JPH01253603A - Plane-position detector - Google Patents

Plane-position detector

Info

Publication number
JPH01253603A
JPH01253603A JP8103488A JP8103488A JPH01253603A JP H01253603 A JPH01253603 A JP H01253603A JP 8103488 A JP8103488 A JP 8103488A JP 8103488 A JP8103488 A JP 8103488A JP H01253603 A JPH01253603 A JP H01253603A
Authority
JP
Japan
Prior art keywords
plane
detected
detection
projection lens
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8103488A
Other languages
Japanese (ja)
Other versions
JP2681649B2 (en
Inventor
Hiroaki Shimozono
等 鈴木
Mitsuo Tabata
光雄 田畑
Toru Tojo
東条 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Topcon Corp
Original Assignee
Toshiba Corp
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Topcon Corp filed Critical Toshiba Corp
Priority to JP63081034A priority Critical patent/JP2681649B2/en
Publication of JPH01253603A publication Critical patent/JPH01253603A/en
Application granted granted Critical
Publication of JP2681649B2 publication Critical patent/JP2681649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To detect the height and the inclination of each wafer highly accurately, by satisfying shine proof conditions with respect to the main plane of a projecting lens system for the light source planes and the planes to be detected of three incident luminous fluxes. CONSTITUTION:Three incident luminous fluxes are condensed at three positions of a plane to be detected a' of a wafer. At this time, a common first projecting system 40 comprising a scanning mirror 12, a first mirror 16, a first projecting lens 4, a second mirror 17 and a second projecting lens 5 is used. The main planes of the projecting lenses 4 and 5, the plane including the light source Of each luminous flux and the plane to be detected a' are set so that the shine proof conditions are satisfied. Therefore, three index images 1', 2' and 3' are inputted on the plane to be detected a' at the same angle with the same magnification. The reflected light beams are inputted into photodetectors 25, 26 and 27 vertically with the same magnification. Therefore, the height position, the inclination and the like of the plane of the wafer can be detected highly accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造装置に装填されるウェハやマスク
等の試料の面の高さ及び傾きを光学的に検出する面位置
検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface position detection device that optically detects the height and inclination of a surface of a sample such as a wafer or mask loaded into a semiconductor manufacturing apparatus.

〔従来の技術〕[Conventional technology]

最近のLSI素子高密度実装の趨勢によって、LSI等
の半導体の製造装置に装填されるマスクやウェハ等の試
料は年々高い位置決必精度を要求されるようになってき
た。例えば、マイクロリングラフィ用縮小投影露光装置
において、投影露光レンズの高NA化に伴いレンズの焦
点深度が浅くなるため、装填試料であるウェハの面の高
さ位置検出にはより高精度が要求されるようになる。
With the recent trend of high-density packaging of LSI elements, samples such as masks and wafers loaded into equipment for manufacturing semiconductors such as LSIs are increasingly required to have higher positioning accuracy year by year. For example, in a reduction projection exposure system for microlithography, as the NA of the projection exposure lens increases, the depth of focus of the lens becomes shallower, so higher precision is required to detect the height position of the surface of the wafer, which is the loaded sample. Become so.

特に、ステップアンドリピート方式の縮小投影露光装置
の場合、ウェハ面に投影露光されたマスクの微細パター
ンが露光の各ステップ毎に露光領域の全面に亘って解像
しないことがある。これはウェハ面の高さや傾きが露光
の各ステップ毎にウェハの反りや他の要因により、ウェ
ハ面の露光領域内で投影露光レンズの焦点深度の範囲を
超えて変動するためである。それ故、露光の各ステップ
毎にウェハ面の露光領域内での高さ及び傾きを検出する
ことによってこれらの量が許容範囲内にあるように補正
し、微細パターンが露光領域の全面に戸って解像するよ
うにしなければならない。
In particular, in the case of a step-and-repeat reduction projection exposure apparatus, a fine pattern of a mask projected onto a wafer surface may not be resolved over the entire exposed area at each exposure step. This is because the height and inclination of the wafer surface vary within the exposure area of the wafer surface beyond the range of the depth of focus of the projection exposure lens due to wafer warpage and other factors at each exposure step. Therefore, by detecting the height and tilt of the wafer surface within the exposure area at each exposure step, these amounts are corrected so that they are within the allowable range, and the fine pattern is spread over the entire exposed area. The image must be resolved using the same method.

ウェハ面露光領域内の高さ検出は、光学的テコ方式を利
用して行われることが多い。しかし、この従来方式では
露光領域の中心付近の部位を露光の各ステップ毎に検出
し、その結果に基つき該部位の高さの補正を行っている
に過ぎない。そのため、各ステップで露光される中心部
位以外におけるウェハの高さ、つまりウェハの傾きは補
正されない。従って、NAが高く焦点深度の浅い縮小投
影l/ンズを使用した場合、微細パターンを露光の各ス
テップ毎に露光領域の全面に亘って解像する、二とがで
きないという欠点があった。
Height detection within the wafer surface exposure area is often performed using an optical lever method. However, in this conventional method, a portion near the center of the exposure area is detected at each exposure step, and the height of the portion is only corrected based on the results. Therefore, the height of the wafer other than the central portion exposed in each step, that is, the inclination of the wafer is not corrected. Therefore, when a reduced projection lens with a high NA and a shallow depth of focus is used, there is a drawback that it is impossible to resolve a fine pattern over the entire exposed area at each exposure step.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の課題は、例えば、ステップアントリピート方式
の縮小投影露光装置の装填試料であるウェハ面」二に微
細パターンを投影する場合、焦点深度の浅い投影露光装
置を使用したとしても、微細バクーンが露光の各ステッ
プ毎に露光領域の全面に亘って解像するようにウェハ面
の高さ及び傾きを検出し、その結果に基つきそれらの補
正を行うことのできる面位置検出装置を提供することに
ある。
The problem of the present invention is that, for example, when projecting a fine pattern onto a wafer surface, which is a sample loaded in a step-and-repeat reduction projection exposure apparatus, even if a projection exposure apparatus with a shallow depth of focus is used, the fine pattern is To provide a surface position detection device capable of detecting the height and inclination of a wafer surface so as to resolve the entire surface of an exposure area at each step of exposure, and correcting them based on the results. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の面位置検出装置は、被検出面に斜め方向から少
なくとも3つの光束を入射させ、各入射光束を被検出面
上の一直線上にない少なくとも3つの位置に集光させ、
被検出面からの各反射光束を別々の検出器に集光させて
面の位置を検出する装置において、 上記各入射光束を被検出面上の上記少なくとも3つの位
置に集光させるた約に共通の投影レンズ系を使用し、し
かも投影レンズ系の主平面と、各光束の光源を含む面と
、被検出面とがシャインプルーフの条件を満足すること
を特徴として構成される。
The surface position detection device of the present invention allows at least three light beams to be incident on the detection surface from an oblique direction, and focuses each of the incident light beams on at least three positions on the detection surface that are not on a straight line,
In a device that detects the position of a surface by focusing each reflected light beam from the surface to be detected on a separate detector, common to the convention that each of the above incident light beams is focused on at least three positions on the surface to be detected. The present invention is characterized in that the main plane of the projection lens system, the surface containing the light source of each luminous flux, and the detection surface satisfy the Scheimpflug condition.

〔実施例〕〔Example〕

以下、本発明の実施例の面位置検出装置を図に基ついて
説明する。第1図に示すように、ウェハの表面等である
被検出面a′が縮小投影露光レンズ28に対向して配置
される。露光レンズ28の一方の側には、面検出用の指
標像1′、2′、3′を形成するための光源部30、指
標像1′、2′、:3′を投影するだめの第1投影系4
0が形成され、また露光レンズ28の他の側には、検出
系50、及び検出系50に指標像1′、2′、3′の像
を形成するための第2投影系60が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A surface position detection device according to an embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a surface to be detected a', such as the surface of a wafer, is placed facing the reduction projection exposure lens 28. As shown in FIG. On one side of the exposure lens 28, there is a light source unit 30 for forming target images 1', 2', 3' for surface detection, and a lens for projecting the target images 1', 2', :3'. 1 projection system 4
A detection system 50 and a second projection system 60 for forming target images 1', 2', and 3' on the detection system 50 are formed on the other side of the exposure lens 28. ing.

光源部30は、3つのLED光源3a、3b、8C1こ
れらの光源からの光束をそれぞれスリット1.2.3上
に導くためのリレーレンズ9.10.11からなる。光
源8a、リレーレンズ9及びスリット1の光軸Δ、光源
8b、リレーレンズ10及びスリット2の光軸B1さら
に光源3c。
The light source section 30 consists of three LED light sources 3a, 3b, 8C1, and relay lenses 9, 10, and 11 for guiding the light beams from these light sources onto the slits 1, 2, and 3, respectively. Light source 8a, optical axis Δ of relay lens 9 and slit 1, light source 8b, optical axis B1 of relay lens 10 and slit 2, and light source 3c.

リレーレンズ11及びスリット3光軸Cは、後述の走査
ミラー12の同軸中心を通過するように位置決めされて
いる。スリット1.2.3は実質上指標として作用する
The relay lens 11 and the optical axis C of the slit 3 are positioned so as to pass through the coaxial center of a scanning mirror 12, which will be described later. The slit 1.2.3 essentially acts as an indicator.

第1投影系40は、走査ミラー12、第1ミラー16、
第1投影レンズ4、第2ミラー17、第2投影レンズ5
を有する。そして、走査ミラー12と第1ミラー16と
の間には補正系42が設けられている。
The first projection system 40 includes a scanning mirror 12, a first mirror 16,
First projection lens 4, second mirror 17, second projection lens 5
has. A correction system 42 is provided between the scanning mirror 12 and the first mirror 16.

スリット1.2.3を含む光源面aと被検出面a′とは
、第2図に示すように、第1投影レンズ4及び第2投影
レンズ5に関しシャインプルーフの条件を満足するよう
に配置されている。また、第1投影レンズ4と第2投影
レンズ5は、テレセントリック系を形成している。すな
わち。第1投影レンズ4はこのテレセントリック系の入
射瞳として機能し、第2投影レンズ5の物体側焦点面に
位置している。従って、スリット1.2.3から射出さ
れた光束はテレセントリック系の入射瞳である第1投影
レンズ4を通過後、第2対物レンズ5により光軸に平行
な光束となって像空間を進み、被検出面a′上に指標像
1′、2′、3′を形成する。
The light source surface a including the slit 1.2.3 and the detection surface a' are arranged so as to satisfy the Scheimpflug condition with respect to the first projection lens 4 and the second projection lens 5, as shown in FIG. has been done. Further, the first projection lens 4 and the second projection lens 5 form a telecentric system. Namely. The first projection lens 4 functions as an entrance pupil of this telecentric system and is located on the object side focal plane of the second projection lens 5. Therefore, the light beam emitted from the slit 1.2.3 passes through the first projection lens 4, which is the entrance pupil of the telecentric system, and then becomes a light beam parallel to the optical axis by the second objective lens 5, and travels through the image space. Index images 1', 2', and 3' are formed on the detection surface a'.

補正系42は、第1図に示すように、走査ミラー12で
反射された走査光軸A′、B′、C′を考えると、光軸
Δ′、B′上には、単に光軸を折り曲げさせるための第
3ミラー14及び第4ミラー15がそれぞれ配置される
。光軸C′上には凸レンズ6、平行プリズム13、凹レ
ンズ7が配置される。凸レンズ6及び凹レンズ7は、逆
望遠鏡系を形成する。すなわち、第1投影レンズ4及び
第2投影レンズ5の光軸Oに対し傾斜している光源面a
は、第3図に示すように、凸レンズ6及び凹レンズ7を
挿入することによりスリット3が光学的に第1投影レン
ズ4から離れるようになり、光源面aを光軸Oに対し垂
直にする。
As shown in FIG. 1, considering the scanning optical axes A', B', and C' reflected by the scanning mirror 12, the correction system 42 simply places the optical axes on the optical axes Δ' and B'. A third mirror 14 and a fourth mirror 15 are respectively arranged for bending. A convex lens 6, a parallel prism 13, and a concave lens 7 are arranged on the optical axis C'. Convex lens 6 and concave lens 7 form an inverted telescope system. That is, the light source surface a is inclined with respect to the optical axis O of the first projection lens 4 and the second projection lens 5.
As shown in FIG. 3, by inserting the convex lens 6 and the concave lens 7, the slit 3 is optically separated from the first projection lens 4, and the light source surface a is made perpendicular to the optical axis O.

補正系は、第1図及び第4図に示すように、光軸C′上
に平行プリズム13を有し、これによって光軸C′を平
行移動させて、光軸A′、B′、C′のいずれもが走査
ミラー12の回転中心を通過するようにする。
As shown in FIGS. 1 and 4, the correction system has a parallel prism 13 on the optical axis C', which moves the optical axis C' in parallel to adjust the optical axis A', B', C ′ pass through the center of rotation of the scanning mirror 12.

第2投影系60は、第1図に示すように、実質上光軸O
の被検出面a′による反射光軸である光軸O′上に、第
3投影レンズ18、第5ミラー19、第4投影レンズ2
0、第6ミラー21を設けてなる。第3投影レンズ18
及び第4投影レンズ20はそれぞれ第2投影レンズ5及
び第1投影レンズ4に対応し、逆向きのテレセントリッ
ク光学系を形成し、また、被検出面a′と、後述の半導
体装置検出器(PSD)等の光検出器25.26.27
を含む検出面a Nは共役になるように配置される。
The second projection system 60 has a substantially optical axis O, as shown in FIG.
The third projection lens 18, the fifth mirror 19, and the fourth projection lens 2 are placed on the optical axis O', which is the optical axis reflected by the detection surface a'.
0, a sixth mirror 21 is provided. Third projection lens 18
The fourth projection lens 20 corresponds to the second projection lens 5 and the first projection lens 4, respectively, and forms an oppositely oriented telecentric optical system. ) and other photodetectors 25.26.27
The detection plane a N including the detection plane a N is arranged to be conjugate.

検出系50は、第1図に示すように、指標像1′、2′
からの光束を反射し、指標像3′からの光束を通過させ
る孔あきミラー52、指標像3′からの光束を反射する
ための第7ミラー54を有する。検出系50はさらに、
指標像1′、2′、3′からのそれぞれの光束を導いて
受光するためのリレーレンズ22.23.24及び光検
出器25.26.27が設けられている。
The detection system 50, as shown in FIG.
It has a perforated mirror 52 that reflects the luminous flux from the index image 3' and passes the luminous flux from the index image 3', and a seventh mirror 54 that reflects the luminous flux from the index image 3'. The detection system 50 further includes:
Relay lenses 22, 23, 24 and photodetectors 25, 26, 27 are provided for guiding and receiving the respective light beams from the target images 1', 2', 3'.

上記光学系において、スリット1.2.3から出た光束
はそれぞれ同一倍率でかつ垂直に光検出器25.26.
27に入射するから、それぞれの光束は均等な条件で検
出されることになる。
In the above optical system, the light beams emitted from the slits 1, 2, and 3 are directed vertically to the photodetectors 25, 26, and 25 with the same magnification, respectively.
27, each luminous flux is detected under equal conditions.

なお、被検出面a′上に結像された各指標像1′、2′
、3′は、第5図に示すように、正三角形の頂点にあり
、指標像1′、2′、3′の座標をそれぞれ(X、 、
、Y 、、 Z 、)、< X 2. y 2. 、z
 2)、(X3. Y3. Z3)とすると、被検出面
a′の露光される領域の中心は、上記正三角形の中心と
一致する。上記各スリット像の位置を表示するため、第
5図に示すように、上記正三角形の中心を原点とし、上
記ウェハ面上にχ、Y軸が横たわり、該中心においてウ
ェハ面に立てた法線方向にZ軸があるような直交座標系
を考える。直交座標系のX軸を指標像3′を通る直線に
選べば、Y軸は指標像1′、2′を結ぶ線分に平行にな
る。
Note that each index image 1', 2' formed on the detection surface a'
, 3' are located at the vertices of the equilateral triangle, as shown in Fig. 5, and the coordinates of the index images 1', 2', and 3' are (X, ,
,Y,,Z,),<X2. y2. ,z
2), (X3. Y3. Z3), the center of the exposed area of the detection surface a' coincides with the center of the equilateral triangle. In order to display the position of each of the slit images, as shown in FIG. Consider a Cartesian coordinate system with a Z-axis in the direction. If the X-axis of the orthogonal coordinate system is chosen to be a straight line passing through the index image 3', the Y-axis will be parallel to the line segment connecting the index images 1' and 2'.

次に、制御回路70及び検出系50で検出された検出信
号を処理する検出回路80を説明する。
Next, the detection circuit 80 that processes the detection signal detected by the control circuit 70 and the detection system 50 will be described.

第6図に示すように、走査ミラー12には駆動回路29
及び駆動装置32が接続され、また光源8a、3b、3
cのそれぞれには電源回路34a134b、34Cが接
続されている(一系統のみ図示する)。これらの回路の
作動により、被検出面a′に指標像1′、2′、3′が
順次形成される。
As shown in FIG. 6, the scanning mirror 12 has a driving circuit 29.
and the driving device 32 are connected, and the light sources 8a, 3b, 3
Power supply circuits 34a, 134b and 34C are connected to each of c (only one system is shown). By the operation of these circuits, index images 1', 2', and 3' are sequentially formed on the detection surface a'.

検出系50においては、走査ミラー12を回動させて指
標像1′、2′、3′をX方向に走査させると、光検出
器25.26.27」−においても指標像IM、2″、
3Mはこれに対応した同一方向に走査する。また、被検
出面a′のX方向の変位も指標像1″′、2″′、3″
′の変位として現われ、この変位は光検出器25.26
.27のアンバランス信号として検出される。
In the detection system 50, when the scanning mirror 12 is rotated to scan the index images 1', 2', 3' in the X direction, the index images IM, 2'' are also detected on the photodetectors 25, 26, 27''. ,
3M scans in the same direction corresponding to this. In addition, the displacement of the detection surface a' in the X direction is also determined by the index images 1'', 2'', and 3''.
', and this displacement appears as a displacement of the photodetector 25.26
.. 27 is detected as an unbalanced signal.

検出回路80は、第6図に示すように、光検出器25に
接続された加算回路81、減算回路82、これら加算回
路81及び減算回路82の出力に接続された除算器83
を有し、除算器83は平均化回路84を介して位置検出
回路85に接続される(1系統のみ図示する)。
As shown in FIG. 6, the detection circuit 80 includes an addition circuit 81 and a subtraction circuit 82 connected to the photodetector 25, and a divider 83 connected to the outputs of the addition circuit 81 and the subtraction circuit 82.
The divider 83 is connected to a position detection circuit 85 via an averaging circuit 84 (only one system is shown).

」−記回路において、光検出器85で検出されたアンバ
ランス信号はそれぞれ加算回路81で加算され、減算回
路82で減算される。これらの出力は除算回路83で除
算されて両者の比が算出され、位置検出回路85によっ
て演算処理されてX方向の高さが求められる。
In the circuit described above, the unbalanced signals detected by the photodetector 85 are respectively added by an adding circuit 81 and subtracted by a subtracting circuit 82. These outputs are divided by a division circuit 83 to calculate the ratio between the two, and the position detection circuit 85 performs arithmetic processing to determine the height in the X direction.

同様にして、検出点2′および3′の位置の高さZ2 
およびZ3  も夫々に位置検出信号として算出される
。各位置検出信号Z1、Z2およびZ3は演算回路86
に導かれ、この演算回路はウェハの高さの平均(ZI 
 +Z2 + Z3) / 3及びX方向の傾き成分(
(21+22)/2−23 )、およびY方向の傾き成
分(Z、−22)を演算し、ウェハ面a′の高さ及び傾
きを算出する。
Similarly, the height Z2 at the positions of detection points 2' and 3'
and Z3 are also respectively calculated as position detection signals. Each position detection signal Z1, Z2 and Z3 is sent to the arithmetic circuit 86.
This calculation circuit calculates the average height of the wafer (ZI
+Z2 + Z3) / 3 and the tilt component in the X direction (
(21+22)/2-23) and the tilt component (Z, -22) in the Y direction to calculate the height and tilt of the wafer surface a'.

以上説明した実施例−′は、被検出面上に選んだ3つの
検出点を例にとっていたが、より多くの複数点を選び、
これらの選ばれた点のデータを基にして被検出面の平均
的な高さ及び傾きの成分の演算回路により算出すること
も可能である。
In the embodiment-' described above, three detection points were selected on the detection surface, but if more points were selected,
It is also possible to calculate the average height and inclination components of the detection surface using a calculation circuit based on the data of these selected points.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、複数の指標像が被検出
面に同一倍率で同一の角度をもって入射され、また被検
出面で反射されたそれぞれの指標像の反則光は元栓7J
f器に同一倍率で垂直に入射ず1す るから、面位置すなわち面の高さ位置、傾斜等を高精度
に検出することができる利点を有する。
As explained above, in the present invention, a plurality of index images are incident on the detection surface at the same magnification and at the same angle, and the repulsive light of each index image reflected on the detection surface is
Since the light is incident perpendicularly to the f-detector at the same magnification, it has the advantage that the surface position, that is, the height position, inclination, etc. of the surface can be detected with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の面位置検出装置の光学斜視図
、第2図ないし第4図は指標面と被検出面の関係を示す
光学説明図、第5図は被検出面の座標説明図、第6図は
検出及び制御回路図である。 a・・・・・・光源面    a′・・・被検出面a′
・・・・・・検出面   1,2.3・・・・・スリッ
ト6・・ 凸レンズ   7・・・・凹レンズ12・・
・・・走査ミラー 13 ・・・・平行ミラー30・・
・・・・光源部   40 ・・・・第1投影系42・
・・・・・補正系   50・ 被検出系60・・・・
・・第2投影系
FIG. 1 is an optical perspective view of a surface position detection device according to an embodiment of the present invention, FIGS. 2 to 4 are optical explanatory diagrams showing the relationship between the index surface and the detected surface, and FIG. 5 is the coordinates of the detected surface. The explanatory diagram, FIG. 6, is a detection and control circuit diagram. a...Light source surface a'...Detected surface a'
...Detection surface 1, 2.3...Slit 6...Convex lens 7...Concave lens 12...
...Scanning mirror 13 ...Parallel mirror 30...
...Light source section 40 ...First projection system 42.
...Correction system 50・Detected system 60...
・Second projection system

Claims (3)

【特許請求の範囲】[Claims] (1)被検出面に斜め方向から少なくとも3つの光束を
入射させ、各入射光束を被検出面上の一直線上にない少
なくとも3つの位置に集光させ、被検出面からの各反射
光束を別々の検出器に集光させて面の位置を検出する装
置において、上記各入射光束を被検出面上の上記少なく
とも3つの位置に集光させるために共通の投影レンズ系
を使用し、しかも投影レンズ系の主平面と、各光束の光
源を含む面と、被検出面とがシャインプルーフの条件を
満足することを特徴とする面位置検出装置。
(1) At least three light beams are incident on the detection surface from oblique directions, each incident light beam is focused on at least three positions on the detection surface that are not in a straight line, and each reflected light beam from the detection surface is separately collected. In a device for detecting the position of a surface by focusing light on a detector, a common projection lens system is used to focus each of the incident light beams on the at least three positions on the detection surface, and the projection lens A surface position detection device characterized in that a main plane of the system, a surface containing a light source of each luminous flux, and a detected surface satisfy Scheimpflug conditions.
(2)上記投影レンズ系が各主光線をテレセントリック
とするように構成され、上記各光束の夫々の光源を含む
面が投影レンズ系の光軸に垂直になるように補正光学系
を挿入した請求項(1)項記載の面位置検出装置。
(2) A claim in which the projection lens system is configured so that each principal ray is telecentric, and a correction optical system is inserted so that the plane containing each light source of each light beam is perpendicular to the optical axis of the projection lens system. The surface position detection device according to item (1).
(3)上記各光束の光源は等倍で被検出面上に投影され
、かつ各光束は共通の振動ミラーによって振動させられ
るように構成された請求項(1)項記載の面位置検出装
置。
(3) The surface position detection device according to claim (1), wherein the light source of each of the light beams is projected onto the detection surface at the same magnification, and each light beam is vibrated by a common vibrating mirror.
JP63081034A 1988-04-01 1988-04-01 Surface position detection device Expired - Fee Related JP2681649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081034A JP2681649B2 (en) 1988-04-01 1988-04-01 Surface position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081034A JP2681649B2 (en) 1988-04-01 1988-04-01 Surface position detection device

Publications (2)

Publication Number Publication Date
JPH01253603A true JPH01253603A (en) 1989-10-09
JP2681649B2 JP2681649B2 (en) 1997-11-26

Family

ID=13735173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081034A Expired - Fee Related JP2681649B2 (en) 1988-04-01 1988-04-01 Surface position detection device

Country Status (1)

Country Link
JP (1) JP2681649B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633721A (en) * 1991-10-30 1997-05-27 Nikon Corporation Surface position detection apparatus
US6088110A (en) * 1998-03-16 2000-07-11 Cyberoptics Corporation Digital range sensor system
WO2007040254A1 (en) 2005-10-05 2007-04-12 Nikon Corporation Exposure apparatus and exposure method
US7433050B2 (en) 2005-10-05 2008-10-07 Nikon Corporation Exposure apparatus and exposure method
JP2011192990A (en) * 2010-03-12 2011-09-29 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8351024B2 (en) 2009-03-13 2013-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a level sensor having a detection grating including three or more segments
US8488107B2 (en) 2009-03-13 2013-07-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a level sensor having multiple projection units and detection units
US8675210B2 (en) 2009-03-13 2014-03-18 Asml Netherlands B.V. Level sensor, lithographic apparatus, and substrate surface positioning method
US8767172B2 (en) 2004-09-30 2014-07-01 Nikon Corporation Projection optical device and exposure apparatus
US8842293B2 (en) 2009-03-13 2014-09-23 Asml Netherlands B.V. Level sensor arrangement for lithographic apparatus and device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189005A (en) * 1981-05-18 1982-11-20 Mitsubishi Electric Corp Detector for angle of inclination of plane
JPS6120808A (en) * 1984-07-09 1986-01-29 Canon Inc Range measuring instrument
JPS61102510A (en) * 1984-10-25 1986-05-21 Nippon Kogaku Kk <Nikon> Noncontact probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189005A (en) * 1981-05-18 1982-11-20 Mitsubishi Electric Corp Detector for angle of inclination of plane
JPS6120808A (en) * 1984-07-09 1986-01-29 Canon Inc Range measuring instrument
JPS61102510A (en) * 1984-10-25 1986-05-21 Nippon Kogaku Kk <Nikon> Noncontact probe

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633721A (en) * 1991-10-30 1997-05-27 Nikon Corporation Surface position detection apparatus
US6088110A (en) * 1998-03-16 2000-07-11 Cyberoptics Corporation Digital range sensor system
US6288786B1 (en) 1998-03-16 2001-09-11 Cyberoptics Corporation Digital range sensor system
US6353478B1 (en) 1998-03-16 2002-03-05 Cyberoptics Corporation Digital range sensor system
US8767172B2 (en) 2004-09-30 2014-07-01 Nikon Corporation Projection optical device and exposure apparatus
WO2007040254A1 (en) 2005-10-05 2007-04-12 Nikon Corporation Exposure apparatus and exposure method
US7433050B2 (en) 2005-10-05 2008-10-07 Nikon Corporation Exposure apparatus and exposure method
US8064067B2 (en) 2005-10-05 2011-11-22 Nikon Corporation Exposure apparatus and exposure method
US8488107B2 (en) 2009-03-13 2013-07-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a level sensor having multiple projection units and detection units
US8351024B2 (en) 2009-03-13 2013-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a level sensor having a detection grating including three or more segments
US8675210B2 (en) 2009-03-13 2014-03-18 Asml Netherlands B.V. Level sensor, lithographic apparatus, and substrate surface positioning method
US8842293B2 (en) 2009-03-13 2014-09-23 Asml Netherlands B.V. Level sensor arrangement for lithographic apparatus and device manufacturing method
US8619235B2 (en) 2010-03-12 2013-12-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2011192990A (en) * 2010-03-12 2011-09-29 Asml Netherlands Bv Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
JP2681649B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
KR100544439B1 (en) Lithographic Projection Unit with Alignment Unit
JP3203719B2 (en) Exposure apparatus, device manufactured by the exposure apparatus, exposure method, and device manufacturing method using the exposure method
US5907405A (en) Alignment method and exposure system
JPH02102518A (en) Detection of surface position
US7197176B2 (en) Mark position detecting apparatus and mark position detecting method
JPH01253603A (en) Plane-position detector
JPS61174717A (en) Positioning apparatus
JP2756331B2 (en) Interval measuring device
JPH0581046B2 (en)
JPH0927445A (en) Shot map preparing method
JPS62150106A (en) Apparatus for detecting position
US20150155137A1 (en) Method for measuring inclination of beam, drawing method, drawing apparatus, and method of manufacturing object
JPH0230112A (en) Measurement of exposure condition
JP2910151B2 (en) Position detection device
JPH104055A (en) Automatic focusing device and manufacture of device using it
JP2681649C (en)
JPH10172900A (en) Exposure apparatus
JP2000106345A (en) Aligner, device manufactured by the same, exposure method, and device manufacturing method using the same
JPH01180405A (en) Inclination detecting method
JPH02167405A (en) Position detector
JP2749900B2 (en) Position detection method
JPH10209029A (en) Exposure device provided with alignment system
JP2924178B2 (en) Position detection device
JPH0412523A (en) Position detector
JPH043911A (en) Device for detecting misregistration of mask and wafer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees