JPS6110228A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JPS6110228A
JPS6110228A JP59131378A JP13137884A JPS6110228A JP S6110228 A JPS6110228 A JP S6110228A JP 59131378 A JP59131378 A JP 59131378A JP 13137884 A JP13137884 A JP 13137884A JP S6110228 A JPS6110228 A JP S6110228A
Authority
JP
Japan
Prior art keywords
activated carbon
carbon fiber
pulp
electric double
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59131378A
Other languages
Japanese (ja)
Other versions
JPH0315813B2 (en
Inventor
敦 西野
昭彦 吉田
康弘 竹内
棚橋 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59131378A priority Critical patent/JPS6110228A/en
Publication of JPS6110228A publication Critical patent/JPS6110228A/en
Publication of JPH0315813B2 publication Critical patent/JPH0315813B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、活性炭繊維パルプで分極性電極を構成した大
容量湿式電気二重層キャパシタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a large-capacity wet electric double layer capacitor in which polarizable electrodes are made of activated carbon fiber pulp.

従来例の構成とその問題点 第1図に従来のこの種のキャパシタの1構成例を示す。Conventional configuration and its problems FIG. 1 shows an example of the configuration of a conventional capacitor of this type.

分極性電極1として活性炭繊維布を用い、その片面に集
電体2として、アルミニウム、チタン、ニッケル等の金
属層、または導電性樹脂層からなる集電層を形成し、セ
パレータ3を介して相対向させ、電解液を注入後ケース
4と封口板6およびガスケット6を用い封口ケーシング
した構成を有する。またここで分極性電極に用いる活性
炭繊維は、フェノール系(硬化ノボラック繊維)。
Activated carbon fiber cloth is used as the polarizable electrode 1, and a current collecting layer made of a metal layer such as aluminum, titanium, nickel, etc. or a conductive resin layer is formed as a current collector 2 on one side of the cloth. After the electrolytic solution is injected, a case 4, a sealing plate 6, and a gasket 6 are used to seal the casing. The activated carbon fiber used for the polarizable electrode is phenolic (cured novolac fiber).

レーヨン系、アクリル系、ピッチ系の繊維布を直接炭化
賦活するか、一度炭化後さらに賦活して得られる。
It can be obtained by directly carbonizing and activating rayon-based, acrylic-based, or pitch-based fiber cloth, or by further activating it after carbonization.

得られた活性炭繊維の電気抵抗1強度、賦活収率等を考
慮すると上記の繊維の中でフェノール系のものが一番優
れている。また金属の集電体は、プラズマ溶射法やアー
ク溶射法あるいはガス溶射法によシ、また導電性樹脂な
どの導電性物質からなる導電性電極はスクリーン印刷法
やスプレィ法。
Considering the electrical resistance, strength, activation yield, etc. of the obtained activated carbon fibers, phenolic fibers are the best among the above-mentioned fibers. Metal current collectors can be made by plasma spraying, arc spraying, or gas spraying, and conductive electrodes made of conductive materials such as conductive resin can be made by screen printing or spraying.

ディップ法のいずれかにより容易に形成できる。It can be easily formed by any of the dipping methods.

このような形状を有する分極性電極は、所望の径の円形
状に打ちぬき可能であり、第1図に示したコイン型平板
小型大容量キャパシタを実現できる。
A polarizable electrode having such a shape can be punched into a circular shape with a desired diameter, and the coin-shaped flat plate small-sized large-capacity capacitor shown in FIG. 1 can be realized.

−まだこの種の分極性電極はバインダーを用いないため
内部抵抗を低減できるだけでなく、バインダーにより活
性炭表面が被覆されることなく、二重層形成有効面積の
ロスが小さく小型大容量化がはかれる。
- Since this type of polarizable electrode does not use a binder, it not only can reduce the internal resistance, but also the activated carbon surface is not covered with a binder, so the loss of effective area for double layer formation is small, and it can be made smaller and have a larger capacity.

特に溶射法により集電体を形成すると、溶射金属層と活
性炭繊維層との密着強度が強く、接触抵抗が小さくなり
、良好なキャパシタ特性を得ることができる。
In particular, when the current collector is formed by a thermal spraying method, the adhesive strength between the thermal sprayed metal layer and the activated carbon fiber layer is strong, the contact resistance is small, and good capacitor characteristics can be obtained.

しかし、エレクトロニクス業界の技術進歩は著しいもの
があり、活性炭繊維布を用いた高性能大容量コンデンサ
に対しても、さらに高性能化が要求されている。特に、
単位体積当りの高容量化。
However, technological progress in the electronics industry is remarkable, and even higher performance is required for high-performance, large-capacity capacitors using activated carbon fiber cloth. especially,
High capacity per unit volume.

コストダウン、急速充放電性、電極形状に対する設計の
自由度、製造作業環境の改善等がある。
Benefits include cost reduction, rapid charging and discharging, flexibility in electrode shape design, and improved manufacturing work environment.

しかしながら、従来の活性炭繊維布は種々の優れた長所
を有するが、紡糸の状態から所望の布地を得るまでに4
〜6ケ月のリードタイムが必要であり、ユーザの要望に
迅速に応えるには、この長いリードタイムは製造上問題
があり、また、目付は量の異なる品番や織方式の異なる
布地の在庫保管も大変である。また、目付は量の多い特
殊な織り力をすると織賃が原料系の何倍かになる問題点
を有している。
However, although the conventional activated carbon fiber cloth has various excellent advantages, it takes four steps to obtain the desired cloth from the spinning state.
A lead time of ~6 months is required, and in order to quickly respond to user requests, this long lead time poses a manufacturing problem.In addition, it is necessary to keep inventory of fabrics with different product numbers and weaving methods with different weights and quantities. It's difficult. In addition, there is a problem in that when a special weaving force with a large basis weight is used, the weaving cost becomes several times that of the raw material.

また、原料収束糸や織布け、炭化や活性炭化する過程で
重量的にバ〜%となり、面積的にも号となる。したがっ
て、活性炭布の内部の空隙率は60〜70チもある。
In addition, in the process of carbonizing and activated carbonizing the raw material converging threads and woven fabrics, the weight becomes % to %, and the area also becomes large. Therefore, the porosity inside the activated carbon cloth is as high as 60 to 70 inches.

また、電気抵抗的には、第2図に示されるように、活性
炭布7にアルミニウム等の金属集電体層8を形成した分
極性電極の場合、集電体層8近くのa−d′方向におけ
る導電性は良好であるが、b−b’力方向導電性は非常
に悪いと考えられる。
In addition, in terms of electrical resistance, as shown in FIG. The conductivity in the bb' direction is considered to be good, but the conductivity in the bb' force direction is considered to be very poor.

したがってインピーダンスも大きくなり、急速充電には
適さないキャパシタとなる。
Therefore, the impedance becomes large, making the capacitor unsuitable for rapid charging.

さらに大型のキャパシタを構成する場合、結合剤を必要
としない活性炭繊維布は体積効率が良好である。しかし
ながら、フェノール系ノボラック樹脂繊維から得られた
活性炭繊維布は比表面積を2500ff//iに壕で活
性化することができるとは言っても、2soorr?/
I/以上になると活性炭繊維の多孔度が増加し、活性炭
布の機械的強度が低下し、量産機にかからなくなったり
、寸法精度が得られなくなる。そのためキャパシタの特
性改善のため活性炭繊維布の炭化賦活度を23oorr
?/g以上にすることは困難である。
Furthermore, when constructing larger capacitors, activated carbon fiber cloth, which does not require a binder, has good volumetric efficiency. However, although activated carbon fiber cloth obtained from phenolic novolac resin fibers can be activated with a trench to have a specific surface area of 2500 ff//i, 2 soorr? /
When it exceeds I/, the porosity of the activated carbon fibers increases, the mechanical strength of the activated carbon cloth decreases, and it becomes impossible to use a mass production machine or obtain dimensional accuracy. Therefore, in order to improve the characteristics of the capacitor, the carbonization activation degree of the activated carbon fiber cloth was set to 23oorr.
? /g or more is difficult.

発明の目的 本発明は、単位体積当りのキャパシタ容量を高められる
とともに、高速充放電特性、高湿保存特性、量産性およ
び低コスト化等の緒特性を著しく改善できる電気二重層
キャパシタを提供することを目的とする。
OBJECTS OF THE INVENTION The present invention provides an electric double layer capacitor that can increase the capacitor capacity per unit volume and can significantly improve other characteristics such as high-speed charging and discharging characteristics, high-humidity storage characteristics, mass productivity, and low cost. With the goal.

発明の構成 上記の目的を達成するために本発明では、高比表面積を
有する活性炭繊維パルプと必要に応じて、繊維状物質を
併用して、集電体表面に活性炭繊維パルプを高密度に被
覆形成せしめて高性能分極性電極体を構成するものであ
る。
Structure of the Invention In order to achieve the above object, the present invention uses activated carbon fiber pulp having a high specific surface area and, if necessary, a fibrous substance to cover the surface of a current collector with high density activated carbon fiber pulp. This structure forms a high-performance polarizable electrode body.

実施例の説明 以下、本発明の実施例と必要条件を添付図面にもとづい
て説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments and requirements of the present invention will be described with reference to the accompanying drawings.

1)製造工程 先ず、本発明を実施するために必要な活性炭繊維パルプ
と繊維状物質で構成される分極性電極体の製造工程を説
明する。
1) Manufacturing process First, the manufacturing process of a polarizable electrode body composed of activated carbon fiber pulp and fibrous material necessary for carrying out the present invention will be explained.

第3図は本発明で用いる4極性電極体の製造工程図であ
る。
FIG. 3 is a manufacturing process diagram of a quadripolar electrode body used in the present invention.

活性炭繊維パルプを調製するための原料10としては、
フェノール系、アクリル系、レーヨン系。
As raw material 10 for preparing activated carbon fiber pulp,
Phenol-based, acrylic-based, rayon-based.

ピッチ系の各合成繊維が好ましい。これらの原料から5
〜40μmの繊維のロングヒラメント11を、ロービン
グ状またはトウ(tow )状繊維12に収束して、こ
の収束糸を炭化し、活性炭化を行なうがフェノール繊維
の場合、炭化と活性炭化13を同時に行なう。その後、
水中で、0.1〜3oIIIlの分極性電極に適した所
望の長さの繊維長に切断14して、活性炭パルプを得る
Pitch-based synthetic fibers are preferred. From these raw materials 5
Long filaments 11 of ~40 μm fibers are converged into roving or tow-like fibers 12, and the converged fibers are carbonized and activated carbonized, but in the case of phenolic fibers, carbonization and activated carbonization 13 are carried out simultaneously. Let's do it. after that,
The activated carbon pulp is obtained by cutting 14 in water to a desired fiber length suitable for polarizable electrodes of 0.1 to 3oIIIl.

この工程で、合成繊維糸から、撚糸を経て、布状で活性
炭布を得てパルプ化したり、また、合成繊維布からフェ
ルト状、不織布状を経て、活性炭布を経て、パルプ化す
ることも考えられるが、不化を行なう方が好ましい。
In this process, it is also possible to create activated carbon cloth from synthetic fiber yarn through twisting, to obtain cloth-like activated carbon cloth, and to pulp it, or from synthetic fiber cloth to felt-like, non-woven cloth, activated carbon cloth, and pulp. However, it is preferable to perform inertization.

本発明に従い、分極性電極体としてロール状。According to the invention, the polarizable electrode body is in the form of a roll.

シート状、据置用箱型電極体等のものを得る場合に、活
性炭繊維パルプだけで分極性電極体を製造することも可
能であるが、その他の繊維状物質(パルプ材)16を助
材として用いると電極体に柔軟性と衝撃吸収機能が付加
され分極性電極体の製造がさらに容易になったり、長期
間安定であったシ、電極体を捲回する際の加工応力に対
して機械的強度が改善されるので、必要に応じて繊維状
物質を添加しても良い。
When obtaining sheet-shaped, stationary box-shaped electrode bodies, etc., it is possible to manufacture polarizable electrode bodies using only activated carbon fiber pulp, but other fibrous substances (pulp materials) 16 can be used as auxiliary materials. When used, it adds flexibility and shock absorption function to the electrode body, making it easier to manufacture polarizable electrode bodies, and it is stable for a long period of time. A fibrous substance may be added as necessary, since the strength is improved.

次に活性炭繊維パルプと繊維状物質を水中で充分混合1
6L、次いで、明解17を行なう。この工程においては
、水中で、活性炭繊維パルプや繊維状物質が水で膨潤し
、収束繊維がほぐれ、フィブル化が進行し、ミクロフィ
ブル化が進行し、活性炭繊維パルプや繊維状物質の相互
拡散や相互のからみ合いと結合力が進行し、パルプとし
ての均一化が進行するので、重要な工程である。この工
程で必要に応じて、分散助剤18やその後の工程で必要
な結合助剤を添加する場合がある。
Next, the activated carbon fiber pulp and fibrous material are thoroughly mixed in water.
6L, then do Clarification 17. In this process, activated carbon fiber pulp and fibrous substances swell in water, convergent fibers loosen, fibrillation progresses, microfibrillation progresses, and activated carbon fiber pulp and fibrous substances mutually diffuse and interact. This is an important process because the entanglement and bonding force of the pulp progresses, and the pulp becomes more uniform. In this step, if necessary, a dispersion aid 18 and a binding aid required in subsequent steps may be added.

明解工程を経た分極性パルプ材は所望の集電極19(箔
状、エンボス状、ネット状、パンチング状、ラス状)上
に被覆20される。この分極性電極体を得るための被覆
工程においては、分極性パルプ材を集電体とともに圧着
、圧延ロール、プレス、ハケ塗り等の方法で被覆形成し
、連続したシート状またはロール状の分極性電極体を得
る。この連続した分極性電極体を乾燥21し、所望の形
状に裁断22する。
The polarizable pulp material that has undergone the clarifying process is coated 20 on a desired collector electrode 19 (foil-like, embossed-like, net-like, punched-like, lath-like). In the coating process to obtain this polarizable electrode body, the polarizable pulp material is coated with the current collector by methods such as crimping, rolling, pressing, brushing, etc. to form a continuous sheet or roll of polarizable material. Obtain an electrode body. This continuous polarizable electrode body is dried 21 and cut 22 into a desired shape.

このようにして得られた集電極と活性炭繊維パルプから
なる分極性電極体23は、活性炭繊維密度が従来法の活
性炭クロス状のものより2〜4倍の密度と繊維間の結合
強度を有し、容量的には活性炭クロスの2〜4倍、粉末
活性炭の5〜1o倍の性能が得られ、かつ集電極と効果
的にからみ合い適当な強度を有し分極性電極の抵抗も小
となるので、低抵抗、大容量コンデンサの開発が可能と
なり、瞬間充放電が可能となる優れたものである。
The polarizable electrode body 23 made of the collector electrode and activated carbon fiber pulp thus obtained has an activated carbon fiber density that is 2 to 4 times higher than that of a conventional activated carbon cross-like structure, and a bonding strength between the fibers. In terms of capacity, it has 2 to 4 times the performance of activated carbon cloth and 5 to 10 times that of powdered activated carbon, and it is effectively intertwined with the collector electrode to have appropriate strength and the resistance of the polarizable electrode is small. This makes it possible to develop low-resistance, high-capacity capacitors, which are excellent and capable of instantaneous charging and discharging.

2)活性炭繊維パルプ 本発明で用いる電気二重層用活性炭電極は、500〜3
000m7yの高比表面積を有し、細孔径が18〜60
人が好ましく、細孔容積として0.2〜1.scc/y
が好ましい。特に好ましい範囲は比表面積2000−3
000mVy、細孔径20−40人、細孔容積0.5〜
1. ts cc/yである。このような優れた特性を
有する活性炭繊維は合成繊維から炭化・活性炭化するこ
とが適している。合成繊維はフェノール系、アクリル系
、レーヨン系、ピッチ系が好ましく、特に炭素密度の優
れたフェノール系繊維が本発明に最適である。
2) Activated carbon fiber pulp The activated carbon electrode for electric double layer used in the present invention has a fiber pulp of 500 to 3
It has a high specific surface area of 000 m7y and a pore size of 18 to 60
The pore volume is preferably 0.2 to 1. scc/y
is preferred. A particularly preferable range is a specific surface area of 2000-3
000mVy, pore diameter 20-40, pore volume 0.5~
1. ts cc/y. Activated carbon fibers having such excellent properties are suitably carbonized and activated carbonized from synthetic fibers. The synthetic fibers are preferably phenol-based, acrylic-based, rayon-based, or pitch-based, and phenolic fibers with excellent carbon density are particularly suitable for the present invention.

前記の活性炭条件を得るためには繊維条件として、繊維
径が5〜40μmであることが好ましく、特に10〜2
0μmが最適である。捷だ活性炭繊維パルプとしての繊
維長は0.1〜30 eraが好ましく、特に0.5〜
6IO+の範囲が活性炭電極として最適であった。
In order to obtain the above activated carbon conditions, the fiber diameter is preferably 5 to 40 μm, particularly 10 to 2 μm.
0 μm is optimal. The fiber length of the shattered activated carbon fiber pulp is preferably 0.1 to 30 era, particularly 0.5 to 30 era.
The range of 6IO+ was optimal for activated carbon electrodes.

また、活性炭繊維を製造するにあたり、5〜40μmの
ロングヒラメントを前記の如く、ロービング状またはト
ウ状に収束糸として収束し、炭化・賦活化することが品
質上と量産上の観点から好ましい。撚糸状や紐状にする
と炭化・賦活時に収束糸の中心部1で均一に賦活剤が拡
散しないためである。
In addition, in producing activated carbon fibers, it is preferable from the viewpoint of quality and mass production that long filaments of 5 to 40 μm are converged into a roving or tow shape as a convergent thread, and then carbonized and activated. This is because if it is made into a twisted thread or a string, the activator will not diffuse uniformly in the center 1 of the convergent thread during carbonization and activation.

繊維条件として上記の条件を必要とする理由は繊維径が
4oμm以上になると、比表面積として260o〜30
00m7りのものが得られず、また細孔容積として1.
sy/ccのものが得られない。
The reason why the above conditions are required as fiber conditions is that when the fiber diameter is 4oμm or more, the specific surface area is 260o~30μm.
00m7 could not be obtained, and the pore volume was 1.
sy/cc cannot be obtained.

繊維が逆に10μm以下となると、細くて、繊維効率も
悪蚤く、活性炭化する過程で、繊維が折れ易く、作業性
も悪く、また分極性電極として構成すると漏洩電流、高
温容量変化率等で特性劣化を示すので好捷しくない。上
記の範囲内で繊維条件は分極性電極の特性と量産性等を
勘案して決凍る必要がある。
On the other hand, if the fiber is less than 10 μm, it will be thin, the fiber efficiency will be poor, the fiber will break easily during the activated carbonization process, and the workability will be poor, and if it is configured as a polarizable electrode, it will cause problems such as leakage current and high-temperature capacity change rate. This is not a good choice because it shows characteristic deterioration. The fiber conditions must be determined within the above range, taking into consideration the characteristics of the polarizable electrode, mass productivity, etc.

繊維の切断は、空気中でも可能であるが、粉塵等も飛散
し、壕だ、微粉になりすぎるので水中で水を媒体として
粉砕することが好ましく、切断にあたり微粉にならない
よう、ジューサ、ジューサミキサ、ギロチンカッター、
ホレンダー、リコアイナ、ジヨルダン精砕機等が本発明
の目的にかなっている。
Although it is possible to cut the fibers in the air, it also scatters dust and becomes too fine, so it is preferable to crush the fibers in water using water as a medium. guillotine cutter,
Hollender, Likoaina, Giordan refiners, etc. are suitable for the purpose of this invention.

本発明で活性炭繊維パルプの代替として粉末活性炭を用
いることは基本的に可能であるが、単位体積当りの容量
、低温特性、漏洩電流、容量変化率特性等で活性炭繊維
パルプ電極より特性的に劣るので好ましくない。
Although it is basically possible to use powdered activated carbon as a substitute for activated carbon fiber pulp in the present invention, it is inferior to activated carbon fiber pulp electrodes in terms of capacity per unit volume, low temperature characteristics, leakage current, capacity change rate characteristics, etc. So I don't like it.

3)繊維状物質(パルプ) 本発明で用いる活性炭繊維パルプからなる分極性電極体
は、活性炭繊維パルプと集電体とで平板型やコイン状の
分極性電極体を構成することも可能であるが、前記の如
く、分極性電極体をシート状やロール状に加工し、使用
上で捲回状で用いる場合やシート状電極体からコイン型
に打ち抜く時には、集電極と活性炭繊維電極との密着性
や結合性を改善する必要がある。また用途上で、分極性
電極体を自動車用スタータのパック・アップとして用い
る場合には耐震特性、耐衝撃特性の改善が必要となる。
3) Fibrous substance (pulp) The polarizable electrode body made of activated carbon fiber pulp used in the present invention can also be configured into a flat or coin-shaped polarizable electrode body by the activated carbon fiber pulp and the current collector. However, as mentioned above, when the polarizable electrode body is processed into a sheet or roll shape and used in a wound form or when punched into a coin shape from the sheet-like electrode body, the close contact between the collector electrode and the activated carbon fiber electrode is difficult. It is necessary to improve the properties and connectivity. Furthermore, when the polarizable electrode body is used as a pack-up for an automobile starter, it is necessary to improve the seismic resistance and impact resistance.

そのような用途に対して繊維状物質で電極自体に衝撃吸
収機能の役割を果させ電極強度を改善する目的で繊維状
物質を用いる。
For such applications, a fibrous material is used for the purpose of improving the electrode strength by having the electrode itself perform a shock absorbing function.

繊維状物質の代替材斜上して通常のPVAやエポキシ樹
脂等を用いた場合、結合強度は改善されるが、20〜4
0人の活性炭繊維の細孔を閉塞して活性炭の比表面積の
大部分が使用不能となるので、活性炭の細孔を閉塞させ
ない繊維状物質で活性炭繊維パルプを補強する。
If ordinary PVA or epoxy resin is used as an alternative to the fibrous material, the bonding strength will be improved, but the
Since most of the specific surface area of the activated carbon becomes unusable by blocking the pores of the activated carbon fiber, the activated carbon fiber pulp is reinforced with a fibrous material that does not block the pores of the activated carbon.

第4図は、この状態を写真で示したもので、黒い繊維状
物質は活性炭繊維パルプを示し、白い繊維状物質は補強
用の繊維状物質である。
FIG. 4 shows this state in photographs, where the black fibrous material represents activated carbon fiber pulp, and the white fibrous material is a reinforcing fibrous material.

本発明で用いる繊維状物質としては、天然繊維。The fibrous material used in the present invention is natural fiber.

未アセチル化PVA繊維、アクリルニトリル系パルフ、
抄紙用レーヨンパルプ、PTF]i:パルプ。
Unacetylated PVA fiber, acrylonitrile pulp,
Rayon pulp for paper making, PTF] i: Pulp.

PTFEディスパージョン等が好ましい。PTFE dispersion and the like are preferred.

4)その他の添加剤 明解工程で、繊維質の相互の分散性や:からみ合い等を
促進させるための界面活性剤や、繊維相互の吸着を改善
するだめの填料として、水酸化アルミニウムやポリエチ
レンオキサイド、ポリビニールピロリドン等が効果的で
ある。また、アスベスト、ガラス繊維を含む無機微細繊
維等も必要に応じて添加することも可能である。
4) Other additives In the clarification process, aluminum hydroxide and polyethylene oxide are used as surfactants to promote mutual dispersion and entanglement of fibers, and fillers to improve mutual adsorption of fibers. , polyvinyl pyrrolidone, etc. are effective. Further, asbestos, inorganic fine fibers including glass fibers, etc. can also be added as necessary.

を改善する目的で、金属繊維や合成繊維、炭素繊維の表
面に導電材を無電解メッキして、パルプに必要に応じて
所望の量を添加することも可能である。
In order to improve this, it is also possible to electrolessly plate the surface of metal fibers, synthetic fibers, or carbon fibers with a conductive material, and add a desired amount of the conductive material to the pulp as needed.

6)集電体 本発明の重要な目的の一つは瞬時充放電特性の改善にあ
る。したがって、活性炭繊維パルプからなる分極性電極
を、効率的に集電の目的を果す、よう構成しなくてはな
らない。
6) Current collector One of the important objectives of the present invention is to improve instantaneous charging and discharging characteristics. Therefore, polarizable electrodes made of activated carbon fiber pulp must be constructed to efficiently serve the purpose of current collection.

集電体の材質は、Al、Ti、Taのような弁作用金属
およびこれらの合金およびFe−0r、基合金、たとえ
ばS U S 430.  S U S 444.  
ショーマノク(昭和電工製耐食性ステンレス)等が好ま
しい。
The material of the current collector includes valve metals such as Al, Ti, and Ta and their alloys, and Fe-0r, base alloys such as SUS 430. SUS444.
Showamanoku (corrosion-resistant stainless steel manufactured by Showa Denko) etc. are preferred.

集電体の形状は、前記の如く箔状、ネット状。The shape of the current collector is foil-like or net-like as described above.

ラス状、パンチング状およびエンボス状が好ましい。ま
た、活性炭繊維パルプやパルプ状補強材と集電体との密
着性を改善する目的で、集電体の表面をエツチングした
り、ブラスト処理等の表面拡大化処理を施すことが好ま
しい。
A lath shape, a punched shape and an embossed shape are preferred. Further, in order to improve the adhesion between the activated carbon fiber pulp or pulp-like reinforcing material and the current collector, it is preferable to perform a surface enlarging treatment such as etching or blasting on the surface of the current collector.

集電体の肉厚はキャパシタの形状や通電電流によっても
異なるが、mAオーダ以下では20〜500μmで充分
であり、Aオーダでは0.5〜6■程度が好ましい。
Although the thickness of the current collector varies depending on the shape of the capacitor and the current flowing, 20 to 500 μm is sufficient for mA order or less, and about 0.5 to 6 μm is preferable for A order.

6)集電体と活性炭繊維パルプの被覆構成集電体に活性
炭繊維パルプを被覆した分極性電極の構成例を第6図か
ら第7図に示す。
6) Coating structure of current collector and activated carbon fiber pulp Examples of the structure of a polarizable electrode in which a current collector is coated with activated carbon fiber pulp are shown in FIGS. 6 and 7.

第6図はエツチングアルミシートやエンボスアルミシー
トからなる集電体24の片面に活性炭繊維パルプと繊維
状物質からなるパルプ状複合物26を圧延ロール法か塗
布法で被覆形成した構成を示している。
FIG. 6 shows a structure in which one side of a current collector 24 made of an etched aluminum sheet or an embossed aluminum sheet is coated with a pulp-like composite 26 made of activated carbon fiber pulp and a fibrous material by a rolling method or a coating method. .

第6図は集電体240両面にパルプ状複合物26を被覆
形成した構成を示している。
FIG. 6 shows a configuration in which both sides of a current collector 240 are coated with a pulp-like composite 26.

第7図は、パンチング状やラス金網状の有孔性の集電体
シー)26の両面にパルプ状複合物25を被覆形成した
構成を示している。ここで活性炭繊維パルプと繊維状物
質とは相互に、前述の如く、よくからみ合い、適当な柔
軟性と衝撃吸収性を有しつつ、繊維間の相互の結合は紙
や不織布のように強固なものとなっている。
FIG. 7 shows a structure in which a pulp-like composite material 25 is coated on both sides of a porous current collector sheet 26 in the form of punching or lath wire mesh. Here, the activated carbon fiber pulp and the fibrous material are well intertwined with each other as described above, and have appropriate flexibility and shock absorption properties, while the mutual bond between the fibers is strong like paper or nonwoven fabric. It has become a thing.

6)電解質 活性炭繊維パルプから分極性電極体に用いる電解液とし
て、水溶液系ではH2BO3,KOH、N a OH等
を用いることができる。また、非水系電解液とL−1j
:PC(プロプレンカーボネート)溶媒に過塩素酸テト
ラエチルアンモニウムを1 mO1/lとγ−ブチルラ
クトンを1 mol/lを溶質とする電解液を用いたり
、(C2H6)4NClQ4の代替として、(C2H5
)4NPF6.(C2H6)4NBF4等を目的用環に
応じて任意に選択できる。
6) Electrolyte As the electrolytic solution used in the polarizable electrode body from activated carbon fiber pulp, H2BO3, KOH, NaOH, etc. can be used in an aqueous solution system. In addition, non-aqueous electrolyte and L-1j
: An electrolytic solution containing 1 mO1/l of tetraethylammonium perchlorate and 1 mol/l of γ-butyllactone in a PC (proprene carbonate) solvent may be used, or as a substitute for (C2H6)4NClQ4, (C2H5
)4NPF6. (C2H6)4NBF4 etc. can be arbitrarily selected depending on the intended ring.

寸だ、用いる電解液に適合する繊維状物質(パルプ)の
選択が必要である。例えば、電解液としてKOH+H2
SO4等を用いる場合には天然パルプやPUA系パルプ
は使用できないのでPTFE等の有機系パルプ材の選択
が重要である。
It is necessary to select a fibrous material (pulp) that is compatible with the electrolyte used. For example, KOH+H2 as an electrolyte
When SO4 or the like is used, natural pulp or PUA pulp cannot be used, so it is important to select an organic pulp material such as PTFE.

非水系電解液を用いる場合には有機系電解質や溶媒に安
定な繊維状物質の選択が重要である。
When using a non-aqueous electrolyte, it is important to select a fibrous material that is stable to organic electrolytes and solvents.

本発明の目的を果すには、電解液に関係なく、繊維状物
質としてPTFEの0.1μからなるディスパーシロン
が好ましい。この種のディスパージョンは活性炭繊維パ
ルプと充分混合し、明解過程で0.1μからなる粒子が
繊維状に発達し、活性炭繊維パルプとよくからみ合い、
内部抵抗の小さな、分極性電極体として機械的強度の優
れた被覆層を形成することが可能である。
To achieve the purpose of the present invention, dispersion made of 0.1μ of PTFE is preferred as the fibrous material, regardless of the electrolyte. This type of dispersion is thoroughly mixed with the activated carbon fiber pulp, and during the clarifying process, particles consisting of 0.1μ develop into fibers and are well entangled with the activated carbon fiber pulp.
It is possible to form a coating layer with excellent mechanical strength as a polarizable electrode body with low internal resistance.

実施例1 本発明を具体的な実施例を挙けて説明する。第8図は本
発明の一実施例である湿式電気二重層キャパシタの断面
構成図である。電解槽27には活性炭繊維パルプで構成
された分極性電極体28゜29が、ポリプロプレン製キ
ャンパスからなるセパレータ30を介して、電解液31
に浸漬されている。分極性電極体は基本的に無極性であ
るが、28は陽極、29は陰極として構成する。
Example 1 The present invention will be described with reference to specific examples. FIG. 8 is a sectional view of a wet electric double layer capacitor which is an embodiment of the present invention. In the electrolytic cell 27, polarizable electrode bodies 28 and 29 made of activated carbon fiber pulp are connected to an electrolytic solution 31 through a separator 30 made of a polypropylene canvas.
is immersed in. The polarizable electrode body is basically non-polar, but 28 is an anode and 29 is a cathode.

分極性電極体は2×3crnに裁断し、第8図のように
活性炭繊維パルプからなる分極性被覆層32を2 X 
2 CnIとして、集電極部332×1cdだけ分極性
電極層を剥離して、陽陰極とした。電解液はプロピレン
カーボネート、テトラエチルアンモンパークロレート、
γ−ブチルラクトンからなる溶液を用いた。
The polarizable electrode body was cut into 2×3 crn pieces, and a polarizable covering layer 32 made of activated carbon fiber pulp was cut into 2×3 crn pieces as shown in FIG.
As 2 CnI, the polarizable electrode layer was peeled off by 332×1 cd of the collector electrode part to obtain an anode and a cathode. The electrolyte is propylene carbonate, tetraethylammonperchlorate,
A solution consisting of γ-butyrolactone was used.

第1表に活性炭繊維パルプ、繊維状物質等の構成条件お
よび分極性電極の厚み、集電体の種類および分極性電極
の容量(F/、、iに換算)、インピーダンス(Ω/c
rnに換算)等に関し、種々の条件とその結果を表示し
ている。比較のために、従来例としてA 17. A 
18に活性炭クロスおよび粉末活性炭を用いた分極性電
極の例を示している。
Table 1 shows the constituent conditions of activated carbon fiber pulp, fibrous materials, etc., the thickness of the polarizable electrode, the type of current collector, the capacitance of the polarizable electrode (converted to F/, i), and the impedance (Ω/c
(converted to rn), etc., various conditions and their results are displayed. For comparison, A17. is used as a conventional example. A
18 shows an example of a polarizable electrode using activated carbon cloth and powdered activated carbon.

A1〜屋6はフェノール系の活性炭繊維を用い、活性炭
繊維の比表面積を500〜3000rr?/jiα活度
を変化させたもので、繊維状物質としてPTFEファイ
バー8重量%添加し、60μmのアルミニウムエツチン
グ箔の片面に第6図の電極構成で、分極性被覆層が30
0μmになるように調製した。
A1 to Ya6 use phenolic activated carbon fibers, and the specific surface area of the activated carbon fibers is 500 to 3000rr? /jiα activity is changed, 8% by weight of PTFE fiber is added as a fibrous substance, and a polarizable coating layer of 30% is formed on one side of a 60μm aluminum etched foil with the electrode configuration shown in Figure 6.
The thickness was adjusted to 0 μm.

以下余白 第1表から、比表面積の増加に比例してキャパシタ容量
は増加し、分極性電極の抵抗値は逆に増加していること
が認められる。
From Table 1 below in the margin, it can be seen that the capacitance of the capacitor increases in proportion to the increase in the specific surface area, and the resistance value of the polarizable electrode conversely increases.

フェノール繊維を用いる場合、比表面積は3000ff
?/gまでが限界であった。機械的強度も300゜、r
?/9以上は実用に耐えない。また逆に500rr?/
、!i’以下になるとコスト的に不利になるので、活性
炭繊維の好ましい範囲は500〜3ooon//gで、
最適値は2000−3ooorr?/gがコスト、特性
9作業性の観点から最も優れていた。
When using phenol fiber, the specific surface area is 3000ff
? /g was the limit. Mechanical strength is also 300°, r
? /9 or more is not practical. On the other hand, 500rr? /
,! If it is less than i', it will be disadvantageous in terms of cost, so the preferred range of activated carbon fiber is 500 to 3oooon//g,
Is the optimal value 2000-3ooorr? /g was the most excellent in terms of cost and characteristic 9 workability.

扁7〜屋9は、それぞれピッチ系、アクリル系。Flats 7 to 9 are pitch-based and acrylic-based, respectively.

レーヨン系を原料繊維とする活性炭繊維パルプを用いた
ものである。それぞれの活性炭繊維の賦活の程度はそれ
ぞれの繊維の最適値(容量特性と機械的強度)を用いた
。ピッチ系とアクリル系は比表面積に比較して、容量が
小であるのは活性炭繊維の嵩比重が小であるためである
。また、レーヨン系は容量が比較的大であるが繊維強度
が小で、表1に示されていないが、容量経年変化や漏洩
電f亀と性が劣る。総合的には、フェノール系が活性炭
繊維電極として最も優れていた。
It uses activated carbon fiber pulp made from rayon-based fibers. The degree of activation of each activated carbon fiber was determined using the optimum value (capacity characteristics and mechanical strength) of each fiber. The pitch-based and acrylic-based materials have a small capacity compared to their specific surface area because the bulk specific gravity of the activated carbon fibers is small. In addition, rayon-based materials have a relatively large capacity, but have low fiber strength, and although not shown in Table 1, they are inferior in terms of capacity change over time and leakage current. Overall, the phenolic type was the best as an activated carbon fiber electrode.

A10−A13は活性炭繊維パルプからなる分極性電極
体中の繊維状物質の添加量の変化を検討したもので、繊
維状物質の糧類に依存するものであるが、PTFEファ
イバーの場合O〜30重量係変化させ、2〜26重量%
が効果的であった。
A10-A13 investigated changes in the amount of fibrous material added in a polarizable electrode body made of activated carbon fiber pulp, and it depends on the type of fibrous material, but in the case of PTFE fiber, it is O ~ 30. Weight ratio varies from 2 to 26% by weight
was effective.

2%以下では被覆層の強度が得られず、25重量%以上
では、容量が小さくなり、捷た電気抵抗も次第に大きく
なるので好ましくない。したがって、繊維状物質の添加
量として2〜25重量%の範囲が好ましい。
If it is less than 2%, the strength of the coating layer cannot be obtained, and if it is more than 25% by weight, the capacity decreases and the electrical resistance due to cracking gradually increases, which is not preferable. Therefore, the amount of the fibrous material added is preferably in the range of 2 to 25% by weight.

屋14〜A16は繊維状物質として、アクリルニトリル
、レーヨンパルプ、天然パルプをそれぞれ8重量%添加
して分極性電極を形成して、コンデンサの諸特性を検討
したものである。レーヨン系や天然パルプ系はいずれも
KOH系やH2BO3系の電解液に使用することは不可
能であるが、有機系の電解液では、充分その機能を発揮
し、活性炭繊維パルプの優れた結合剤の役割を果すこと
が認められ、また電気特性的にも、PTFE系ノ々ルプ
材とはぼ同等の特性を示すことがみとめられた。
In Nos. 14 to A16, acrylonitrile, rayon pulp, and natural pulp were each added in an amount of 8% by weight as fibrous materials to form polarizable electrodes, and various characteristics of capacitors were investigated. Although it is impossible to use rayon-based or natural pulp-based electrolytes for KOH-based or H2BO3-based electrolytes, they fully perform their functions with organic electrolytes, and are excellent binders for activated carbon fiber pulp. In addition, it was found that the electrical properties of this material were almost the same as those of the PTFE-based material.

従来法のA 17.418の諸特性と比較して、本発明
のA1−A16は相対的に同等〜約6倍の特性を示すこ
とがみとめられ、本発明の方法が電気特性的にも、製造
上の作業環境的にも、コスト的にも有利であることが容
易にみとめられる。
Compared to the characteristics of A17.418 of the conventional method, A1-A16 of the present invention was found to exhibit relatively equivalent to about 6 times the characteristics, and the method of the present invention also has improved electrical characteristics. It can be easily seen that it is advantageous in terms of manufacturing work environment and cost.

実施例2 分極性電極として、第1表のA6の条件(フェノール系
で、表面積3000靜/17.PTFE7yイバーax
量s、60μのアルミニウムエツチング箔2分極性電極
被覆層の厚み、300μm)を用い、第1図の構成を有
するコイン型のキャパシタを構成した。分極性電極は第
1表A6の条件で、14■φの大きさに打ち抜いたもの
を用い、Alのエツチング集電極を封目板、あるいは封
口ケースにスポット溶接した。プロピレン製セパレータ
ヲ介して第1表の電解液条件で、電解液を添加して、ガ
スケットを介して封口した。
Example 2 As a polarizable electrode, the conditions of A6 in Table 1 (phenol-based, surface area 3000 m/17.PTFE7y ivar ax
A coin-shaped capacitor having the structure shown in FIG. 1 was constructed using an aluminum etched foil having a thickness of 60 μm and a bipolarized electrode coating layer having a thickness of 300 μm. The polarizable electrodes were punched out to a size of 14 .phi. under the conditions shown in Table 1 A6, and the etched Al collector electrodes were spot welded to the sealing plate or the sealing case. An electrolyte was added through a propylene separator under the electrolyte conditions shown in Table 1, and the mixture was sealed through a gasket.

比較のために、目付1F509/lri、  比表面積
5004Iρ活性炭クロスの片面にAlのプラズマスプ
レィを100μm溶射形成して、14鵡φの分極性電極
構造に打ち抜き、上記と同様にコイン型キャパシタを組
み立て、諸特性を調査すると第2表のような結果を得た
For comparison, a 100 μm thick Al plasma spray was formed on one side of an activated carbon cloth with a basis weight of 1F509/lri and a specific surface area of 5004Iρ, which was punched out into a polarizable electrode structure of 14mmφ, and a coin-shaped capacitor was assembled in the same manner as above. When various characteristics were investigated, results as shown in Table 2 were obtained.

第   2   表 本発明の方法は第2表の如く、コイン型でも、従来法3
〜4倍の特性が確認でき、その他の特性もいずれも従来
法より優れていることが判明した。
Table 2 As shown in Table 2, the method of the present invention is similar to the conventional method 3 even in coin type.
It was confirmed that the properties were up to 4 times higher, and all other properties were also found to be superior to the conventional method.

これらのデータを基準に従来市販の粉末活性炭を用いた
もの、従来市販の活性炭繊維クロスを用いたものにつき
、単位体積(立方インチin −16,4cII)当り
の容量比較を行なうと第3表の如くになった。
Based on these data, we compared the capacity per unit volume (cubic inch in -16.4cII) of products using conventional commercially available powdered activated carbon and products using conventionally commercially available activated carbon fiber cloth, and the results are shown in Table 3. It became like this.

第 3 表  (コンデンサ容量F/1n3)第3表よ
り、本発明の活性炭繊維パルプを用いる方法が極めて優
れた特性を示すことが判明した。
Table 3 (Capacitor Capacity F/1n3) From Table 3, it was found that the method using the activated carbon fiber pulp of the present invention exhibited extremely excellent characteristics.

発明の効果 以上のように、本発明によれば、従来の分極性電極より
、高比表面積の活性炭繊維をパルプ状で使用することが
可能となり、電極体の充填性が改善されるとともに高強
度となり、活性炭クロス電極を用いる場合と比較し、数
段加工容易で、しかも小型大容量の電気二重層キャパシ
タを得ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to use activated carbon fibers with a higher specific surface area in pulp form than in conventional polarizable electrodes, which improves the filling properties of the electrode body and provides high strength. Therefore, compared to the case of using activated carbon cross electrodes, it is possible to obtain an electric double layer capacitor that is easier to process in several stages and has a small size and a large capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はコイン型電気二重層キャパシタを示す断面正面
図、第2図は活性炭クロス分極性電極体の断面図、第3
図は本発明の一実施例における活性炭繊維パルプを用い
た分極性電極体の製造工程図、第4図は活性炭繊維パル
プからなる分極性電極体の写真、第5図〜第7図は本発
明の実施例における分極性電極の構成を示す断面図、第
8図は本発明の一実施例における電気二重層キャパシタ
の断面図である。 24 ・箔状集電極、26・・・・・活性炭繊維パルプ
電極、26・・有孔性集電極、28.29・・・活性炭
繊維パルプからなる分極性電極体、30・・・セパレー
タ、31・・・電解液、32・・・・・分極性被覆層、
33・ 集電極部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第4図
Figure 1 is a cross-sectional front view showing a coin-type electric double layer capacitor, Figure 2 is a cross-sectional view of an activated carbon cross-polarizable electrode body, and Figure 3 is a cross-sectional view of a coin-type electric double layer capacitor.
The figure is a manufacturing process diagram of a polarizable electrode body using activated carbon fiber pulp in one embodiment of the present invention, Figure 4 is a photograph of a polarizable electrode body made of activated carbon fiber pulp, and Figures 5 to 7 are according to the present invention. FIG. 8 is a sectional view showing the structure of the polarizable electrode in an embodiment of the present invention. FIG. 8 is a sectional view of an electric double layer capacitor in an embodiment of the present invention. 24 - foil collector electrode, 26... activated carbon fiber pulp electrode, 26... porous collector electrode, 28.29... polarizable electrode body made of activated carbon fiber pulp, 30... separator, 31 ... Electrolyte solution, 32 ... Polarizable coating layer,
33. Collector electrode part. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)分極性電極体と電解質界面で形成される電気二重
層を利用した電気二重層キャパシタであって、前記分極
性電極体が活性炭繊維パルプを主体とする被覆層を集電
体の表面に設けることにより構成されていることを特徴
とする電気二重層キャパシタ。
(1) An electric double layer capacitor that utilizes an electric double layer formed at the interface between a polarizable electrode body and an electrolyte, wherein the polarizable electrode body has a coating layer mainly composed of activated carbon fiber pulp on the surface of a current collector. An electric double layer capacitor comprising:
(2)被覆層が、活性炭繊維パルプと繊維状物質(パル
プ)からなることを特徴とする特許請求の範囲第1項記
載の電気二重層キャパシタ。
(2) The electric double layer capacitor according to claim 1, wherein the coating layer is made of activated carbon fiber pulp and fibrous material (pulp).
(3)集電体が金属、合金またはメッキからなり、シー
ト状またはネット状、ラス状、パンチング状又はエンボ
ス状の有孔シート状であることを特徴とする特許請求の
範囲第1項記載の電気二重層キャパシタ。
(3) The current collector is made of metal, alloy, or plating, and is in the form of a sheet, a net, a lath, a punching, or an embossed perforated sheet. Electric double layer capacitor.
(4)活性炭繊維パルプが、繊維径が5〜40μm、繊
維長が0.1〜30mmの活性炭繊維で構成されること
を特徴とする特許請求の範囲第1項記載の電気二重層キ
ャパシタ。
(4) The electric double layer capacitor according to claim 1, wherein the activated carbon fiber pulp is composed of activated carbon fibers having a fiber diameter of 5 to 40 μm and a fiber length of 0.1 to 30 mm.
(5)活性炭繊維パルプとして、フェノール系活性炭繊
維を用いることを特徴とする特許請求の範囲第1項記載
の電気二重層キャパシタ。
(5) The electric double layer capacitor according to claim 1, wherein phenolic activated carbon fiber is used as the activated carbon fiber pulp.
(6)活性炭繊維の繊維径が10〜20μm、繊維長が
0.5〜6mmであることを特徴とする特許請求の範囲
第4項記載の電気二重層キャパシタ。
(6) The electric double layer capacitor according to claim 4, wherein the activated carbon fiber has a fiber diameter of 10 to 20 μm and a fiber length of 0.5 to 6 mm.
JP59131378A 1984-06-26 1984-06-26 Electric double layer capacitor Granted JPS6110228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59131378A JPS6110228A (en) 1984-06-26 1984-06-26 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131378A JPS6110228A (en) 1984-06-26 1984-06-26 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPS6110228A true JPS6110228A (en) 1986-01-17
JPH0315813B2 JPH0315813B2 (en) 1991-03-04

Family

ID=15056543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131378A Granted JPS6110228A (en) 1984-06-26 1984-06-26 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPS6110228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287102B1 (en) 1996-01-30 2001-09-11 C.A. Greiner Extruder with a shaping device
JP2010087302A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Electrode for electric double-layer capacitor, and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464105A (en) * 1977-10-24 1979-05-23 Toyo Boseki Production of adsorbing sheet
JPS5599714A (en) * 1979-01-25 1980-07-30 Matsushita Electric Ind Co Ltd Double layer capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464105A (en) * 1977-10-24 1979-05-23 Toyo Boseki Production of adsorbing sheet
JPS5599714A (en) * 1979-01-25 1980-07-30 Matsushita Electric Ind Co Ltd Double layer capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287102B1 (en) 1996-01-30 2001-09-11 C.A. Greiner Extruder with a shaping device
JP2010087302A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Electrode for electric double-layer capacitor, and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0315813B2 (en) 1991-03-04

Similar Documents

Publication Publication Date Title
EP0187163B1 (en) Polarizable electrode body, a method for its making and an electric double-layer capacitor comprising the polarizable electrode body
JP5033164B2 (en) Manufacturing method of paste type thin electrode for battery
US6134760A (en) Process for manufacturing electric double layer capacitor
US6905798B2 (en) Separator for electrochemical device and method for producing the same
WO2017150439A1 (en) Alkaline battery separator and alkaline battery
JP4536289B2 (en) Paste type thin electrode for battery, method for producing the same, and secondary battery
JPH0963560A (en) Separator and battery using same
JP2010238808A (en) Separator electrode integrated element for capacitor and capacitor made thereby
JPS6110228A (en) Electric double layer capacitor
JP3638642B2 (en) Activated carbon sheet and electric double layer capacitor
JPH08138651A (en) Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
JP2000048792A (en) Nonaqueous electrolyte battery and its manufacture
JPS6110229A (en) Method of producing electric double layer capacitor
JP2000173574A (en) Manufacture of non-aqueous electrolyte battery
JP2000215873A (en) Alkaline storage battery and its manufacture
JPH0340931B2 (en)
JPS6027113A (en) Electric double layer capacitor
JPS6164113A (en) Electric doulbe layer capacitor
JPS6159716A (en) Electric double layer capacitor
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JPS6136920A (en) Electric double layer capacitor
JP2010219351A (en) Separator for storage device, and method of manufacturing the same
JPS6126207A (en) Electric double layer capacitor
JPH10162815A (en) Sealed nickel hydrogen battery
JPS61214508A (en) Manufacture of polarizing electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term