JPS61131285A - Manufacture of magnetic bubble memory element - Google Patents

Manufacture of magnetic bubble memory element

Info

Publication number
JPS61131285A
JPS61131285A JP59252903A JP25290384A JPS61131285A JP S61131285 A JPS61131285 A JP S61131285A JP 59252903 A JP59252903 A JP 59252903A JP 25290384 A JP25290384 A JP 25290384A JP S61131285 A JPS61131285 A JP S61131285A
Authority
JP
Japan
Prior art keywords
layer
bubble
plasma
gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59252903A
Other languages
Japanese (ja)
Inventor
Keiichi Betsui
圭一 別井
Tsutomu Miyashita
勉 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59252903A priority Critical patent/JPS61131285A/en
Publication of JPS61131285A publication Critical patent/JPS61131285A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic bubble memory element to prevent a malfunction by exposing an ion implantation layer of a bubble garnet membrane to a plasma of rare gas or hydrogen gas, increasing an inductive anisotropic magnetic field, forming the first spacer layer and suppressing an abnormal bubble. CONSTITUTION:A bubble garnet film 12 is formed on a GGG substrate 11, Ne<+> ion is implanted to a film 12, and an ion implantating layer 13 is formed in which the shaft to magnetize easily the magnetic anisotropy of the surface of the membrane 12 is parallel to the membrane 12. The substrate 11 forming the layer 13 is exposed to an Ar gas plasma or a H2 gas plasma or inert gas of Ar gas, etc., including hydrogen or a hydrogen plasma and an inductive anisotropic magnetic field of the implantation layer 13 is further increased. Next, by using an insulating material of SiO2, etc., onto the layer 13, the first spacer layer 14, a conductor pattern 15, an inter-layer film 16 of SiO2, etc., a driving pattern 17 and a protective film 18 are formed in order. Thus, the layer 13 to suppress an abnormal bubble is easily formed, and the bubble memory element, which prevents a malfunction, is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気バブルメモリ素子製造方法、特に当該素
子の異常バブル抑制方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a magnetic bubble memory device, and particularly to a method for suppressing abnormal bubbles in the device.

〔従来の技術〕[Conventional technology]

非磁性ガドリニウム・ガリウムガーネット基板(Gd3
Gas 012基板、 GGG基板と略称する)上に液
相成長法(LP[!法)で磁気バブル結晶膜を成長し、
この結晶膜(磁化容易軸は面に垂直方向)にイオン注入
して磁化容易軸を面に平行方向に変更し、異常バブルの
抑制を行う。
Non-magnetic gadolinium-gallium garnet substrate (Gd3
A magnetic bubble crystal film was grown on a Gas 012 substrate (abbreviated as GGG substrate) by liquid phase growth method (LP [! method)].
Ions are implanted into this crystal film (the axis of easy magnetization is perpendicular to the plane) to change the axis of easy magnetization to a direction parallel to the plane, thereby suppressing abnormal bubbles.

磁気バブルメモリ素子(チップとも呼称される)は第4
図の断面図に示され、図において、41はGGG基板、
42は磁気バブル結晶膜、43は5i02の第1スペー
サ、44はAuまたはAj!−Cuのコンダクタパター
ン、45はSiO2またはPLO3(Poly Lad
derOrgano 5iloxane )の絶縁膜、
46はパーマロイの駆動パターン、47はSiO+また
はPLO3の保護膜、をそれぞれ示し、前記したイオン
注入層は符号48で示す部分である。
The magnetic bubble memory element (also called chip) is the fourth
It is shown in the cross-sectional view of the figure, and in the figure, 41 is a GGG substrate;
42 is a magnetic bubble crystal film, 43 is a 5i02 first spacer, and 44 is Au or Aj! -Cu conductor pattern, 45 is SiO2 or PLO3 (Poly Lad
derOrgano 5iloxane) insulating film,
Reference numeral 46 indicates a drive pattern of permalloy, 47 indicates a protective film of SiO+ or PLO3, and the above-mentioned ion implantation layer is a portion indicated by reference numeral 48.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来は、誤動作などの発生原因である異常バブル抑制の
ためにNe+イオンなどを結晶表面にイオン注入してき
たが、この方式だと高々25000e 程度の異方性磁
界変化しか得ることはできず、大きな垂直磁気異方性を
もつ微小バブル結晶では十分な異常バブル抑制ができな
い問題がある。
Conventionally, Ne+ ions were implanted into the crystal surface in order to suppress abnormal bubbles that cause malfunctions, but with this method, it was only possible to obtain an anisotropic magnetic field change of about 25,000e, which caused a large There is a problem in that microbubble crystals with perpendicular magnetic anisotropy cannot sufficiently suppress abnormal bubbles.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解消した異常バブル抑制方法を
提供するもので、その手段は、磁気バブル結晶膜全面に
イオン注入を行った後に該結晶膜を不活性ガスのプラズ
マにさらし、イオン注入層内の誘起異方性磁界を増大さ
せ、次いで第1スペーサを被着することを特徴とする磁
気バブルメモリ素子製造方法によってなされる。
The present invention provides a method for suppressing abnormal bubbles that solves the above-mentioned problems.The method involves implanting ions into the entire surface of a magnetic bubble crystal film, and then exposing the crystal film to plasma of an inert gas. A method for manufacturing a magnetic bubble memory device is performed, which is characterized in that the induced anisotropy field in the layer is increased and then a first spacer is deposited.

C作用〕 本発明は、大きな垂直磁気異方性をもつバブル結晶に対
して、十分な異常バブル抑制を行う方式を提供すること
を目的とし、バブルガーネット膜のイオン注入層を希ガ
スまたは水素のプラズマにさらすことにより、その誘起
異方性磁界Δl+kが大きく増大することを利用し、こ
れを異常バブル抑制に用いるものである。
C effect] The purpose of the present invention is to provide a method for sufficiently suppressing abnormal bubbles for bubble crystals with large perpendicular magnetic anisotropy, and the ion-implanted layer of the bubble garnet film is injected with rare gas or hydrogen. This method takes advantage of the fact that the induced anisotropic magnetic field Δl+k increases significantly when exposed to plasma, and uses this to suppress abnormal bubbles.

〔実施例〕〔Example〕

以下、図面を参照して本発明実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は、プラズマにさらしたイオン注入層のΔHkの
Ne+イオンドーズ量依存性を示す線図で、横軸にドー
ズ量を(Ne+(XIOI′l/cm2) )で、縦軸
に異方性磁界変化A11kを〔Oe〕で現す。線Aで示
すプラズマ処理を用いない場合、ΔIlkは最大250
00eであるが、線Bで示すプラズマ処理を行うと、Δ
Ilkは2倍以上増加することが見られる。
Figure 2 is a diagram showing the Ne+ ion dose dependence of ΔHk of the ion-implanted layer exposed to plasma, where the horizontal axis represents the dose (Ne+(XIOI'l/cm2)) and the vertical axis represents the anisotropic The magnetic field change A11k is expressed as [Oe]. Without plasma treatment shown in line A, ΔIlk is up to 250
00e, but if the plasma treatment shown by line B is performed, Δ
Ilk is seen to increase more than 2-fold.

第1図に本発明実施例である磁気バブルメモリ素子が断
面図で示され、図において、11はGGG基板、12は
磁性ガーネット膜、13ばイオン注入層、14は二酸化
シリコン(5i02)の第1スペーサ、15はコンダク
タパターン、16はI’LO5(Poly l、add
erOrgans 5iloxane )またばSiO
2の層間膜、I7はパーマロイの駆動パターン、18は
SiO2またはPl、O3の保護膜、をそれぞれ示す。
FIG. 1 shows a cross-sectional view of a magnetic bubble memory element according to an embodiment of the present invention. In the figure, 11 is a GGG substrate, 12 is a magnetic garnet film, 13 is an ion-implanted layer, and 14 is a silicon dioxide (5i02) layer. 1 spacer, 15 conductor pattern, 16 I'LO5 (Poly l, add
erOrgans 5iloxane) or SiO
2, I7 is a permalloy driving pattern, and 18 is a protective film of SiO2, Pl, or O3.

GGG基板11上にLPE法で1pmの膜厚に成長させ
た磁性ガーネット膜12に、Ne+イオンをイオン注入
する。イオン注入の条件は、20〜50 KeVの加速
エネルギーで、ドーズ量は5 X 1013Ne” /
 cm2から1×101′INe+/Cff12 とす
る。その結果磁性ガーネット膜12の表面の磁気異方性
が変化し、磁化容易軸が面内に平行なイオン注入層13
が形成される。
Ne+ ions are implanted into the magnetic garnet film 12 grown to a thickness of 1 pm on the GGG substrate 11 by the LPE method. The ion implantation conditions were an acceleration energy of 20 to 50 KeV, and a dose of 5 x 1013Ne''/
cm2 to 1×101'INe+/Cff12. As a result, the magnetic anisotropy of the surface of the magnetic garnet film 12 changes, and the ion-implanted layer 13 whose axis of easy magnetization is parallel to the in-plane
is formed.

この後第3図のプラズマ装置を用いて、Arのガスプラ
ズマにこの基板をさらす。第3図において、11はGG
G基板、31はカソード電極、32はアノ−「電極、3
3はアルゴンまたは水素ガス導入口、34は高周波(R
F)電源、35は真空排気口、36は真空チャンバー、
をそれぞれ示し、電極31.32間にプラズマが発生し
、基板の磁性ガーネット膜のイオン注入層がプラズマに
さらされる。
Thereafter, the substrate is exposed to Ar gas plasma using the plasma apparatus shown in FIG. In Figure 3, 11 is GG
G substrate, 31 is a cathode electrode, 32 is an anode electrode, 3
3 is an argon or hydrogen gas inlet, 34 is a high frequency (R
F) Power supply, 35 is a vacuum exhaust port, 36 is a vacuum chamber,
, plasma is generated between the electrodes 31 and 32, and the ion-implanted layer of the magnetic garnet film of the substrate is exposed to the plasma.

上記の如くにプラズマにさらした結果イオン注入層13
の異方性磁界変化Δl(kが増大され、磁化は完全に面
に平行となり、良好な異常バブル抑制層が形成されたこ
とが確認された。以後、第1スペーサ14の形成に始ま
る従来の製造工程によって第1図に示すチップを形成す
る。なお、Arガスプラズマに代え水素ガスプラズマを
用いても同じ効果が得られた。
As a result of exposure to plasma as described above, the ion-implanted layer 13
It was confirmed that the anisotropic magnetic field change Δl (k) was increased, the magnetization became completely parallel to the plane, and a good abnormal bubble suppression layer was formed. The manufacturing process forms the chip shown in Fig. 1.The same effect was obtained by using hydrogen gas plasma instead of Ar gas plasma.

以上説明したように本発明によれば、大きい異方性磁界
Hkを持つ微小バブル材料に対してもNe+イオン注入
とプラズマにさらすことによって異常バブル抑制層を容
易に形成することができ、磁気バブルメモリ素子の誤動
作防止に有効である。
As explained above, according to the present invention, it is possible to easily form an abnormal bubble suppression layer even in a microbubble material having a large anisotropic magnetic field Hk by implanting Ne+ ions and exposing it to plasma. This is effective in preventing malfunction of memory elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の断面図、第2図は本発明の詳
細な説明するための線図、第3図はプラズマ処理装置、
第4図は従来の磁気バブルメモリ素子の断面図である。 図中、11はGGG基板、12は磁性ガーネット膜、1
3は異常バブル抑制のためのイオン注入層、14は第1
スペーサ、15はコンダクタパターン、16は層間膜、
17は駆動パターン、18は保護膜、31はカソード電
極、32はアノード電極、33はガス導入口、34はD
I’電源、35は真空排気口、36は真空チャンバー、
をそれぞれ示す。 第1図 第2図 第3図
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a diagram for explaining the present invention in detail, and FIG. 3 is a plasma processing apparatus,
FIG. 4 is a sectional view of a conventional magnetic bubble memory element. In the figure, 11 is a GGG substrate, 12 is a magnetic garnet film, 1
3 is an ion implantation layer for suppressing abnormal bubbles, and 14 is a first layer.
a spacer, 15 a conductor pattern, 16 an interlayer film,
17 is a drive pattern, 18 is a protective film, 31 is a cathode electrode, 32 is an anode electrode, 33 is a gas inlet, 34 is D
I' power supply, 35 is a vacuum exhaust port, 36 is a vacuum chamber,
are shown respectively. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] パーマロイバブル素子製造工程において磁気バブル結晶
膜全面にイオン注入を行った後に該結晶膜を不活性ガス
または水素ガス、あるいは水素を含む不活性ガスのプラ
ズマにさらし、イオン注入層内の誘起異方性磁界を増大
させ、次いで第1スペーサを被着することを特徴とする
磁気バブルメモリ素子製造方法。
In the permalloy bubble device manufacturing process, after ion implantation is performed on the entire surface of the magnetic bubble crystal film, the crystal film is exposed to plasma of an inert gas, hydrogen gas, or an inert gas containing hydrogen, and the induced anisotropy within the ion implanted layer is A method for manufacturing a magnetic bubble memory device, comprising increasing a magnetic field and then depositing a first spacer.
JP59252903A 1984-11-30 1984-11-30 Manufacture of magnetic bubble memory element Pending JPS61131285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252903A JPS61131285A (en) 1984-11-30 1984-11-30 Manufacture of magnetic bubble memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252903A JPS61131285A (en) 1984-11-30 1984-11-30 Manufacture of magnetic bubble memory element

Publications (1)

Publication Number Publication Date
JPS61131285A true JPS61131285A (en) 1986-06-18

Family

ID=17243773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252903A Pending JPS61131285A (en) 1984-11-30 1984-11-30 Manufacture of magnetic bubble memory element

Country Status (1)

Country Link
JP (1) JPS61131285A (en)

Similar Documents

Publication Publication Date Title
JPS57170510A (en) Method of ion implantation
JPS61131285A (en) Manufacture of magnetic bubble memory element
JPS6360475B2 (en)
US4568561A (en) Process for producing ion implanted bubble device
JPS61161704A (en) Manufacture of uniaxial magnetic anisotropic film
JPH035641B2 (en)
JPS6360476B2 (en)
JPS6196740A (en) Manufacture of semiconductor device
JPS598699A (en) Preparation of magnetic bubble element
JPS6018911A (en) Fabrication of magnetic bubble element
JPH01109587A (en) Manufacture of magnetic bubble memory element
JPS58150188A (en) Manufacture of magnetic bubble element
JPS6212650B2 (en)
JPS5996594A (en) Manufacture of ion implantation type magnetic bubble device
JPS6166285A (en) Production of magnetic bubble element
JPS62200592A (en) Hybrid type magnetic bubble memory element
JPS63153790A (en) Manufacture of magnetic bubble memory element
JPS5928303A (en) Manufacture of contiguous-disk-bubble element
JPH02267952A (en) Manufacture of semiconductor device
JPS60229292A (en) Forming method of magnetic bubble transfer path
JPS59217286A (en) Ion implantation magnetic bubble device
JPS62109309A (en) Manufacture of uniaxial anisotropic magnetic thin film
JPS6134781A (en) Magnetic bubble memory element
JPS6087495A (en) Ion implantation method
JPS60157795A (en) Ion-implanted magnetic bubble element