JPS61102510A - Noncontact probe - Google Patents

Noncontact probe

Info

Publication number
JPS61102510A
JPS61102510A JP22495484A JP22495484A JPS61102510A JP S61102510 A JPS61102510 A JP S61102510A JP 22495484 A JP22495484 A JP 22495484A JP 22495484 A JP22495484 A JP 22495484A JP S61102510 A JPS61102510 A JP S61102510A
Authority
JP
Japan
Prior art keywords
light
lens
objective lens
light emitting
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22495484A
Other languages
Japanese (ja)
Inventor
Akira Shimokawabe
明 下河辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP22495484A priority Critical patent/JPS61102510A/en
Publication of JPS61102510A publication Critical patent/JPS61102510A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a probe which is easy to produce and has no oscillation source by providing an objective with a parallel optical system between its light transmitting lens and image-forming lens. CONSTITUTION:A couple of light transmission optical systems 3 and 4 which have optical axes in parallel to the optical axis of the common objective 2 are provided. Namely, the 1st light transmission optical system 3 consists of the 1st light transmitting lens 5 arranged right behind the lens 2, the 2nd light transmitting lens 6 arranged behind it, and a light emitting diode 7 placed at the composite rear focus position of the lenses 5 and 6. The 2nd light transmission optical system 4 also consists of the 1st light transmitting lens 8, the 2nd light transmitting lens 9, and a light emitting diode 10 similarly to the optical system 3. Thus, the parallel optical system is constituted among the lens 2 and lenses 5 and 8, and image-forming lens 11. Therefore, even if there is an error in lens position, the respective optical systems are easily adjusted and semiconductor light emitting elements are used as a light sourc;e and driven electrically by turns to project two light beams on a surface to be measured alternately, so there is no movable part such as a chopper, thereby taking a measurement with high precision.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、光学的にシl:接触で測定面の位置、を測定
できる非接触プローブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a non-contact probe that can optically measure the position of a measurement surface by contact.

(発明の冑景) この種の非接触プローブは、昭和58年度精機学会春期
大会学術講演会論文集、第839頁から第840頁に記
載されている。すなわち、対物レンズの前方に配置した
測定面に、対物レンズの光軸に対称に、対物レンズの光
軸上の1点にて交差するようにHe−Neレーザから2
つの光束を入射せしめ、対物レンズの後方に配置した光
像位置検出器にて前記測定面で反射した前記2つの光束
の像間隔を求め、この像間隔を測定面の位置に対応させ
る構造である。このものによれば、2つの光束の交差位
置に物体面がある場合には前記像間隔は零になり、物体
面が前後にずれるにつれて像間隔は拡がっていく、ここ
で、2つの光束をチョッパによって交互に断続すると、
2つの光束の交差位置を境にして各々の像位置が反転す
るので、それによってずれの方向を知ることができる。
(Details of the Invention) This type of non-contact probe is described in the Proceedings of the 1985 Spring Conference of the Japan Society of Precision Machinery Engineers, pages 839 to 840. That is, two beams are emitted from the He-Ne laser onto the measurement surface placed in front of the objective lens, symmetrically with the optical axis of the objective lens, and intersecting at one point on the optical axis of the objective lens.
The structure is such that an optical image position detector placed behind the objective lens determines the image interval between the two beams reflected on the measurement surface, and this image interval corresponds to the position of the measurement surface. . According to this, when the object plane is located at the intersection of the two light beams, the image interval becomes zero, and as the object plane shifts back and forth, the image interval increases.Here, the two light beams are chopped When intermittent alternately by
Since each image position is reversed at the intersection position of the two light beams, the direction of the shift can be determined from this.

また、測定面が対物レンズの光軸に垂直であれば、2つ
の像は光軸に対称に生ずるが、測定面が傾斜すると、像
位置は傾きに応じて光軸に垂直な方向へずれることにな
る。従って、このずれ量によって測定面の傾斜を知るこ
とができる。
Furthermore, if the measurement plane is perpendicular to the optical axis of the objective lens, the two images will be generated symmetrically to the optical axis, but if the measurement plane is tilted, the image position will shift in the direction perpendicular to the optical axis depending on the tilt. become. Therefore, the inclination of the measurement surface can be determined from this amount of deviation.

ところが上述の装置では、2つの送光光学系及び受光光
学系の計3つの光軸が一点で交差するように調整するこ
とが困難であること、光源にHe−Neレーザを使用し
、2つの光束を交互に測定面に投射するためにチョッパ
を使用しているので大型化を避けられず、またチョッパ
の振動が誤測定の原因になる等の問題点があった。
However, with the above-mentioned device, it is difficult to adjust the three optical axes of the two transmitting optical systems and the receiving optical system so that they intersect at one point, and because a He-Ne laser is used as the light source, Since a chopper is used to alternately project the light beam onto the measurement surface, there are problems such as an increase in size and vibration of the chopper causing erroneous measurements.

(発明の目的) 本発明はこれらの欠点を解決し、小型軽量で振動原を含
まず、製作容易な非接触プローブを得ることを目的とす
る。
(Objective of the Invention) An object of the present invention is to solve these drawbacks and provide a non-contact probe that is small and lightweight, does not contain a vibration source, and is easy to manufacture.

(発明の概要) 本発明は、対物レンズを送光光学系と少なくとも1対の
受光光学系との共通対物レンズとし、上記対物レンズと
送光レンズ及び結像レンズ間を平行光学系とすることに
よって、光学系の調整という煩わしさを解消すると共に
、上記受光光学系各々の光源に発光ダイオードや半導体
レーザ等の半導体発光素子を用い、かつこれらの光源を
電気的に交互に駆動することによってチョッパの如き可
動部をなくしたものである。
(Summary of the Invention) The present invention provides a common objective lens for a light transmitting optical system and at least one pair of light receiving optical systems, and a parallel optical system between the objective lens, the light transmitting lens, and the imaging lens. This eliminates the trouble of adjusting the optical system, and by using semiconductor light emitting elements such as light emitting diodes and semiconductor lasers as the light source of each of the light receiving optical systems, and driving these light sources alternately electrically, the chopper This eliminates the need for moving parts.

(実施例) 第1図は本発明の第1実施例である非接触プローブのヘ
ッドであり、第2図は第1図のヘッドと共に用いられる
電気回路図であって、ヘッドと共に非接触プローブを構
成する。
(Example) Fig. 1 shows a head of a non-contact probe according to a first embodiment of the present invention, and Fig. 2 is an electric circuit diagram used together with the head of Fig. 1, in which the non-contact probe is used together with the head. Configure.

ヘッドの外形を形成する円筒状の枠体1の一端には共通
対物レンズ2が固定されており、共通対物レンズ2の光
軸と平行な光軸を有する一対の送光光学系3.4が共通
対物レンズ2の背後にその光軸に対称に設けられている
。第1送光光学系3は、共通対物レンズ2の直後に置か
れた第1送光レンズ5と、第1送光レンズ5の背後に置
かれた第2送光レンズ6と、第1送光レンズ5と第2送
光レンズ6の合成の後測焦点位置に置かれた発光ダイオ
ード7とによって構成される。第2送光光学系4も第1
送光光学系3と全く同様に第1送光レンズ8.第2送光
レンズ99発光ダイオード10によって構成される。共
通対物レンズ2の背後には結像レンズ11が詮けられ、
結像レンズ11の後測焦点位置には光像位置検出用の受
光素子12が配設されている。受光素子12は、光像の
位置に対応したX座標値(X座標は光軸に直交しかつ紙
面内の方向にとる)に応じた電圧信号を出力する位置検
出器(PSD)である、枠体1の他端近傍には、受光素
子12の位置調節のためのピン13.14が設けられて
いる。
A common objective lens 2 is fixed to one end of a cylindrical frame 1 forming the outer shape of the head, and a pair of light transmission optical systems 3.4 having optical axes parallel to the optical axis of the common objective lens 2 are installed. It is provided behind the common objective lens 2 symmetrically with respect to its optical axis. The first light transmitting optical system 3 includes a first light transmitting lens 5 placed immediately after the common objective lens 2, a second light transmitting lens 6 placed behind the first light transmitting lens 5, and a first light transmitting lens 6 placed behind the first light transmitting lens 5. It is composed of a light lens 5 and a light emitting diode 7 placed at a focus measurement position after combining the light lens 5 and the second light transmitting lens 6. The second light transmitting optical system 4 is also
Just like the light transmitting optical system 3, the first light transmitting lens 8. It is composed of a second light transmission lens 99 and a light emitting diode 10. An imaging lens 11 is located behind the common objective lens 2,
A light-receiving element 12 for detecting the position of the optical image is disposed at the post-measuring focus position of the imaging lens 11. The light receiving element 12 is a frame that is a position detector (PSD) that outputs a voltage signal according to an X coordinate value (the X coordinate is perpendicular to the optical axis and in a direction within the plane of the paper) corresponding to the position of the optical image. Near the other end of the body 1, pins 13 and 14 are provided for adjusting the position of the light receiving element 12.

いま第1図に示したように、測定面15が共通対物レン
ズ2の前側焦点面にあるとすれば、発光ダイオード7、
IOからの射出光は第2送光レンズ6゜9に入射し、第
1送光レンズ5.8を射出して平行光束となり、共通対
物レンズ2に入射する。第1送光光学系3と第2送光光
学系4の光軸は共通対物レンズ2の光軸に平行であるか
ら、共通対物レンズ2の射出光は測定面15上でかつ又
共通対物レンズ2の光軸上に集光する。すなわち、共通
対物レンズ2の前側焦点位置は光源7.10に共役とな
り、光源7.10の像は前側焦点位置で重なり合う、測
定面15での反射光は共通対物レンズ2に入射して平行
光になった後、結像レンズ11に入射し、受光素子12
上に集光する0発光ダイオード7.10の発光面形状を
同直径の円形にしておけば、発光ダイオード7を点灯し
た場合の受光素子12上での反射像の中心位置と発光ダ
イオード10を点灯した場合の受光素子12上での反射
像の中心位置とは等しい、この位置をX座標の原点と考
えることが好ましい、測定面15が共通対物レンズ2の
光軸方向、例えば共通対物レンズ2から遠ざかる方向へ
移動したとすれば、発光ダイオード7を点灯した場合、
受光素子12上での反射像の位置は紙面内布方向(上述
の位置を原点とすればX座標のプラス方向)へずれ、発
光ダイオード10を点灯した場合、受光素子12上での
反射像の位置は紙面内左方向(上述の位置を原点とすれ
ばX座標のマイナス方向)へずれる、そしてそのずれ量
は測定面15の移動量に対応している。一方、測定面1
5が共通対物レンズ2の光軸方向、共通対物レンズ2に
近づく方向へ移動したときは、受光素子12上での反射
像の位置のずれ方向は上述の逆になる。
As shown in FIG. 1, if the measurement surface 15 is located at the front focal plane of the common objective lens 2, then the light emitting diode 7,
The light emitted from the IO enters the second light transmitting lens 6.9, exits the first light transmitting lens 5.8, becomes a parallel light beam, and enters the common objective lens 2. Since the optical axes of the first light transmitting optical system 3 and the second light transmitting optical system 4 are parallel to the optical axis of the common objective lens 2, the light emitted from the common objective lens 2 is transmitted onto the measurement surface 15 and also through the common objective lens. The light is focused on the optical axis of 2. That is, the front focal position of the common objective lens 2 becomes conjugate to the light source 7.10, the images of the light source 7.10 overlap at the front focal position, and the reflected light from the measurement surface 15 enters the common objective lens 2 and becomes parallel light. After that, it enters the imaging lens 11 and the light receiving element 12
If the shape of the light-emitting surface of the light-emitting diode 7.10 is made circular with the same diameter, the center position of the reflected image on the light-receiving element 12 when the light-emitting diode 7 is turned on and the light-emitting diode 10 is turned on. The center position of the reflected image on the light-receiving element 12 is the same as the center position of the reflected image on the light-receiving element 12 when If the light emitting diode 7 is turned on, if it moves in the direction of moving away,
The position of the reflected image on the light-receiving element 12 shifts in the cloth direction in the plane of the paper (in the positive direction of the X coordinate if the above-mentioned position is the origin), and when the light-emitting diode 10 is turned on, the position of the reflected image on the light-receiving element 12 shifts. The position shifts to the left in the paper (in the negative direction of the X coordinate if the above-mentioned position is the origin), and the amount of shift corresponds to the amount of movement of the measurement surface 15. On the other hand, measurement surface 1
5 moves in the optical axis direction of the common objective lens 2, in the direction approaching the common objective lens 2, the direction of displacement of the position of the reflected image on the light receiving element 12 is opposite to that described above.

発光ダイオード7、IOの交互点灯は第2図に示したよ
うに、周知の2相発振器16によって行われる。受光素
子12からの位置信号は、X座標値に対応した電圧信号
である。いま簡羊のために、不図示の回路によって、測
定面15が共通対物レンズ2の前側焦点位置にある場合
に原点を示す零電圧が受光素子12から出力されるよう
に調整されているものとする。受光素子12の出力信号
は、第1サンプルホールド回路17と第2サンプルホー
ルド回路18に入力される。第1サンプルホールド回路
17は。
Alternate lighting of the light emitting diodes 7 and IO is performed by a well-known two-phase oscillator 16, as shown in FIG. The position signal from the light receiving element 12 is a voltage signal corresponding to the X coordinate value. For the sake of simplicity, it is assumed that a circuit (not shown) is adjusted so that when the measurement surface 15 is at the front focal position of the common objective lens 2, a zero voltage indicating the origin is output from the light receiving element 12. do. The output signal of the light receiving element 12 is input to a first sample and hold circuit 17 and a second sample and hold circuit 18. The first sample and hold circuit 17 is.

2相発振器16の発光ダイオード10を駆動する信号が
サンプリング信号として入力され、発光ダイオ、−ドl
Oが点灯しているときの受光素子12の出力信号をサン
プルホールドする。一方、第2サンプルホールド回路1
8は、2相発振器16の発光ダイオード7を駆動する信
号がサンプリング信号として人力され、発光ダイオード
10が点灯しているときの受光素子12の出力信号をサ
ンプルホールドする。
A signal that drives the light emitting diode 10 of the two-phase oscillator 16 is input as a sampling signal, and the light emitting diode
The output signal of the light receiving element 12 when O is lit is sampled and held. On the other hand, the second sample hold circuit 1
Reference numeral 8 inputs a signal for driving the light emitting diode 7 of the two-phase oscillator 16 as a sampling signal, and samples and holds the output signal of the light receiving element 12 when the light emitting diode 10 is lit.

なお、発光ダイオード7を駆動する信号の立ち上がりで
受光素子12の出力信号をサンプルホールドすると必ず
しも欲しい信号がサンプルホールドされるとは限らない
ので、2相発振器16の出力信号をその周期の2程度遅
延させる遅延回路を2相発振器16とサンプルホールド
回路17.18との間に設け、その出力信号の立ち上が
りをサンプリング信号として求めれば、より安定したサ
ンプリング信号を得ることができる。サンプルホールド
回路17゜18からの位置に対応した座標信号(を圧)
X!。
Note that if the output signal of the light receiving element 12 is sampled and held at the rising edge of the signal that drives the light emitting diode 7, the desired signal may not necessarily be sampled and held, so the output signal of the two-phase oscillator 16 is delayed by about two periods. A more stable sampling signal can be obtained by providing a delay circuit between the two-phase oscillator 16 and the sample and hold circuits 17 and 18, and determining the rising edge of the output signal as the sampling signal. Coordinate signal corresponding to the position from sample hold circuit 17°18
X! .

X、は、演算回路19に入力され所定の演算が行われる
。いま、第1図に示したように、第1送光光学系3の光
軸と第2送光光学系4の光軸との交差する角度をαとす
れば、共通対物レンズ2の前側焦点位置を基準にして光
軸方向の位置Zは、2に+  ′Xz Z = −tan (90−α/ 2 ) −filX
、  −X。
X, is input to the arithmetic circuit 19 and a predetermined arithmetic operation is performed. Now, as shown in FIG. 1, if the angle at which the optical axis of the first light transmitting optical system 3 and the optical axis of the second light transmitting optical system 4 intersect is α, then the front focal point of the common objective lens 2 is The position Z in the optical axis direction based on the position is +'Xz Z = -tan (90-α/2) -filX
, -X.

として求めることができる。不図示の位置Zを求める如
き指令により、演算回路19はfi1式の演算を行なう
、また、第4図のように、共通対物レンズ2の光軸に対
し90度方向を基準にして、測定面15が傾斜したとす
れば、傾斜角θは X、  −X。
It can be found as In response to a command to find a position Z (not shown), the arithmetic circuit 19 performs the fi1 calculation, and as shown in FIG. 15 is tilted, the tilt angle θ is X, -X.

・・・(2) として求めることができる。なお、第4図において、第
1送光光学系3の光軸を3゛、第2送光光学系4の光軸
を4゛、測定面15上に生ずる発光ダイオード7の像を
7゛0発光ダイオード10の像を10’にて示しである
。(+1斜角eを求める如き指令により、演算回路19
は(2)式の演算を行なう。演算回路19による演算結
果は表示装置20によって表示される。
...(2) It can be obtained as follows. In FIG. 4, the optical axis of the first light transmitting optical system 3 is 3', the optical axis of the second light transmitting optical system 4 is 4', and the image of the light emitting diode 7 generated on the measurement surface 15 is 7'0. An image of the light emitting diode 10 is shown at 10'. (The calculation circuit 19
performs the calculation of equation (2). The calculation results by the calculation circuit 19 are displayed on the display device 20.

第3図のタイムチャートによって第2図の動作を説明す
るに、2相発振器16は第3図(() 、 (o)の信
号を各々の端子に出力し、発光ダイオード7゜lO各々
の信号の高レベルで発光する。受光素子12からは第3
図(ハ)の如く、発光ダイオード7が点灯したときの反
射像の座標信号!、と発光ダイオード10が点灯したと
きの反射像の座標信号x8とが交互に出力される。第1
サンプルホールド回路17は第3図(ネ)の如(座標信
号x2をホールドし、第2サンプルホールド回路18は
第3図(ニ)の如く座標信号x1をホールドする。従っ
て、演算回路19は、あらかじめ導入されている定数α
と、座標信号XI+Xtとの間で式(1)もしくは式(
2)によって演算を行なう、演算回路19による演算は
アナログ演算でも、座標信号XI+X!をA、−D変換
した後に行なうデジタル演算でも構わない。
To explain the operation shown in FIG. 2 with reference to the time chart shown in FIG. 3, the two-phase oscillator 16 outputs the signals shown in FIG. The light receiving element 12 emits light at a high level.
As shown in figure (c), the coordinate signal of the reflected image when the light emitting diode 7 is lit! , and the coordinate signal x8 of the reflected image when the light emitting diode 10 is turned on are output alternately. 1st
The sample and hold circuit 17 holds the coordinate signal x2 as shown in FIG. 3(N), and the second sample and hold circuit 18 holds the coordinate signal x1 as shown in FIG. 3(D). Constant α introduced in advance
and the coordinate signal XI+Xt using equation (1) or equation (
2), the calculation by the calculation circuit 19 is an analog calculation, but the coordinate signal XI+X! It is also possible to perform digital calculations after performing A and -D conversion.

なお、上述の説明で用いた発光ダイオード7゜10の代
わりに半導体レーザを用いても良く、小型でしかも高速
でオン・オフのできるこれらの素子を半導体発光素子と
称する。また、受光素子12としては、座標位置に対応
したアナログ信号を得る位置検出器(P S D)の他
、2分割フォトダイオードや、電荷結合素子(COD)
等を用いることができる。ただし、2分割フォトダイオ
ードは検出範囲が狭い。
Note that a semiconductor laser may be used instead of the light emitting diode 7.10 used in the above explanation, and these elements that are small and can be turned on and off at high speed are referred to as semiconductor light emitting elements. In addition, as the light receiving element 12, in addition to a position detector (PSD) that obtains an analog signal corresponding to the coordinate position, a two-split photodiode, a charge-coupled device (COD), etc.
etc. can be used. However, the detection range of the two-split photodiode is narrow.

なお、以上の説明では、第1送光光学系と第2送光光学
系とが受光光学系の光軸に対して対称に配設されていた
が、第1送光光学系の光軸と第2送光光学系の光軸の各
々が受光光学系の光軸に平行になっていさえすれば、対
称でなくても良い。
In the above explanation, the first light transmitting optical system and the second light transmitting optical system are arranged symmetrically with respect to the optical axis of the light receiving optical system, but the optical axis of the first light transmitting optical system and the second light transmitting optical system are arranged symmetrically. As long as the optical axes of the second light transmitting optical system are parallel to the optical axis of the light receiving optical system, they do not need to be symmetrical.

すなわち、このような場合であっても、受光素子上での
光像の位置と測定面とは1対1に対応しているので、あ
らかじめそのずれ量を知っていさえす−わ、ば、測定は
何ら支障なく行なうことができる。
In other words, even in such a case, there is a one-to-one correspondence between the position of the optical image on the light-receiving element and the measurement surface, so it is necessary to know the amount of deviation in advance. can be done without any problems.

また、受光光学系の光軸を含み、第1図の紙面に垂直な
面内に、上記光軸を挟んでさらに一対の送光光学系を配
設し、第1送光光学系3.第2送光光学系4と同様に考
えれば、第1図の紙面に垂直な方向での測定面15の位
置、角度を測定できる。
Further, a pair of light transmitting optical systems are further disposed in a plane including the optical axis of the light receiving optical system and perpendicular to the plane of the paper of FIG. 1, with the optical axis sandwiched therebetween. If considered in the same way as the second light transmitting optical system 4, the position and angle of the measurement surface 15 in the direction perpendicular to the paper plane of FIG. 1 can be measured.

上述の如く4つの送光光学系の発光ダイオードを4相発
振器によって順次駆動し、受光素子からの信号をサンプ
ルホールドすれば、2次元的な測定が行なえる。
As described above, two-dimensional measurement can be performed by sequentially driving the light emitting diodes of the four light transmitting optical systems by the four-phase oscillator and sample-holding the signals from the light receiving elements.

さらに、を気回路は−・ラドに内蔵させても良いし、コ
ードでヘッドの外部に導き、別物としても良い。
Furthermore, the air circuit may be built into the rad, or it may be led to the outside of the head with a cord and made separate.

次に第5図によって、本発明の第2実施例のプローブへ
・7ドを説明する。第5図のプローブヘッドの構造は前
述の実施例とほぼ同一であるが共通対物レンズ2の先端
に、光軸に対し45°傾斜した反射鏡21が配設されて
おり、前述の実施例が光軸に対しほぼ垂直な面の測定に
好適であるのに対し、本実施例は、光軸に対しほぼ平行
な測定面の測定に好適である。
Next, referring to FIG. 5, the probe of the second embodiment of the present invention will be explained. The structure of the probe head shown in FIG. 5 is almost the same as that of the previous embodiment, but a reflecting mirror 21 tilted at 45 degrees with respect to the optical axis is disposed at the tip of the common objective lens 2. This embodiment is suitable for measuring a surface substantially perpendicular to the optical axis, whereas this embodiment is suitable for measuring a surface substantially parallel to the optical axis.

図示しない測定装置のタイル軸に、プローブヘッドをそ
の光軸まわりに回転可能に取付ければ、光軸に平行な軸
をもつ円筒軸や孔の測定が容易に可能となる。
If a probe head is attached to the tile axis of a measuring device (not shown) so as to be rotatable around its optical axis, it becomes possible to easily measure a cylindrical axis or hole whose axis is parallel to the optical axis.

また反射鏡21をプローブヘッド本体に対し;クランプ
等によって着脱自在な構造とすれば、光軸に対し垂直、
平行両方の測定面に対し適用可能となる。
In addition, if the reflector 21 is configured to be detachable from the probe head body using a clamp or the like,
It can be applied to both parallel measurement surfaces.

(発明の効果) 以上のように本発明によれば、共通対物レンズと送光レ
ンズ及び結像レンズ間を平行光学系としているので、各
レンズの位置に誤差があっても各々の光軸は共通対物レ
ンズの焦点で交わる。従って光学系の調整が橿めて容易
である。また、光源に半導体発光素子を使用し、電気的
に交互に駆動し2つの光線を交互に測定面に投射してい
るので装置の小形、軽量化が可能であり、可動部を含ま
ないので高精度の測定が行なえる。
(Effects of the Invention) As described above, according to the present invention, since a parallel optical system is used between the common objective lens, the light transmitting lens, and the imaging lens, even if there is an error in the position of each lens, each optical axis is Intersect at the focus of a common objective lens. Therefore, adjustment of the optical system is extremely easy. In addition, since a semiconductor light emitting element is used as the light source and is electrically driven alternately to project two light beams onto the measurement surface, the device can be made smaller and lighter, and since it does not include any moving parts, it can be made more expensive. Accuracy can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例である非接触プローブのヘ
ッドの断面図、第2図は第1図のへ・2ドと共に用いら
れる電気回路図、第3図は第2図の電気回路図の動作を
説明するためのタイムチャート、第4図は測定面15が
傾斜している場合の説明図、第5図は本発明の第2実施
例である非接触プローブのヘッドの断面図、である。 (主要部分の符号の説明) l・・・枠体、 2・・・共通対物レンズ、 3.4・・・送光光学系、 7、lO・・・発光ダイオード、 11・・・結像レンズ、 12・・・受光素子、 16・・・2相発振器、 17.18・・・サンプルホールド回路、19・・・演
算回路。
Fig. 1 is a sectional view of the head of a non-contact probe according to the first embodiment of the present invention, Fig. 2 is an electric circuit diagram used with the head and 2 of Fig. 1, and Fig. 3 is an electric circuit diagram of Fig. 2. A time chart for explaining the operation of the circuit diagram, FIG. 4 is an explanatory diagram when the measurement surface 15 is inclined, and FIG. 5 is a sectional view of the head of a non-contact probe according to the second embodiment of the present invention. , is. (Explanation of symbols of main parts) 1...Frame body, 2...Common objective lens, 3.4...Light transmission optical system, 7, lO...Light emitting diode, 11...Imaging lens , 12... Light receiving element, 16... Two-phase oscillator, 17.18... Sample hold circuit, 19... Arithmetic circuit.

Claims (1)

【特許請求の範囲】[Claims] 対物レンズと、前記対物レンズの光軸を挟んでかつ又対
物レンズの光軸に平行な光軸を有し、前記対物レンズの
背後の周辺部に配設された少なくとも1対の送光光学系
と、前記送光光学系の後測焦点位置に各々配設された半
導体発光素子と、前記対物レンズの背後でかつ前記1対
の送光光学系の間に、前記対物レンズの光軸に一致する
光軸を有して配設された結像レンズと、前記結像レンズ
の後測焦点位置に配設した光像位置検出用受光素子と、
前記1対の半導体発光素子を択一的に駆動する駆動手段
と、前記半導体発光素子の駆動に同期せしめて前記受光
素子の出力信号を入力し、前記半導体発光素子の一方を
駆動したときの前記受光素子の出力信号と、前記半導体
発光素子の他方を駆動したときの前記受光素子の出力信
号とを測定値として所定の演算を行い、前記対物レンズ
の前方の測定面の位置を求める演算手段と少なくとも前
記対物レンズと前記1対の送光光学系と前記半導体発光
素子と前記結像レンズと前記受光素子とを内蔵してヘッ
ドを構成する枠体と、を有することを特徴とする非接触
プローブ。
an objective lens; and at least one pair of light transmission optical systems having an optical axis that is parallel to the optical axis of the objective lens and sandwiching the optical axis of the objective lens, and that is disposed in a peripheral area behind the objective lens. and a semiconductor light emitting element disposed at the post-focusing position of the light transmission optical system, and a semiconductor light emitting element arranged behind the objective lens and between the pair of light transmission optical systems, which corresponds to the optical axis of the objective lens. an imaging lens disposed with an optical axis, and a light receiving element for detecting a light image position disposed at a post-focusing position of the imaging lens;
a driving means for selectively driving the pair of semiconductor light emitting elements; and a driving means for driving one of the semiconductor light emitting elements by inputting an output signal of the light receiving element in synchronization with the driving of the semiconductor light emitting elements. calculation means for calculating the position of the measurement surface in front of the objective lens by performing a predetermined calculation using the output signal of the light receiving element and the output signal of the light receiving element when the other of the semiconductor light emitting elements is driven as measured values; A non-contact probe comprising: a frame that includes at least the objective lens, the pair of light transmitting optical systems, the semiconductor light emitting element, the imaging lens, and the light receiving element to constitute a head. .
JP22495484A 1984-10-25 1984-10-25 Noncontact probe Pending JPS61102510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22495484A JPS61102510A (en) 1984-10-25 1984-10-25 Noncontact probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22495484A JPS61102510A (en) 1984-10-25 1984-10-25 Noncontact probe

Publications (1)

Publication Number Publication Date
JPS61102510A true JPS61102510A (en) 1986-05-21

Family

ID=16821792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22495484A Pending JPS61102510A (en) 1984-10-25 1984-10-25 Noncontact probe

Country Status (1)

Country Link
JP (1) JPS61102510A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253603A (en) * 1988-04-01 1989-10-09 Topcon Corp Plane-position detector
JP2016102667A (en) * 2014-11-27 2016-06-02 三菱電機株式会社 Displacement sensor and displacement measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253603A (en) * 1988-04-01 1989-10-09 Topcon Corp Plane-position detector
JP2016102667A (en) * 2014-11-27 2016-06-02 三菱電機株式会社 Displacement sensor and displacement measurement device

Similar Documents

Publication Publication Date Title
US4782239A (en) Optical position measuring apparatus
CN100434862C (en) Method for measuring minute angle based on self-commix interference of laser and apparatus thereof
JPH0120402B2 (en)
RU2007115154A (en) OPTICAL MEASURING DEVICE FOR MEASURING CHARACTERISTICS OF MULTIPLE SURFACES OF THE OBJECT OF MEASUREMENT
US4641961A (en) Apparatus for measuring the optical characteristics of an optical system to be examined
KR102323317B1 (en) Lidar sensors and methods for lidar sensors
US3552857A (en) Optical device for the determination of the spacing of an object and its angular deviation relative to an initial position
US4500200A (en) Electro-optic sensor for measuring angular orientation
JPS61102510A (en) Noncontact probe
US10527518B2 (en) Wavefront measurement device and optical system assembly device
JPS6044806A (en) Device for detecting position of body
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JP2840951B2 (en) Automatic collimation device
JPH08261734A (en) Shape measuring apparatus
JP2005172704A (en) Photodetection device and optical system
RU2044264C1 (en) Optical displacement transmitter
RU19322U1 (en) FIBER OPTICAL CONVERTER
JPS6136884Y2 (en)
SU1776989A1 (en) Angle-of-twist sensor
SU1024709A1 (en) Non-flatness checking device
SU1073572A1 (en) Photoelectiric two-coordinate autocollimator
JPH0530089Y2 (en)
RU2044272C1 (en) Range finder
KR100363218B1 (en) Optical measuring system
JPS62804A (en) Method and instrument for measuring surface shape