JPS61103933A - Fiber-reinforced epoxy resin article - Google Patents

Fiber-reinforced epoxy resin article

Info

Publication number
JPS61103933A
JPS61103933A JP22543384A JP22543384A JPS61103933A JP S61103933 A JPS61103933 A JP S61103933A JP 22543384 A JP22543384 A JP 22543384A JP 22543384 A JP22543384 A JP 22543384A JP S61103933 A JPS61103933 A JP S61103933A
Authority
JP
Japan
Prior art keywords
epoxy resin
fiber
resin
reinforced epoxy
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22543384A
Other languages
Japanese (ja)
Inventor
Yoshinori Nishino
義則 西野
Masahiko Yamamoto
昌彦 山本
Tadayoshi Uda
宇田 忠義
Kiyoshi Kondo
近藤 清
Kazuo Kondo
近藤 一雄
Yutaka Kondo
豊 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OUGI KAGAKU KOGYO KK
Hitachi Zosen Corp
Original Assignee
OUGI KAGAKU KOGYO KK
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OUGI KAGAKU KOGYO KK, Hitachi Zosen Corp filed Critical OUGI KAGAKU KOGYO KK
Priority to JP22543384A priority Critical patent/JPS61103933A/en
Priority to US06/686,843 priority patent/US4709714A/en
Priority to DE3500255A priority patent/DE3500255C2/en
Priority to GB08500560A priority patent/GB2162791B/en
Priority to IT47581/85A priority patent/IT1182140B/en
Priority to FR858501113A priority patent/FR2568512B1/en
Publication of JPS61103933A publication Critical patent/JPS61103933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To provide the titled resin article obtained by applying a layer to prevent the complete curing to a specific part of a fiber-reinforced epoxy resin article, and capable of forming a bonded part having same strength as the resin article by removing the incompletely cured part of the resin with a solvent and exposing the reinforcing fiber. CONSTITUTION:In the forming of a fiber-reinforced epoxy resin 1 composed of an epoxy resin 2 crosslinkable with a curing agent and containing reinforcing fibers 3, a layer 4 for preventing the complete curing of the resin is formed to a specific part of the resin using a cure-preventive agent composed of (A) a compound having a functional group reactive with epoxy group rapidly in high conversion (e.g. aliphatic dialkylamine) or (B) a compound having a functional group reactive with the crosslinking functional group of the curing agent rapidly in high conversion (e.g. glycidyl ether), and the part applied with the agent is maintained in an incompletely cured state. In the case of bonding, the resin 2 of the part 4 is removed by a solvent to expose the fiber 3, the exposed fibers are entangled, and a resin 16 is supplied to the bonding part to effect the firm bonding of the resin article.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、硬化剤により橋かけ硬化されるエポキシ樹脂
にガラス繊維やカーボン繊維或はアラミド繊維などの各
種繊維を内在して形成した板状や筒状(パイプ)の繊維
強化エポキシ樹脂体を、接合するのに有利な状態にすべ
く樹脂の一部を融解するに採用される繊維強化エポキシ
樹脂体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a plate-shaped or cylindrical material formed by incorporating various fibers such as glass fiber, carbon fiber, or aramid fiber into an epoxy resin that is cross-cured with a curing agent. The present invention relates to a fiber-reinforced epoxy resin body that is employed to melt a portion of the resin in order to bring the pipe-shaped fiber-reinforced epoxy resin body into a state favorable for joining.

従来例の構成とその問題点 第16図に示すような、エポキシ樹脂(至)にガラス繊
維0〃を内在して形成した繊維強化エポキシ樹脂体(2
)を接合するのに、従来では、第17図に示すように繊
維強化エポキシ樹脂体(至)の接合側端部をテーパー面
(至)とし、そしてテーパー面(至)間に樹脂■にガラ
ス繊維(至)を内在した二次積層材(至)を積層するテ
ーパーラップ方式や、第18図に示すように上記のよう
なテーパー面を設けていない接合部間に二次積層材(至
)を−側のみに積層するンングルラップ方式や、第19
図に示すように接合部間の両側において二次積層材(7
)を積層するダブルラップ方式が採用されていた。しか
し、これら方式のいずれも積層界面は樹脂どうしでガラ
ス繊維は通っておらず、したがって母材、すなわち繊維
強化エポキシ樹脂体に)と同じ強度を接合部に期待でき
なかった。接合部の強度を上げるために、繊維強化樹脂
体(至)の接合端近くの樹脂(1)を除去してガラス繊
維01)を露出させ、そして露出させたガラス繊維(ロ
)どうしを絡ませた(ラップした)状態で核部を樹脂で
固めることが考えられる。しかし、従来ではガラス繊維
6ηとエポキシ樹脂(1)との分離技術がないものとさ
れていた。これは、一旦硬化剤により橋かけ硬化された
エポキシ樹脂が、単純なことでは溶解しないという理由
からである。
Structure of conventional example and its problems As shown in Fig. 16, a fiber-reinforced epoxy resin body (2
), conventionally, as shown in Figure 17, the joining side end of the fiber-reinforced epoxy resin body (to) is made into a tapered surface (to), and the resin and glass are bonded between the tapered surfaces (to). There is a taper wrap method in which secondary laminated materials containing fibers are laminated, and as shown in Figure 18, secondary laminated materials are used between joints that do not have a tapered surface as described above. The 19th layer wrap method, in which layers are stacked only on the - side, and the 19th
As shown in the figure, the secondary laminate material (7
) was used. However, in any of these methods, the laminated interface is between the resins and no glass fibers pass through them, so the same strength as the base material (ie, the fiber-reinforced epoxy resin body) could not be expected at the joint. In order to increase the strength of the joint, the resin (1) near the joint end of the fiber-reinforced resin body (to) was removed to expose the glass fibers (01), and the exposed glass fibers (b) were entangled with each other. It is conceivable to harden the core with resin in the (wrapped) state. However, conventionally, it was thought that there was no technology for separating glass fiber 6η and epoxy resin (1). This is because the epoxy resin, once cross-cured with a curing agent, cannot be dissolved simply.

発明の目的 本発明の目的とするところは、エポキシ樹脂を高速で融
解し得る繊維強化エポキシ樹脂体を提供する点にある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a fiber-reinforced epoxy resin body that can melt epoxy resin at high speed.

発明の構成 上記目的を達成するために、本発明は、硬化剤により橋
かけ硬化されるエポキシ樹脂に強化繊維を内在させて形
成された繊維強化エポキシ樹脂体の所定箇所に、エポキ
シ樹脂のエポキシ基と高速かつ高反応率で反応する官能
基を同一分子内に1つ有する化合物又は硬化剤の橋かけ
結合用官能基と高速かつ高反応率で反応する官能基を同
一分子内、に1つ有する化合物からなる硬化防止剤を含
んだ完全硬化防止用層を予じめ形成することにより、前
記所定箇所の領域を不完全硬化状態のまま保持したこと
を特徴とする繊維強化エポキシ樹脂体を提供する。
Structure of the Invention In order to achieve the above object, the present invention provides an epoxy group of an epoxy resin at a predetermined location of a fiber-reinforced epoxy resin body, which is formed by incorporating reinforcing fibers into an epoxy resin that is cross-cured with a curing agent. A compound that has one functional group in the same molecule that reacts with the crosslinking functional group of the curing agent at high speed and high reaction rate, or one functional group that reacts with the crosslinking functional group of the curing agent at high speed and high reaction rate in the same molecule To provide a fiber-reinforced epoxy resin body, characterized in that the predetermined regions are kept in an incompletely cured state by forming in advance a layer for preventing complete curing containing a curing inhibitor made of a compound. .

かかる本発明の繊維強化エポキシ樹脂体では、完全硬化
防止用層を設けた領域では、エポキシ樹脂が硬化剤と反
応して橋かけ硬化されるよシも前に、エポキシ樹脂又は
硬化剤が前記硬化防止剤と反応するため、前記領域では
エポキシ樹脂が未硬化のまま保持され、従って適当な溶
解剤によってエポキシ樹脂の未硬化部分を容易に除去し
て、内部の強化繊維を露出させることが可能となる。
In the fiber-reinforced epoxy resin body of the present invention, in the region where the complete curing prevention layer is provided, the epoxy resin or the curing agent is cured before the epoxy resin reacts with the curing agent and is cross-cured. Due to the reaction with the inhibitor, the epoxy resin remains uncured in the area, and therefore, the uncured portion of the epoxy resin can be easily removed with a suitable dissolving agent to expose the reinforcing fibers inside. Become.

実施例 以下、本発明の実施例を第1図〜第15図に基づいて説
明する。                 i第1図
において、(1)は繊維強化エポキシ樹脂体で、硬化剤
により橋かけ硬化されるエポキシ樹脂(2)にガラス繊
維(カーボン繊維又はアラミドmi)でもよい)(3)
を内在させることで構成されている。
Embodiments Hereinafter, embodiments of the present invention will be described based on FIGS. 1 to 15. i In Figure 1, (1) is a fiber-reinforced epoxy resin body, and the epoxy resin (2) that is crosslinked and cured by a hardening agent may also be glass fiber (carbon fiber or aramid mi) (3)
It is constructed by incorporating the

繊維強化エポキシ樹脂体(1)は、その一端部の両面側
に成る長さくLlにわたり完全硬化防止用層(4)を備
えている。この完全硬化防止用層(4)は、遠心成形や
ハンドレイアップなどによる繊維強化エポキシ樹脂体(
1)の成形時に、硬化防止剤をテープを介して内在させ
たシ、スプレーで直接吹き付けることにより形成される
。テープの材料としては、綿やアクリμなどの繊維状物
を布状としたものや、ポリビニμアルコール、ポリアミ
ド、ボリエヌテル、セロファンなどのフィルム状のもの
或は紙が用いられ、これに硬化防止剤が含浸されるもの
である。
The fiber-reinforced epoxy resin body (1) is provided with a layer (4) for preventing complete hardening over a length Ll on both sides of one end thereof. This complete hardening prevention layer (4) is made of fiber-reinforced epoxy resin (
It is formed by directly spraying a film containing an anti-curing agent through the tape during molding in step 1). Materials used for the tape include cloth-like fibrous materials such as cotton and acrylic μ, film-like materials such as polyvinyl μ-alcohol, polyamide, Borienether, and cellophane, and paper. is impregnated.

代表的なエポキシ樹脂としては、ビスフェノ−/′VA
系エポキシ樹脂が挙げられる。また、エポキシ樹脂の硬
化剤としては、エポキシ樹脂のエポキシ基と反応する官
能基(アミノ基等)を同一分子内に2つ以上有する化合
物で、代表的なものとしては、変性ポリアミン、変性芳
香族ポリアミン、変性ポリアミドアミン酸無水物等が挙
げられる。
A typical epoxy resin is bispheno-/'VA
Examples include epoxy resins. In addition, as a curing agent for epoxy resin, it is a compound that has two or more functional groups (such as amino groups) that react with the epoxy group of the epoxy resin in the same molecule, and typical examples include modified polyamine, modified aromatic Examples include polyamines, modified polyamides, and amino acid anhydrides.

また、硬化防止剤は、大きくは、エポキシ樹脂のエポキ
シ基と高速かつ高反応率で反応する官能基を同一分子内
に1つ有する化合物からなるものと、硬化剤の橋かけ結
合用官能と高速かつ高反応率で反応する官能基を同一分
子内に1つ有する化合物とに分類できる。前者の硬化防
止剤としては、脂肪族ジアルキルアミン、アルコキシア
ニオン、チオアルコキシアニオン等が挙げられる。一方
、後者の硬化防止剤としては、グリシジルエーテル、グ
リシジルエステμ、エビクロルヒドリン、グリシド−p
等の単官能エポキシ化合物やこれら単官能エポキシ化合
物におけるエポキシ基の酸素を硫償に代えた単官能チオ
エポキシ化合物、さらには単官能j力μボン酸等が挙げ
られる。これら硬化防止剤は、エポキシ樹脂と硬化剤と
が橋かけ硬化反応するよりも前に(部分的に橋かけ反応
も行なわれるが)、エポキシ樹脂又は硬化剤と反応する
ため、完全硬化防止用層(4)間に位置するエポキシ樹
脂(2)の部分(2B)が不完全硬化状態に保持される
In addition, curing inhibitors are mainly composed of compounds that have one functional group in the same molecule that reacts with the epoxy group of the epoxy resin at high speed and high reaction rate, and those that have one functional group that reacts with the epoxy group of the epoxy resin at high speed and high reaction rate. It can also be classified into compounds that have one functional group in the same molecule that reacts with a high reaction rate. Examples of the former curing inhibitor include aliphatic dialkylamine, alkoxy anion, thioalkoxy anion, and the like. On the other hand, the latter curing inhibitors include glycidyl ether, glycidyl ester μ, shrimp chlorohydrin, glycid-p
Examples include monofunctional epoxy compounds such as, monofunctional thioepoxy compounds in which the oxygen in the epoxy group in these monofunctional epoxy compounds is replaced with sulfur, and monofunctional phosphoric acids. These curing inhibitors react with the epoxy resin or the curing agent before the crosslinking reaction between the epoxy resin and the curing agent (although a partial crosslinking reaction also occurs), so the layer for completely preventing curing is (4) The portion (2B) of the epoxy resin (2) located in between is maintained in an incompletely cured state.

第2図、第3図において、(5)は内部に溶解室(6)
を形成する本体で、中間レベpにおいて前部開口(7)
と側部開口(8)とを有する。前記本体(4)の後壁に
は前部開口(7)に向くノズ/L/ (9)が配設され
、また底壁には溶解剤受けαQが設けられている。この
溶解剤受けαQと前記ノズ/L/ (9)とは配管(ロ
)にて連通し、この配管(ロ)中にはポンプ@と加熱装
置(ヒータ)(至)とが設けられる。なお溶解剤受けα
Qには、溶解剤α◆の冷却を行なう冷却装置(ト)が設
けられる。
In Figures 2 and 3, (5) has a dissolution chamber (6) inside.
a body forming a front opening (7) at the intermediate level p;
and a side opening (8). A nozzle /L/ (9) facing the front opening (7) is provided on the rear wall of the main body (4), and a dissolving agent receiver αQ is provided on the bottom wall. This solvent receiver αQ and the nozzle /L/ (9) communicate with each other through a pipe (b), and a pump @ and a heating device (to) are provided in this pipe (b). In addition, the solubilizer receiver α
Q is provided with a cooling device (G) for cooling the dissolving agent α♦.

前記溶解剤(ロ)としては、溶剤単独または溶剤と浸食
剤との混合物が使用される。ここで溶剤としては、含塩
素系炭化水素(例えばメチレンクロライド、クロロホル
ム)、ホウコラ族系(例えハヘンゼン、トル二ン、キシ
レン)、非プロント性極性系(例えばヂメチμフォpム
アミド、ジメチルスルホオキシド)、ケント類(例えば
メチμエチ〃ケント、アセトン)、エステμ類(例えば
酢酸メチμ、エーテル)などが使用される。また浸食を
1としては、非イオン性(例えばポリオキシエチレン7
μキρエーテp、ポリオキシエチレンア!キpフェノ−
μエーテル)、陰イオン性(例えばアμキ/I/硫酸エ
ステル塩、アルキルナフタレンスルホン酸塩)、陽イオ
ン性(例えば第4級アンモニウム塩)などが使用される
二 前記繊維強化エポキシ樹脂体(1)は、搬送手段(図示
せず)により一定速度で搬送されながら、一方の側部開
口(8)から先端側が溶解室(6)に入り、そして前部
開口(7)を通って移動したのち他方の側部開口(8)
から出て行く。溶解室(6)内を移動中の繊維強化エポ
キシ樹脂体(1)の先端に対して、ノズ1V(9)から
溶解剤α少が噴射される。すなわち溶解剤受けαq内の
溶解剤α弔は、ボンデ@により配管(6)に取出され、
そして加熱装置(2)によって加熱され、エアーと混合
されたのち、ノズtv (9)から高速流によるエアー
吹き付けされる。その際に、加熱することによって溶解
剤Q4の活性化ができ、また圧力を加えることによって
高温化を促進し得る。溶解剤α→のエアー吹き付けによ
って、繊維強化エポキシ樹脂体(1)の先端においては
エポキシ樹脂(2)が溶解し、   。
As the solubilizing agent (b), a solvent alone or a mixture of a solvent and an erosive agent may be used. Examples of solvents used here include chlorine-containing hydrocarbons (e.g. methylene chloride, chloroform), fluorine-based hydrocarbons (e.g. Hachensen, toluine, xylene), and aprontic polar solvents (e.g. dimethyl μfopmamide, dimethyl sulfoxide). , Kents (for example, methi-μ-ethy-Kent, acetone), Esthe-μs (for example, methyμ-acetate, ether), etc. are used. Also, if erosion is 1, non-ionic (e.g. polyoxyethylene 7
μkiρete p, polyoxyethylene a! Kippheno-
The fiber-reinforced epoxy resin body ( 1), the tip side entered the dissolution chamber (6) through one side opening (8) and moved through the front opening (7) while being conveyed at a constant speed by a conveying means (not shown). Later the other side opening (8)
go out from A small amount of the dissolving agent α is injected from the nozzle 1V (9) to the tip of the fiber-reinforced epoxy resin body (1) that is moving in the dissolving chamber (6). That is, the solubilizer α in the solubilizer receiver αq is taken out to the pipe (6) by the bonder,
After it is heated by the heating device (2) and mixed with air, it is blown with high-speed air from the nozzle tv (9). At this time, the dissolving agent Q4 can be activated by heating, and the increase in temperature can be promoted by applying pressure. By air spraying the dissolving agent α→, the epoxy resin (2) is dissolved at the tip of the fiber-reinforced epoxy resin body (1).

溶解剤Q4とともに溶解剤受けaQ内に流下する。その
際に繊維強化エポキシ樹脂体(1)の先端側の距離色)
内においては、両防止用層(4)間の樹脂(2B)が不
完全硬化状態におかされていることから、溶解は高速で
行なわれる。これにより本体(5)から出た繊維強化エ
ポキシ樹脂体(1)の先端は、第4図に示すようにエポ
キシ樹脂(2)が除去されガラス繊維(3)が露出した
状態になる。溶解剤受けαQ内に流下した樹脂(2a)
(重合が部分的に進行して既に硬化している固体微片)
はドレンとして座部にためられ、また溶解剤(ロ)は再
使用される。その際に溶解剤α→は冷却装置(ト)によ
って冷却され、ガス化されることが防止される。
It flows down into the dissolving agent receiver aQ together with the dissolving agent Q4. At that time, the distance color on the tip side of the fiber-reinforced epoxy resin body (1))
Inside, since the resin (2B) between the two prevention layers (4) is left in an incompletely cured state, dissolution occurs at high speed. As a result, the epoxy resin (2) is removed from the tip of the fiber-reinforced epoxy resin body (1) coming out of the main body (5), as shown in FIG. 4, and the glass fibers (3) are exposed. Resin (2a) flowing down into the solvent receiver αQ
(Solid particles that have already hardened due to partial polymerization)
is stored in the seat as drain, and the dissolving agent (b) is reused. At this time, the dissolving agent α→ is cooled by a cooling device (g) and is prevented from being gasified.

上述したように溶解処理された繊維強化エポキシ樹脂体
(1)は、第5図に示すように露出させたガラス繊維(
3)どうしをMませ(ラップ)たのち、第6図に示すよ
うに該絡み部を樹脂へりで固めることによって接合でき
、その際に接合部は母材、すなわち繊維強化エポキシ樹
脂体(1)とほぼ同じ強度のものにし得る。
The fiber-reinforced epoxy resin body (1) melted as described above has exposed glass fibers (
3) After wrapping (wrapping) the two, the intertwined parts can be joined by hardening them with resin edges as shown in Figure 6. At this time, the joined parts are made of the base material, that is, the fiber-reinforced epoxy resin body (1). It can be made to have almost the same strength.

第7図は溶解手段の別の実施例を示す。すなわち繊維強
化エポキシ樹脂体(1)は挟持装置(ロ)によって両側
から挟持され、そして挟持装置αηに取付けたバイブレ
ー夕(至)の作動により高速バイブレーションが付加さ
れた状態で、その新製箇所が溶解剤α→内に浸漬される
。これにより繊維強化エポキシ樹脂体(1)の浸漬部分
に界面キャビチェージョンが発生し、エポキシ樹脂(2
)が溶解して第4図に示すようにガラス繊維(3)が露
出した状態になる。
FIG. 7 shows another embodiment of the dissolving means. That is, the fiber-reinforced epoxy resin body (1) is held from both sides by the holding device (b), and the newly manufactured part is subjected to high-speed vibration by the operation of the vibrator (to) attached to the holding device αη. It is immersed in the solubilizing agent α→. As a result, interfacial cavitation occurs in the immersed part of the fiber-reinforced epoxy resin body (1), and the epoxy resin (2)
) is melted and the glass fibers (3) are exposed as shown in FIG.

第8図は繊維強化エポキシ樹脂(1)の創外面上に完全
硬化防止用層(4)を積層した別の実施例を示す。
FIG. 8 shows another example in which a complete hardening prevention layer (4) is laminated on the outer surface of the fiber-reinforced epoxy resin (1).

これによると両売全硬化防止用M(4)間の樹脂(2B
)が不完全硬化状態におかIれることになる。
According to this, the resin (2B) between the M (4) for preventing complete curing
) will be left in an incompletely cured state.

第9図に示すように、繊維強化エポキシ樹脂(1)の−
面上にのみ完全硬化防止用層(4)を積層したときには
、仮想線q)で示すように厚さ方向における中間部まで
が不完全硬化状態におかれることになシ、したがって溶
解剤α4を使って溶解したときには第10図に示すよう
にガラス繊維(3)が露出した凹部α嗜が形成されるこ
とにカる。そして第4図に示すように端部にガラス繊維
(3)が露出した繊維強化エポキシ樹脂体0)を、第1
1図に示すように両ガラス繊維(3)を絡ませて配設し
たのち樹脂αQを供給し固化させることにより、逆T字
形の接合を可能にし得る。この方式により、大型構造物
の変形構造を、複雑な一体成形を行なうことなく、板体
の容易な接合により強度を大にして得ることができる。
As shown in FIG. 9, - of fiber reinforced epoxy resin (1)
When the complete hardening prevention layer (4) is laminated only on the surface, the middle part in the thickness direction will be left in an incompletely hardened state as shown by the virtual line q). When used and melted, a concave portion α in which the glass fiber (3) is exposed is formed as shown in FIG. Then, as shown in FIG. 4, the fiber reinforced epoxy resin body 0) with the glass fibers (3) exposed at the end is
As shown in Figure 1, by intertwining both glass fibers (3) and then supplying and solidifying the resin αQ, it is possible to form an inverted T-shaped joint. With this method, it is possible to obtain a deformed structure of a large structure with increased strength through easy joining of plates without performing complicated integral molding.

第4図に示す先端にガラス繊維(3)を露出させた形態
において、第12図、第13図に示すようにコーナ状の
接合も可能となシ、この場合に繊維強化エポキシ樹脂体
(1)を曲げ加工した薄板としたときには、例えば航空
機のボディーなどをリベット止めすることなく得ること
ができる。
In the configuration in which the glass fiber (3) is exposed at the tip shown in FIG. 4, it is also possible to join in a corner shape as shown in FIGS. 12 and 13. ) can be made into a thin plate by bending, for example, the body of an aircraft can be obtained without riveting.

第14図に示すように表面のみガラス繊維(3)を露出
して接合したときには、例えば耐食機器を得ることがで
きる。この場合に、従来の単なる樹脂面か或いはグライ
ンダー面に対する二次接着に対し −て、二次接着面を
充分に補強することができる。
When the glass fibers (3) are exposed and bonded only on the surface as shown in FIG. 14, for example, a corrosion-resistant device can be obtained. In this case, the secondary bonding surface can be sufficiently reinforced compared to the conventional secondary bonding to a mere resin surface or a grinder surface.

同様な方式にて、第15図に示すようにパイプ翰の受は
口(20A)と差し口(20B)との接合も強固に行な
うことができる。
In a similar manner, as shown in FIG. 15, the pipe holder opening (20A) and spigot (20B) can be firmly joined.

発明の効果 上記した本発明によると、繊維強化エポキシ樹脂体の所
定箇所に予め形成した完全硬化防止用層によってこの完
全硬化防止用層近くのエポキシ樹脂を不完全硬化状態(
七ロイ状態)にでき、したがって所定箇所のエポキシ樹
脂を分離しやすくする。そして所定箇所を溶解剤で処理
することによって、該所定箇所におけるエポキシ樹脂を
高速で除去して繊維を露出させることができ、これによ
多繊維強化エポキシ樹脂体どうしの強固な接合を容易に
行なうことができる。
Effects of the Invention According to the present invention described above, the complete curing prevention layer formed in advance at a predetermined location of the fiber-reinforced epoxy resin body causes the epoxy resin near the complete curing prevention layer to be in an incompletely cured state (
This makes it easier to separate the epoxy resin at predetermined locations. By treating a predetermined location with a dissolving agent, the epoxy resin at the predetermined location can be removed at high speed to expose the fibers, thereby facilitating strong bonding between multiple fiber-reinforced epoxy resin bodies. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の一実施例を示し、第1図は側
面図、第2図は溶解状態の縦断側面図、第3図は同平面
図、第4図はエポキシ樹脂除去時の側面図、第5図、第
6図は接合状態を示す側面図、第7図は別の溶解状態を
示す縦断面図、第8図は別の形成状態を示す側面図、第
91〜第11図は一つの使用例を示す側面図、第12図
、第13図は別の使用例を示す側面図、第14図は接合
状態を示 □す側面図、第15図はパイプによる接合例
を示す断面図、第16図〜第19図は大々従来の接合状
態を示す側面図である。 (1)−・繊維強化エポキシ樹脂体、(2)・・・エポ
キシ樹脂、(2a)・・・除去された樹脂、(3)・・
・ガラス繊維、(4)・・・完全硬化防止用層、(5)
・・・本体、(6)・・・溶解室、(7)・−・前部開
口、(8)・・・側部開口、(9)・−・ノズル、αQ
・・・溶解剤受け、(ロ)・・・配管、(2)・・・ポ
ンプ、(至)・−・加熱装置、α弔・・・溶解剤、(至
)・・・冷却装置、αQ・・・樹脂、ση・・・挟持装
置、(ト)・・・バイブレータ、(至)・・・凹部、翰
・−・パイプ、(2OA)・・・受は口、(20B)・
・・差し口代理人   森  本  義  弘 第2図 第3図 イ 第7図
Fig. 1 to Fig. 6 show an embodiment of the present invention, Fig. 1 is a side view, Fig. 2 is a vertical side view in a melted state, Fig. 3 is a plan view of the same, and Fig. 4 is a removed epoxy resin. FIGS. 5 and 6 are side views showing a bonded state, FIG. 7 is a longitudinal sectional view showing another melting state, and FIG. 8 is a side view showing another forming state, and FIGS. Fig. 11 is a side view showing one usage example, Figs. 12 and 13 are side views showing another usage example, Fig. 14 is a side view showing the joined state, and Fig. 15 is a side view showing the joining state. 16 to 19 are side views showing conventional bonding states. (1)--Fiber-reinforced epoxy resin body, (2)...Epoxy resin, (2a)...Removed resin, (3)...
・Glass fiber, (4)...Complete hardening prevention layer, (5)
... Main body, (6) ... Melting chamber, (7) ... Front opening, (8) ... Side opening, (9) ... Nozzle, αQ
...Dissolving agent receiver, (B)... Piping, (2)... Pump, (To) --- Heating device, α - Solving agent, (To)... Cooling device, αQ ...resin, ση...clamping device, (g)...vibrator, (to)...recess, wire ---pipe, (2OA)...receiver, (20B)...
...Representative Agent Yoshihiro Morimoto Figure 2 Figure 3 A Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1、硬化剤により橋かけ硬化されるエポキシ樹脂に強化
繊維を内在させて形成された繊維強化エポキシ樹脂体の
所定箇所に、エポキシ樹脂のエポキシ基と高速かつ高反
応率で反応する官能基を同一分子内に1つ有する化合物
又は硬化剤の橋かけ結合用官能基と高速かつ高反応率で
反応する官能基を同一分子内に1つ有する化合物からな
る硬化防止剤を含んだ完全硬化防止用層を予じめ形成す
ることにより、前記所定箇所の領域を不完全硬化状態の
まま保持したことを特徴とする繊維強化エポキシ樹脂体
1. The same functional group that reacts with the epoxy group of the epoxy resin at a high speed and with a high reaction rate is added to a predetermined location of the fiber-reinforced epoxy resin body, which is formed by incorporating reinforcing fibers into an epoxy resin that is cross-cured by a curing agent. A layer for complete curing prevention containing a curing inhibitor consisting of a compound having one compound in the molecule or a compound having one functional group in the same molecule that reacts with the crosslinking functional group of the curing agent at high speed and high reaction rate. A fiber-reinforced epoxy resin body, characterized in that the region at the predetermined location is maintained in an incompletely cured state by forming in advance.
JP22543384A 1984-08-06 1984-10-25 Fiber-reinforced epoxy resin article Pending JPS61103933A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP22543384A JPS61103933A (en) 1984-10-25 1984-10-25 Fiber-reinforced epoxy resin article
US06/686,843 US4709714A (en) 1984-08-06 1984-12-27 Apparatus for exposing fibrous reinforcements of fiber reinforced resin body
DE3500255A DE3500255C2 (en) 1984-08-06 1985-01-05 Method and apparatus for exposing fibrous reinforcements of fiber-reinforced resin bodies
GB08500560A GB2162791B (en) 1984-08-06 1985-01-10 Exposing fibrous reinforcements of fiber reinforced resin body
IT47581/85A IT1182140B (en) 1984-08-06 1985-01-22 METHOD AND APPARATUS FOR REMOVING THE RESIN MATRIX IN BODIES OF SYNTHETIC MATERIAL REINFORCED WITH FIBERS, WITH EXPOSURE OF THE FIBROUS REINFORCEMENT ELEMENTS
FR858501113A FR2568512B1 (en) 1984-08-06 1985-01-28 METHOD AND APPARATUS FOR EXPOSING FIBROUS REINFORCEMENTS OF A FIBER REINFORCED RESIN BODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22543384A JPS61103933A (en) 1984-10-25 1984-10-25 Fiber-reinforced epoxy resin article

Publications (1)

Publication Number Publication Date
JPS61103933A true JPS61103933A (en) 1986-05-22

Family

ID=16829290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22543384A Pending JPS61103933A (en) 1984-08-06 1984-10-25 Fiber-reinforced epoxy resin article

Country Status (1)

Country Link
JP (1) JPS61103933A (en)

Similar Documents

Publication Publication Date Title
US7341285B2 (en) Chemical fusion of non-metallic pipe joints
JP5263622B2 (en) Joining structure and joining method of fiber reinforced plastic
RU2162863C2 (en) Improved method for transfer molding of polymer and compositions suitable for implementation of this process
KR101880072B1 (en) Device and method for coating pipe including internal shot blasting equipment and coating pipe
JPH09510254A (en) One-component thermoset cure coating formulation
EA026841B1 (en) Method of coating pipes or pipe sections
CN112936876A (en) Ultrasonic welding method for interface inclusion reinforced thermoplastic composite material
JPS61103933A (en) Fiber-reinforced epoxy resin article
JPH08132529A (en) Resin product, production thereof and resin member
JPS6142544A (en) Method for melting resin of fiber reinforced resin article
RU2182274C1 (en) Hose for lining inner surface of pipeline
RU2182999C1 (en) Method for applying hose lining onto inner surface of pipeline and applied coating
JPH0825505A (en) Resin composite pipe material
CN105980508A (en) Adhesive resin composition, adhesive tape, adhesive tape with substrate, and composite article
JPH0560122A (en) Drive shaft made of composite material
JPH0544881A (en) Joining method for pipe
JP7455776B2 (en) Liquid transport pipe and method for manufacturing liquid transport pipe
WO2023182158A1 (en) Integrated molded component and method for manufacturing integrated molded component
CN104470706B (en) Device for controlling stress in joints at cryogenic temperatures and method of making the same
JPS59109315A (en) Joined body of metal material and fiber reinforced composite material
KR100524830B1 (en) Reinforcement method of the structure and composition for bonding the bundled fiber sheet used therein
JP2003147100A (en) Tape prepreg
SE510710C3 (en) Method for making metal ends of composite pipe lengths
Beiss et al. Vibration joining of filament reinforced thermosets
JPS6351136A (en) Composite pipe and forming method thereof