルギー
]00KeV、ドーズ量1.33 x 10 ”/cl
で注入したのち、空気中で温度800 ℃で1時間アニ
ールして磁気バブル転送路を形成した。
A magnetic garnet film (YSmLuCaBi)s (Pe
Ge) sOI! (Film thickness 1.2 μm, characteristic length 1 = 0
.. 12 ptn, saturated sir closed door 66nOuss
Mu JgnOn prcy /#J)~2.8X
IO) After forming a mask for the K171 stage 4 μm bead-shaped bubble transfer path with a 1 μW thick SIO using plasma CVD, neon ions were accelerated with an energy of 250 KeV.
)"-X amount 5.OX 10'nd and acceleration energy] 00KeV, dose amount 1.33 x 10"/cl
After injection, the magnetic bubble transfer path was formed by annealing in air at a temperature of 800° C. for 1 hour.

(比較例) 比較例として、実施例と同一特性の磁性ガーネット膜上
に厚さ5000Xの金により転送路形成用マスクを形成
したのち、ヘリウムイオンを加速エネルギー100Ke
V、ドーズ量47 X 10 ” / all 、及び
加速エネルギー40KeV、)” −ス量2.2 X 
10”/dで注入したのち、空気中300 ℃で1時間
アニールしてバブル転送路を形成した。
(Comparative Example) As a comparative example, a transfer path forming mask was formed using gold with a thickness of 5000X on a magnetic garnet film with the same characteristics as in the example, and then helium ions were accelerated at an energy of 100Ke.
V, dose amount 47 x 10''/all, and acceleration energy 40 KeV,)'' - dose amount 2.2 x
After implantation at 10''/d, a bubble transfer path was formed by annealing in air at 300° C. for 1 hour.

本実施例による磁気バブル転送特性は、常温においては
、既知の磁気バブル転送路形成方法によって形成した転
送路を有する比較例の転送特性と26000eであるの
に対し35000e得られた。しかも比較例のドライブ
層のキュリ一温度が145℃であるのKくらべ、本発明
の実施例のドライブ層のキーリ一温度は170℃と高か
った。
The magnetic bubble transfer characteristic of this example was 35,000e at room temperature, whereas the transfer characteristic of the comparative example having a transfer path formed by a known method for forming a magnetic bubble transfer path was 26,000e. Furthermore, the Curie temperature of the drive layer of the comparative example was 145.degree. C., whereas the Curie temperature of the drive layer of the example of the present invention was as high as 170.degree.

ネオン注入工程後のアニール工程を実施例と異なる温度
でも行ったが、アニール温度が低くても△Hk の増加
の効果はあり、800℃アニー■場合より大きかった。
Although the annealing process after the neon implantation process was performed at a different temperature from that in the example, even at a low annealing temperature there was an effect of increasing ΔHk, which was greater than in the case of annealing at 800°C.

キーリ一温度は若干低いが、比較例よりは大きい。Although the key temperature is slightly lower, it is higher than that of the comparative example.

但し、600℃より低い温度であると結晶性が劣化する
ことがあった。1000℃以上でもΔHk増加の効果け
みられ、キーリ一温度は実施例以上の高い温度となり1
80℃を越える。
However, if the temperature was lower than 600° C., the crystallinity sometimes deteriorated. Even at temperatures above 1000°C, the effect of increasing ΔHk can be seen, and the key temperature was higher than that of the example.
Exceeds 80℃.

1050℃以上ではバブル膜特性が変化するが、この場
合はアニールによるバブル膜特性の変化を考慮して、は
じめのバブル膜を用いれば問題はない。
At 1050° C. or higher, the bubble film characteristics change, but in this case, there is no problem if the original bubble film is used, taking into account the change in the bubble film characteristics due to annealing.

又1本実施例の加速エネルギー25 oKeV及び10
0KeVのネオン注入工程のかわりに、■加速エネルギ
ー200KeV、ドーズ量9 X 1014/d及び加
速エネルギー80KeV、ドーズ量、3.8 XIO/
cI/l のチツ素イオンを注入する工程を行ない磁気
バブル転送路を形成しへ。
In addition, the acceleration energy of this example is 25 oKeV and 10
Instead of the 0 KeV neon implantation step, ■ acceleration energy 200 KeV, dose 9 X 1014/d and acceleration energy 80 KeV, dose 3.8 XIO/d.
A step of implanting nitrogen ions of cI/l is performed to form a magnetic bubble transfer path.

又、■加速エネルギー70KeV、ドーズ量、1×10
 /d及び加速エネルギー35KeV、ドーズ量4.5
X10/dの水素分子イオンを注入する工程を行ない磁
気バブル転送路を形成した。
Also, ■ acceleration energy 70KeV, dose amount, 1×10
/d and acceleration energy 35KeV, dose amount 4.5
A step of implanting hydrogen molecule ions of X10/d was performed to form a magnetic bubble transfer path.

このように、ネオン注入の工程を各々、チッ素及び水素
イオン注入で置きかえた転送路形成方法に於ても△Hk
はネオン注入の場合と同程度の値が得られ、キュリ一温
度の低下もネオン注入の場合と同程度であった。
In this way, even in the transfer path formation method in which the neon implantation process is replaced with nitrogen and hydrogen ion implantation, △Hk
A value comparable to that obtained with neon injection was obtained, and the decrease in Curie temperature was also comparable to that obtained with neon injection.

このように、イオン種はネオン、水素、チッ素の他ヘリ
ウム、ホロン等イオン種によらず同じ効果がある。
In this way, the effect is the same regardless of the ionic species, such as neon, hydrogen, nitrogen, helium, and holon.

(発明の効果) このように本発明によってキュリ一温度が高く温度特性
が良好かつ△)(kが大きく転送特性が良好な磁気バブ
ル転送路を提供することができ、磁気バブル素子製造上
米する所非常に大きい。
(Effects of the Invention) As described above, the present invention makes it possible to provide a magnetic bubble transfer path with a high Curie temperature, good temperature characteristics, and a large k value, and good transfer characteristics. The place is very big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気バブル転送路の形状を示す図である。 1 注入マスクパターン 2 イオン注入ドライブ層 3 非注入領域 71 図 FIG. 1 is a diagram showing the shape of a magnetic bubble transfer path. 1 Injection mask pattern 2 Ion implantation drive layer 3 Non-injection area Figure 71

Claims (1)

【特許請求の範囲】[Claims] 磁性ガーネット単結晶薄膜上にイオン注入することによ
り形成する磁気バブル転送路の形成方法において、磁性
ガーネット単結晶薄膜上に注入イオンを遮蔽するマスク
を形成、イオン注入した後600℃以上の温度でアニー
ルする工程を含むことを特徴とする磁気バブル転送路形
成方法。
In the method of forming a magnetic bubble transfer path by implanting ions onto a magnetic garnet single crystal thin film, a mask is formed on the magnetic garnet single crystal thin film to shield the implanted ions, and after the ion implantation, it is annealed at a temperature of 600°C or higher. A method for forming a magnetic bubble transfer path, comprising the step of:
JP8525284A 1984-04-27 1984-04-27 Forming method of magnetic bubble transfer path Pending JPS60229292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8525284A JPS60229292A (en) 1984-04-27 1984-04-27 Forming method of magnetic bubble transfer path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8525284A JPS60229292A (en) 1984-04-27 1984-04-27 Forming method of magnetic bubble transfer path

Publications (1)

Publication Number Publication Date
JPS60229292A true JPS60229292A (en) 1985-11-14

Family

ID=13853376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8525284A Pending JPS60229292A (en) 1984-04-27 1984-04-27 Forming method of magnetic bubble transfer path

Country Status (1)

Country Link
JP (1) JPS60229292A (en)

Similar Documents

Publication Publication Date Title
US4451500A (en) Process for obtaining a homogeneous planar magnetization layer in a ferrimagnetic garnet
Wolfe et al. Suppression of hard bubbles in magnetic garnet films by ion implantation: Dependence on ion species, dose, energy, and annealing
US4476152A (en) Method for production of magnetic bubble memory device
JPS60229292A (en) Forming method of magnetic bubble transfer path
JPH07169863A (en) Non-volatile semiconductor storage
US4556583A (en) Method of fabricating magnetic bubble memory device
KR100235766B1 (en) A method for reducing insertion loss and ripple of a magnetostatic wave device
JPS60229293A (en) Forming method of magnetic bubble transfer path
JPS58103124A (en) Manufacture of semiconductor device
JPS59152581A (en) Production of bubble device
US4701385A (en) Ion-implanted magnetic bubble device and a method of manufacturing the same
JPS6242390A (en) Method of increasing induced anisotropic magnetic field
KR20170108505A (en) Complex permanent magnet and method for manufacturing the same
JPS5996594A (en) Manufacture of ion implantation type magnetic bubble device
JPS6149427A (en) Manufacture of semiconductor device
JPS61141114A (en) Manufacture of magnetic film
JPS61104390A (en) Magnetic bubble memory element
JPS61131285A (en) Manufacture of magnetic bubble memory element
JPH04102308A (en) Manufacture of fe-si-al-based alloy magnetic film
JPS59175087A (en) Production of magnetic bubble memory element
JPS59178673A (en) Production for magnetic bubble memory device
JPS6160502B2 (en)
JPS6087497A (en) Magnetic bubble transfer forming method
JPS5928303A (en) Manufacture of contiguous-disk-bubble element
JPS58141492A (en) Magnetic bubble element