JP2010219351A - Separator for storage device, and method of manufacturing the same - Google Patents
Separator for storage device, and method of manufacturing the same Download PDFInfo
- Publication number
- JP2010219351A JP2010219351A JP2009065205A JP2009065205A JP2010219351A JP 2010219351 A JP2010219351 A JP 2010219351A JP 2009065205 A JP2009065205 A JP 2009065205A JP 2009065205 A JP2009065205 A JP 2009065205A JP 2010219351 A JP2010219351 A JP 2010219351A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- separator
- storage device
- less
- electricity storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000000835 fiber Substances 0.000 claims abstract description 207
- 239000011230 binding agent Substances 0.000 claims abstract description 35
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 30
- 239000000057 synthetic resin Substances 0.000 claims abstract description 30
- 229920002994 synthetic fiber Polymers 0.000 claims abstract description 13
- 239000012209 synthetic fiber Substances 0.000 claims abstract description 13
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 12
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 12
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims abstract description 11
- 239000001768 carboxy methyl cellulose Substances 0.000 claims abstract description 9
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims abstract description 9
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 claims abstract description 6
- -1 polyethylene terephthalate Polymers 0.000 claims description 35
- 230000005611 electricity Effects 0.000 claims description 23
- 239000003990 capacitor Substances 0.000 claims description 22
- 230000035699 permeability Effects 0.000 claims description 21
- 229920002678 cellulose Polymers 0.000 claims description 19
- 239000001913 cellulose Substances 0.000 claims description 19
- 239000007921 spray Substances 0.000 claims description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 10
- 239000004698 Polyethylene Substances 0.000 claims description 10
- 229920006283 heat-resistant synthetic fiber Polymers 0.000 claims description 10
- 229910001416 lithium ion Inorganic materials 0.000 claims description 10
- 229920000573 polyethylene Polymers 0.000 claims description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 10
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 239000004760 aramid Substances 0.000 claims description 8
- 229920003235 aromatic polyamide Polymers 0.000 claims description 8
- 239000004743 Polypropylene Substances 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 4
- 229920001230 polyarylate Polymers 0.000 claims description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 3
- 229920006012 semi-aromatic polyamide Polymers 0.000 claims description 3
- 238000005507 spraying Methods 0.000 abstract description 5
- 239000010409 thin film Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 238000001035 drying Methods 0.000 description 16
- 230000000704 physical effect Effects 0.000 description 13
- 239000006185 dispersion Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000010408 film Substances 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 9
- 238000005342 ion exchange Methods 0.000 description 8
- 239000002608 ionic liquid Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 238000010009 beating Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 244000099147 Ananas comosus Species 0.000 description 1
- 235000007119 Ananas comosus Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 229920001407 Modal (textile) Polymers 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 210000000077 angora Anatomy 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 210000000085 cashmere Anatomy 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010294 electrolyte impregnation Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Separators (AREA)
Abstract
Description
本発明は、例えば、リチウムイオン二次電池、ポリマーリチウム二次電池、アルミニウム電解コンデンサ、電機二重層キャパシタなどの蓄電デバイス用セパレータ(以下、「セパレータ」という。)に関するものである。 The present invention relates to a separator for an electricity storage device (hereinafter referred to as “separator”) such as a lithium ion secondary battery, a polymer lithium secondary battery, an aluminum electrolytic capacitor, and an electric double layer capacitor.
近年、産業用、民生用のいずれにおいても電気・電子機器の増加している上に、ハイブリッド自動車が実用化されたことにより、それらに搭載される蓄電デバイス、例えば、リチウムイオン二次電池、ポリマーリチウム二次電池、アルミニウム電解コンデンサ、電機二重層キャパシタなどの需要が著しく増加している。電気・電子機器は長寿命化、高機能化が日進月歩で進行しており、蓄電デバイス用セパレータにおいても長寿命化、高機能化が要求されており、過酷な環境下での使用も増えている。 In recent years, electrical and electronic equipment has increased in both industrial and consumer use, and since hybrid vehicles have been put into practical use, power storage devices such as lithium ion secondary batteries and polymers mounted on them Demand for lithium secondary batteries, aluminum electrolytic capacitors, electric double layer capacitors, etc. has increased significantly. Electrical and electronic equipment has long life and high functionality, and power device separators are required to have long life and high functionality, and use in harsh environments is increasing. .
リチウムイオン二次電池は、活物質とリチウム含有酸化物とポリフッ化ビニリデン等のバインダーを1−メチル−2−ピロリドンで混合しアルミニウム製集電体上にシート化した正極と、リチウムイオンを吸蔵放出し得る炭素質材料とポリフッ化ビニリデン等のバインダーを1−メチル−2−ピロリドンで混合し銅製集電体上にシート化した負極と、ポリエチレンやポリプロピレン等により成る多孔質電解質膜とを、正極、電解質膜、負極の順に捲回もしくは積層した電極体に駆動用電解液を含浸し、アルミニウムケースにより封止した構造のものである。 A lithium ion secondary battery is a positive electrode in which an active material, a lithium-containing oxide, and a binder such as polyvinylidene fluoride are mixed with 1-methyl-2-pyrrolidone to form a sheet on an aluminum current collector, and lithium ions are occluded and released. A negative electrode formed by mixing a carbonaceous material and a binder such as polyvinylidene fluoride with 1-methyl-2-pyrrolidone into a sheet on a copper current collector, and a porous electrolyte membrane made of polyethylene, polypropylene, or the like, An electrode body wound or laminated in the order of an electrolyte membrane and a negative electrode is impregnated with a driving electrolyte solution and sealed with an aluminum case.
電気二重層キャパシタは、活性炭と導電剤及びバインダーを混錬したものをアルミニウム製正極、負極各集電体の両面に貼り付け、セルロース等により成るセパレータを介して捲回もしくは積層した電極体に駆動用電解液を含浸し、アルミニウムケースと封止体により梱包して短絡しないように正極リードと負極リードを封止体に貫通させ外部に引き出した構造のものである。 An electric double layer capacitor is a mixture of activated carbon, conductive agent and binder, which is attached to both sides of the positive and negative current collectors made of aluminum and driven to a wound or laminated electrode body via a separator made of cellulose or the like. In this structure, the positive electrode lead and the negative electrode lead are passed through the sealing body so as not to be short-circuited by being impregnated with an electrolytic solution and packed with an aluminum case and a sealing body.
従来、前記リチウムイオン二次電池のセパレータとしてはポリエチレン、ポリプロピレン等の多孔質膜が使用されており、電気二重層キャパシタのセパレータとしては、セルロースパルプから成る紙や、セルロース繊維から成る不織布が使用されている。
先述のような蓄電デバイスは、高容量化、高機能化の要求がますます大きくなっており、高容量化するためには、充放電時の自己発熱もしくは異常充電時などの異常発熱に耐え得るための耐熱性、機械的強度、寸法安定性をもったセパレータが求められている。一方、高機能化の一つとして急速充放電特性の向上、高出力特性の向上、高温雰囲気下での使用等が求められており、セパレータには薄膜化、均一性の向上、耐熱性が強く要求されている。しかしながら、従来のセパレータでは、耐熱性が不十分であるばかりか、薄膜化により貫通孔が存在しやすくまた機械的強度が低下し、その結果、電極間で内部短絡を生じたり、均一性が不十分でイオンの移動が局所的に集中する部分が発生しやすく、信頼性の低下等の問題があった。また、上述のリチウムイオン二次電池、電気二重層キャパシタには駆動用電解液に有機溶剤やイオン性液体が使用されており、セルロース等のセパレータでは高温での長期耐久試験で放電容量の低下や膜厚の減少を伴う劣化を生ずる問題があった。
Conventionally, porous membranes such as polyethylene and polypropylene have been used as separators for the lithium ion secondary battery, and paper made of cellulose pulp and nonwoven fabric made of cellulose fibers have been used as separators for electric double layer capacitors. ing.
The demand for higher capacity and higher functionality is increasing for the electricity storage devices as described above, and in order to increase the capacity, it can withstand abnormal heat generation such as self-heating during charging or discharging or abnormal charging. Therefore, a separator having heat resistance, mechanical strength, and dimensional stability is required. On the other hand, improvement of rapid charge / discharge characteristics, improvement of high output characteristics, use in high-temperature atmosphere, etc. are required as one of higher functions, and separators are made thinner, more uniform, and more resistant to heat. It is requested. However, in the conventional separator, not only the heat resistance is insufficient, but through-holes are likely to exist due to the thin film, and the mechanical strength is lowered. As a result, internal short circuit occurs between the electrodes, and the uniformity is not good. There is a problem that a portion where ion movement is sufficiently concentrated and locally concentrated is likely to occur, resulting in a decrease in reliability. In the above lithium ion secondary battery and electric double layer capacitor, an organic solvent or an ionic liquid is used as a driving electrolyte, and a separator such as cellulose has a reduced discharge capacity in a long-term durability test at a high temperature. There was a problem of causing deterioration accompanied by a decrease in film thickness.
このようなセパレータの製造方法は、ポリエチレンやポリプロピレン等のオレフィン系樹脂を材料とする従来のカード法や乾式不織布や織布とするスパンボンド法、セルロース等を材料とする湿式抄紙法がある。例えば、繊維長3〜25mmの分割型複合繊維で形成した繊維ウェブに流体流を作用させる湿式製造法が提案されている(例えば、特許文献1参照)。しかしながら、分割型複合繊維で形成した繊維ウェブに流体流を作用させた場合、高圧にて流体を噴射し繊維を分割させる行為がピンホールのような貫通孔を生じさせ、電極間の内部短絡を生じさせていた。また、フィブリル化された高分子と、フィブリル化された天然繊維を混抄もしくは積層する湿式抄紙法が提案されている(例えば、特許文献2参照)。しかしながら、フィブリル化された繊維は、繊維表面に空気を抱き込みやすく、不織布層に巻き込まれた泡に起因するピンホールが電極間の内部短絡等の欠陥を生じさせていた。 As a method for producing such a separator, there are a conventional card method using an olefin resin such as polyethylene or polypropylene, a spunbond method using a dry nonwoven fabric or a woven fabric, and a wet papermaking method using cellulose or the like as a material. For example, a wet manufacturing method has been proposed in which a fluid flow is applied to a fiber web formed of split composite fibers having a fiber length of 3 to 25 mm (see, for example, Patent Document 1). However, when a fluid flow is applied to a fiber web formed of split composite fibers, the action of jetting fluid at a high pressure to split the fibers creates through holes such as pinholes, causing internal short circuit between the electrodes. It was generated. In addition, a wet papermaking method in which fibrillated polymer and fibrillated natural fiber are mixed or laminated has been proposed (for example, see Patent Document 2). However, the fibrillated fiber is easy to embed air on the fiber surface, and pinholes caused by bubbles entrained in the nonwoven fabric layer cause defects such as internal short circuit between the electrodes.
本発明は、耐熱性、機械的強度、寸法安定性に優れた薄膜化した蓄電デバイス用セパレータおよびその製造方法を提供する。 The present invention provides a thinned separator for an electricity storage device having excellent heat resistance, mechanical strength, and dimensional stability, and a method for producing the same.
本発明のセパレータは、熱可塑性合成繊維A(以下、「繊維A」という。)、耐熱性合成繊維B(以下「繊維B」という。)、天然繊維C(以下、繊維「C」という。)および合成樹脂系結着剤を含有することを特徴とする。
また、前記合成樹脂系結着剤がカルボキシメチルセルロース、スチレン−ブタジエンゴムから選ばれた少なくとも1種からなることが好ましい。
また、前記合成樹脂系結着剤が熱処理で融着していることが好ましい。
また、前記熱可塑性合成繊維Aが、ポリエチレンテレフタレート、ポリブチレンテレフタレート、全芳香族ポリアリレート、ポリエチレン、ポリプロピレンから選ばれた少なくとも1種からなることが好ましい。
また、前記耐熱性合成繊維Bが、全芳香族ポリアミド、全芳香族ポリエステル、半芳香族ポリアミド、ポリフェニレンサルファイド、ポリパラフェニレンベンゾビスオキサゾールから選ばれた少なくとも1種からなることが好ましい。
また、前記熱可塑性合成繊維Aが25〜50質量%、前記耐熱性合成繊維Bが60〜10質量%および前記天然繊維Cが15〜40質量%の配合比率からなることことが好ましい。
The separator of the present invention includes a thermoplastic synthetic fiber A (hereinafter referred to as “fiber A”), a heat-resistant synthetic fiber B (hereinafter referred to as “fiber B”), and a natural fiber C (hereinafter referred to as fiber “C”). And a synthetic resin-based binder.
The synthetic resin binder is preferably at least one selected from carboxymethylcellulose and styrene-butadiene rubber.
Moreover, it is preferable that the synthetic resin binder is fused by heat treatment.
The thermoplastic synthetic fiber A is preferably made of at least one selected from polyethylene terephthalate, polybutylene terephthalate, wholly aromatic polyarylate, polyethylene, and polypropylene.
The heat-resistant synthetic fiber B is preferably made of at least one selected from wholly aromatic polyamides, wholly aromatic polyesters, semi-aromatic polyamides, polyphenylene sulfide, and polyparaphenylene benzobisoxazole.
Moreover, it is preferable that the said thermoplastic synthetic fiber A consists of 25-50 mass%, the said heat resistant synthetic fiber B consists of 60-10 mass%, and the said natural fiber C consists of 15-40 mass%.
また、前記熱可塑性合成繊維Aの繊維径が5μm以下で、繊維長が10mm以下であることことが好ましい。
また、前記耐熱性合成繊維Bが、繊維径が1μm以下であって、且つ、繊維長が10mm以下にフィブリル化されていることことが好ましい。
また、前記天然繊維Cが、繊維径が1μm以下、繊維長が3mm以下にフィブリル化されている溶剤紡糸セルロースであることことが好ましい。
また、前記熱可塑性合成繊維Aと、フィブリル化された耐熱性合成繊維B及び/又はフィブリル化された天然繊維Cの繊維の絡み合いにより構成されていることことが好ましい。
また、蓄電デバイス用セパレータの膜厚が60μm以下であることが好ましい。
また、蓄電デバイス用セパレータの密度が0.2〜0.7g/cm3であることが好ましい。
また、蓄電デバイス用セパレータの透気度が100秒/100ml以下であることが好ましい。
また、前記蓄電デバイスが、リチウムイオン二次電池、ポリマーリチウム二次電池、電気二重層キャパシタ、アルミニウム電解コンデンサのいずれかであることが好ましい。
また、本発明の蓄電デバイス用セパレータの製造方法は、噴霧塗布により合成樹脂系結着剤を乾燥状態の繊維層または湿紙状態の繊維層に塗布して蓄電デバイス用セパレータを得ることを特徴とする。
The fiber diameter of the thermoplastic synthetic fiber A is preferably 5 μm or less and the fiber length is 10 mm or less.
The heat-resistant synthetic fiber B is preferably fibrillated so that the fiber diameter is 1 μm or less and the fiber length is 10 mm or less.
The natural fiber C is preferably solvent-spun cellulose that is fibrillated with a fiber diameter of 1 μm or less and a fiber length of 3 mm or less.
Moreover, it is preferable that it is comprised by the entanglement of the said thermoplastic synthetic fiber A, the fiber of the fibrillated heat resistant synthetic fiber B, and / or the fibrillated natural fiber C. FIG.
Moreover, it is preferable that the film thickness of the electrical storage device separator is 60 μm or less.
The density of the electricity storage device separator is preferably 0.2 to 0.7 g / cm 3 .
The air permeability of the electricity storage device separator is preferably 100 seconds / 100 ml or less.
Moreover, it is preferable that the said electrical storage device is any one of a lithium ion secondary battery, a polymer lithium secondary battery, an electric double layer capacitor, and an aluminum electrolytic capacitor.
The method for producing a separator for an electricity storage device of the present invention is characterized in that a synthetic resin binder is applied to a dry fiber layer or a wet fiber layer by spray coating to obtain an electricity storage device separator. To do.
本発明の蓄電デバイス用セパレータは、薄膜で、有機溶剤やイオン性液体存在下での高温環境下での耐久性に、非常に優れており、電気二重層キャパシタのような蓄電デバイスに好適に用いられ、電極間の短絡防止や自己放電の抑制に優れる。 The separator for an electricity storage device of the present invention is a thin film and very excellent in durability in a high temperature environment in the presence of an organic solvent or an ionic liquid, and is suitably used for an electricity storage device such as an electric double layer capacitor. It is excellent in prevention of short circuit between electrodes and suppression of self-discharge.
本発明は、抄紙後の乾燥状態のセパレータに合成樹脂系結着剤を塗布後、あるいは、湿紙状態のセパレータに合成樹脂系結着剤を塗布後、該結着剤を熱処理で融着させることにより繊維間の結合が強化されるため、突き刺し強度が向上し、さらに、融着した合成樹脂系結着剤により繊維同士が固着されるため、膜厚方向(Z軸方向)の押し潰し強度が向上し、耐ショート性に優れたセパレータを提供することができる。 In the present invention, a synthetic resin binder is applied to a dry separator after papermaking, or a synthetic resin binder is applied to a wet paper separator, and then the binder is fused by heat treatment. Since the bond between fibers is strengthened by this, the puncture strength is improved, and furthermore, the fibers are fixed to each other by the fused synthetic resin binder, so that the crushing strength in the film thickness direction (Z-axis direction) Thus, a separator having excellent short-circuit resistance can be provided.
また、繊維が合成樹脂系結着剤により被覆されるため、有機溶剤やイオン性液体、更には高温条件に対する耐久性が高くなり、長期間高温雰囲気下で使用され続けても劣化しにくい高温長期使用時の耐久性に優れたセパレータを提供することができる。 In addition, since the fibers are covered with a synthetic resin binder, the durability against organic solvents, ionic liquids, and even high-temperature conditions is high, and high-temperature and long-term resistance to deterioration even when used in a high-temperature atmosphere for a long period of time. A separator excellent in durability during use can be provided.
合成樹脂系結着剤としては、エチレン−プロピレン−ジエン三元共重合体、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン−クロロトリフルオロエチレン共重合体、スチレン−ブタジエンゴム(SBR)あるいはカルボキシメチルセルロース(CMC)などから選択される少なくとも1種を用いることができるが、水溶液エマルジョンが市販されているスチレン−ブタジエンゴム(SBR)あるいは水溶性のカルボキシメチルセルロース(CMC)が、セパレータ中に有機溶剤が残留しないため特に好ましい。 Synthetic resin binders include ethylene-propylene-diene terpolymer, acrylonitrile-butadiene rubber, fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, polyvinylidene fluoride, polyethylene, polypropylene, poly At least one selected from tetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, polyvinylidene fluoride-chlorotrifluoroethylene copolymer, styrene-butadiene rubber (SBR) or carboxymethylcellulose (CMC) is used. Styrene-butadiene rubber (SBR) or water-soluble carboxymethylcellulose (CMC), which is commercially available as an aqueous emulsion, can contain organic solvents in the separator. Particularly preferred because they do not cut.
合成樹脂系結着剤は、繊維A、B、Cの合計量100質量部に対して5質量部から200質量部含有させることが好ましく、特に好ましくは、10質量部から150質量部である。5質量部未満では、本発明の効果が発現しにくく、200質量部超では、合成樹脂系結着剤により空孔が埋まりセパレータがフィルム化してしまう。 The synthetic resin binder is preferably contained in an amount of 5 parts by mass to 200 parts by mass, particularly preferably 10 parts by mass to 150 parts by mass with respect to 100 parts by mass of the total amount of fibers A, B, and C. If the amount is less than 5 parts by mass, the effect of the present invention is hardly exhibited, and if it exceeds 200 parts by mass, the pores are filled with the synthetic resin binder, and the separator becomes a film.
合成樹脂系結着剤を混合あるいは塗布する時に用いる溶媒として、非水溶媒または水溶液のいずれも使用できる。非水溶媒として、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどを使用できる。一方、水溶液には、分散剤、増粘剤などを加えて用いることができる。 As the solvent used when mixing or coating the synthetic resin binder, either a non-aqueous solvent or an aqueous solution can be used. Non-aqueous solvents such as N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. Can be used. On the other hand, a dispersing agent, a thickener, etc. can be added and used for aqueous solution.
本発明に使用される繊維Aは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、全芳香族ポリアリレート等のポリエステル繊維、ポリエチレン、ポリプロピレンから選ばれた樹脂よりなる繊維が好ましく使用される。
繊維Bは、全芳香族ポリアミド、全芳香族ポリエステル、半芳香族ポリアミド、ポリフェニレンサルファイド、ポリパラフェニレンベンゾビスオキサゾールから選ばれた少なくとも1種であればよく、2種以上を使用してもよい。繊維Bは、駆動用電解液に用いる有機溶剤やイオン性液体に対して溶解せず、微細繊維にフィブリル化することができる。
The fiber A used in the present invention is preferably a fiber made of a resin selected from polyester fibers such as polyethylene terephthalate, polybutylene terephthalate, wholly aromatic polyarylate, polyethylene, and polypropylene.
The fiber B may be at least one selected from wholly aromatic polyamide, wholly aromatic polyester, semi-aromatic polyamide, polyphenylene sulfide, and polyparaphenylene benzobisoxazole, and may use two or more. The fiber B can be fibrillated into fine fibers without dissolving in the organic solvent or ionic liquid used in the driving electrolyte.
セパレータに繊維Bを含有させることによって、有機溶剤やイオン性液体、更には高温条件に対する耐久性が高くなり、長期間高温雰囲気下で使用し続けても劣化しにくくなる。又、フィブリル化した繊維Bを使用することによって、ピンホールが発生しにくくなるため、短絡防止に優れたセパレータとなる。 By including the fiber B in the separator, durability against an organic solvent, an ionic liquid, and further a high temperature condition is increased, and it is difficult to deteriorate even if the separator is used for a long time in a high temperature atmosphere. Moreover, since it becomes difficult to generate | occur | produce a pinhole by using the fibrillated fiber B, it becomes a separator excellent in short circuit prevention.
本発明を構成する繊維Cとしては、例えば、綿、麻、ケナフ、バナナ、パイナップル、羊毛、絹、アンゴラ、カシミア、レーヨン、キュプラ、ポリノジック、溶剤紡糸セルロース等を使用することができる。繊維Cを構成する材料は1種でもよいし、2種以上であってもよい。これらの材料を使用したセパレータは、電解液の含浸性が向上する。本発明においては繊維Cとして、微細繊維にフィブリル化したものを使用することが好ましく、特に、フィブリル化された溶剤紡糸セルロースを使用することが好ましい。フィブリル化された溶剤紡糸セルロースは、電解液の含浸性に優れ、又、繊維の絡み合いも十分であることから、機械的強度にも優れたセパレータとなる。 As the fiber C constituting the present invention, for example, cotton, hemp, kenaf, banana, pineapple, wool, silk, angora, cashmere, rayon, cupra, polynosic, solvent-spun cellulose and the like can be used. The material constituting the fiber C may be one type or two or more types. Separators using these materials have improved electrolyte impregnation properties. In the present invention, it is preferable to use fibrillated fibers as fiber C, and it is particularly preferable to use fibrillated solvent-spun cellulose. The fibrillated solvent-spun cellulose is excellent in electrolytic solution impregnation and has sufficient fiber entanglement, so that it becomes a separator excellent in mechanical strength.
本発明において、繊維Aの繊維径は5μm以下、繊維長は10mm以下が好ましく、特に好ましくは繊維径が3μm以下、繊維長が7mm以下である。繊維径が5μm未満、繊維長が10mm超になると、薄膜化した際に貫通孔ができる可能性が高くなり、内部短絡の原因となりやすい。 In the present invention, the fiber A has a fiber diameter of 5 μm or less and a fiber length of preferably 10 mm or less, particularly preferably a fiber diameter of 3 μm or less and a fiber length of 7 mm or less. When the fiber diameter is less than 5 μm and the fiber length is more than 10 mm, there is a high possibility that a through hole will be formed when the film is thinned, which is likely to cause an internal short circuit.
本発明において、フィブリル化された繊維Bの繊維径は1μm以下、繊維長は10mm以下が好ましく、特に好ましくは繊維長が1mm以下である。繊維径が1μm超、繊維長が10mm超になると、薄膜化した際に貫通孔ができる可能性が高くなり、内部短絡の原因となりやすく、繊維同士の絡み合いが弱くなり、機械的強度が弱くなる傾向にある。
本発明において、フィブリル化された繊維Cの繊維径は1μm以下、繊維長は3mm以下が好ましく、特に好ましくは繊維長が1mm以下である。繊維径が1μm超、繊維長が3mm超になると、薄膜化した際に貫通孔ができる可能性が高くなり、内部短絡の原因となりやすく、繊維同士の絡み合いが弱くなり、機械的強度が弱くなる傾向にあり、且つ電解液の含浸性も十分に得られない。
In the present invention, the fiber diameter of the fibrillated fiber B is 1 μm or less, the fiber length is preferably 10 mm or less, and particularly preferably the fiber length is 1 mm or less. When the fiber diameter exceeds 1 μm and the fiber length exceeds 10 mm, there is a high possibility that a through-hole will be formed when the film is thinned, which may cause an internal short circuit, and the entanglement between fibers becomes weak and the mechanical strength becomes weak. There is a tendency.
In the present invention, the fiber diameter of the fibrillated fiber C is preferably 1 μm or less, the fiber length is preferably 3 mm or less, and particularly preferably the fiber length is 1 mm or less. When the fiber diameter exceeds 1 μm and the fiber length exceeds 3 mm, there is a high possibility that a through-hole will be formed when the film is thinned, which is likely to cause an internal short circuit, the entanglement between fibers becomes weak, and the mechanical strength becomes weak. There is a tendency, and the impregnation of the electrolytic solution is not sufficiently obtained.
本発明において、繊維A、繊維Bおよび繊維Cは、全繊維中、下記の配合比であることが好ましい。
すなわち、繊維Aはセパレータを構成する全繊維の25〜50質量%の範囲で混合されていることが好ましい。25質量%未満であると、セパレータのZ軸方向につぶれにくい効果(スペーサー効果)を十分に発揮できず、圧縮により短絡が発生しやすくなる。50質量%超になると、空隙率の低下や孔を塞いでしまい、内部抵抗の増大に繋がる。又、熱可塑性ということで、高温時に不安定になり、耐久性の低下にも繋がる。更に、セパレータ中のフィブリル化された微細繊維の量が50質量%未満になってしまい、セパレータの孔径を制御することができず、内部短絡を起こす結果となる。
In this invention, it is preferable that the fiber A, the fiber B, and the fiber C are the following compounding ratios in all the fibers.
That is, it is preferable that the fiber A is mixed in the range of 25 to 50% by mass of the total fibers constituting the separator. If it is less than 25% by mass, the effect of preventing the separator from being crushed in the Z-axis direction (spacer effect) cannot be sufficiently exhibited, and a short circuit is likely to occur due to compression. If it exceeds 50% by mass, the porosity is reduced and the pores are blocked, leading to an increase in internal resistance. In addition, because it is thermoplastic, it becomes unstable at high temperatures, leading to a decrease in durability. Further, the amount of fibrillated fine fibers in the separator becomes less than 50% by mass, and the pore diameter of the separator cannot be controlled, resulting in an internal short circuit.
また、繊維Bは、セパレータを構成する全繊維の60〜10質量%の範囲で混合されていることが好ましい。10質量%未満であるとフィブリル化された微細繊維の量が足りず、セパレータの孔径を制御することができず、内部短絡を起こす結果となる。60質量%超になると、フィブリル化された微細繊維の量が多すぎてセパレータが緻密に成りすぎ、その結果内部抵抗の増大に繋がる。 Moreover, it is preferable that the fiber B is mixed in the range of 60-10 mass% of all the fibers which comprise a separator. If it is less than 10% by mass, the amount of fine fibers fibrillated is insufficient, and the pore diameter of the separator cannot be controlled, resulting in an internal short circuit. If it exceeds 60% by mass, the amount of fibrillated fine fibers is too large and the separator becomes too dense, resulting in an increase in internal resistance.
さらにまた、繊維Cはセパレータを構成する15〜40質量%の範囲で混合されていることが好ましい。15質量%未満であると、繊維同士の絡み合いが弱くなり、機械的強度が弱くなる傾向にあり、且つ電解液の含浸性も十分に得られない。40質量%超になると、高温雰囲気条件下での有機溶剤やイオン性液体により耐久性の低下を招く。 Furthermore, it is preferable that the fiber C is mixed in the range of 15 to 40% by mass constituting the separator. If it is less than 15% by mass, the entanglement between the fibers tends to be weak, the mechanical strength tends to be weak, and the impregnation property of the electrolytic solution cannot be sufficiently obtained. When it exceeds 40 mass%, durability will be reduced by the organic solvent and ionic liquid under high temperature atmosphere conditions.
本発明において、合成樹脂系結着剤後の繊維層の細孔径は、バブルポイント法による平均孔径が0.1μm〜15μmであることが好ましく、より好ましくは0.1μm〜5.0μmの範囲である。平均孔径が0.1μmより小さいと、イオン伝導性が低下し、内部抵抗が高くなりやすい。また、セパレータの製造の際に水が抜けにくいため、製造しにくくなる。15μmを超えると、薄膜化した場合に内部短絡を生じやすくなる。尚、バブルポイント法による孔径の測定は、西華産業社製のポロメーターを使用すればよい。
本発明のセパレータの厚さは、60μm以下であることが好ましい。セパレータの厚さが60μmを超えると、蓄電デバイスの薄型化に不利になると同時に、一定のセル体積に入れられる電極材の量が少なくなり、容量が小さくなってしまうばかりでなく、抵抗が高くなり好ましくない。
In the present invention, the pore diameter of the fiber layer after the synthetic resin binder is preferably 0.1 μm to 15 μm, more preferably 0.1 μm to 5.0 μm in average pore diameter by the bubble point method. is there. When the average pore diameter is smaller than 0.1 μm, the ionic conductivity is lowered and the internal resistance tends to be high. Further, since it is difficult for water to escape during the production of the separator, it is difficult to produce the separator. If it exceeds 15 μm, an internal short circuit is likely to occur when the film is thinned. In addition, the measurement of the hole diameter by the bubble point method may be performed by using a porometer manufactured by Seika Sangyo Co., Ltd.
The thickness of the separator of the present invention is preferably 60 μm or less. When the thickness of the separator exceeds 60 μm, it is disadvantageous for thinning of the electricity storage device, and at the same time, the amount of the electrode material that can be put in a certain cell volume is reduced, the capacity is reduced, and the resistance is increased. It is not preferable.
また、本発明のセパレータの密度は、0.2g/cm3〜0.7g/cm3であることが好ましい。0.25g/cm3〜0.65g/cm3であることがさらに好ましく、0.3g/cm3〜0.6g/cm3であることが特に好ましい。0.2g/cm3未満であると、セパレータの空隙部分が過多となり、短絡の発生や、耐自己放電性が悪化しやすいなどの不具合を生じやすい。一方、密度が0.7g/cm3より大きいと、セパレータを構成する材料の詰まり方が過多となるために、イオン移動が阻害され抵抗が高くなりやすい。 The density of the separator of the present invention is preferably 0.2g / cm 3 ~0.7g / cm 3 . More preferably from 0.25g / cm 3 ~0.65g / cm 3 , particularly preferably 0.3g / cm 3 ~0.6g / cm 3 . If it is less than 0.2 g / cm 3 , the void portion of the separator becomes excessive, and problems such as occurrence of short circuit and deterioration of self-discharge resistance are likely to occur. On the other hand, if the density is larger than 0.7 g / cm 3 , the material constituting the separator becomes excessively clogged, so that ion migration is hindered and resistance is likely to increase.
本発明のセパレータの透気度は、100秒/100ml以下であることが好ましい。イオン伝導性を好適に維持することができる。なお、本発明のセパレータにおける透気度は、ガーレ透気度測定器を用いて測定した値をいう。 The air permeability of the separator of the present invention is preferably 100 seconds / 100 ml or less. Ionic conductivity can be suitably maintained. In addition, the air permeability in the separator of this invention says the value measured using the Gurley air permeability measuring device.
以上説明したように、本発明のセパレータは、繊維A、繊維Bおよび繊維Cからなり、合成樹脂系結着剤を含有し、該結着剤が熱処理により融着しているため、突き刺し強度、膜厚方向(Z軸方向)の押し潰し強度、耐ショート性に、高温雰囲気下においても有機溶剤やイオン性液体に劣化しにくく、リチウムイオン二次電池、リチウムイオンキャパシタ、ポリマー電池及び電気二重層キャパシタなどの蓄電デバイスに好適に使用することができる。なお、本発明のセパレータを用いて蓄電デバイスを作製する場合、正極、負極、電解液など電気化学素子を構成する材料は、従来周知のものなら如何なるものでも使用することができる。 As described above, the separator of the present invention is composed of fiber A, fiber B, and fiber C and contains a synthetic resin-based binder, and the binder is fused by heat treatment. Lithium ion secondary battery, lithium ion capacitor, polymer battery, and electric double layer are resistant to crushing strength in the film thickness direction (Z-axis direction) and short circuit resistance, and are not easily degraded to organic solvents or ionic liquids even in high-temperature atmospheres. It can be suitably used for an electricity storage device such as a capacitor. In addition, when producing an electrical storage device using the separator of this invention, what is conventionally well-known can be used for the materials which comprise electrochemical elements, such as a positive electrode, a negative electrode, and electrolyte solution.
次に、本発明のセパレータの製造方法について説明するが、これのみに限定されるものではなく、他の方法でも本発明のセパレータを製造することは可能である。
先ず、繊維径5μm以下、繊維長10mm以下に裁断もしくは叩解された一種類以上の繊維Aと、繊維径1μm以下、繊維長3mm以下にフィブリル化された繊維Bと、繊維径1μm以下、繊維長3mm以下にフィブリル化された繊維Cを水に分散する。水に投入する順序は決まっていない。本発明に用いる繊維は、非常に微細なために離解工程では均一に分散しにくいため、パルパーやアジテータのような分散装置や、超音波分散装置を用いることによって、良好な分散が可能である。また、この分散工程で使用する水は、イオン性不純物をできるだけ少なくするために、イオン交換水あるいは純水を用いた方が好ましい。次に、上記と同一の合成繊維又は異種繊維を上記とは別のパルパーやアジテータのような分散装置で水に分散する。叩解は、一般的な叩解機であるボールミル、ビーター、ランペルミル、PFIミル、SDR(シングルディスクリファイナー)、DDR(ダブルディスクリファイナー)、高圧ホモジナイザー、ホモミクサー、あるいはその他のリファイナー等を使用して叩解することができる。
Next, although the manufacturing method of the separator of this invention is demonstrated, it is not limited only to this, The separator of this invention can be manufactured also by another method.
First, one or more kinds of fibers A cut or beaten to a fiber diameter of 5 μm or less and a fiber length of 10 mm or less, a fiber B fibrillated to a fiber diameter of 1 μm or less and a fiber length of 3 mm or less, a fiber diameter of 1 μm or less, a fiber length Fiber C fibrillated to 3 mm or less is dispersed in water. The order in which it is put into the water is not fixed. Since the fibers used in the present invention are very fine and difficult to disperse uniformly in the disaggregation step, good dispersion is possible by using a dispersing device such as a pulper or an agitator or an ultrasonic dispersing device. The water used in this dispersion step is preferably ion-exchanged water or pure water in order to reduce ionic impurities as much as possible. Next, the same synthetic fiber or different fiber as described above is dispersed in water by a dispersing device such as a pulper or agitator different from the above. The beating may be performed using a general beating machine such as a ball mill, beater, lampel mill, PFI mill, SDR (single disc refiner), DDR (double disc refiner), high pressure homogenizer, homomixer, or other refiner. it can.
上記で得られた繊維の分散体を、長網式、短網式、円網式、傾斜式などの湿式抄紙機を適用し、抄造する。連続したワイヤーメッシュ状の脱水パートで脱水する。湿式抄紙機の中で、2つのヘッドを有する傾斜ワイヤー抄紙機を用いると、2層以上の繊維層を重ね抄き合わせする場合、繊維層間の境界もできにくく、また、ピンホールのない均一なセパレータが得られる。重ね抄き合わせした後、多筒式やヤンキー式ドライヤー等の乾燥パートを通すことによって、乾燥状態のセパレータを得ることができる。この抄紙後の乾紙状態のセパレータに目標強度に応じて希釈した合成樹脂系結着剤溶液を含浸塗布する。塗布方式としてはダイレクトロールコーター、ディップコーター、スプレーコーター、キッスロールコーター等の塗布方式で浸漬され、多筒式やヤンキー式ドライヤー等の乾燥パートを通すことによって乾燥させて、セパレータを製作する。 The fiber dispersion obtained above is made by applying a wet paper machine such as a long-mesh type, a short-mesh type, a circular net type, or an inclined type. Dehydrate in a continuous wire mesh dewatering part. When using an inclined wire paper machine with two heads in a wet paper machine, when two or more fiber layers are laminated together, it is difficult to create a boundary between fiber layers, and there is no pinhole. A separator is obtained. After the sheets are overlaid, a dried separator can be obtained by passing through a drying part such as a multi-cylinder type or Yankee type dryer. A synthetic resin binder solution diluted according to the target strength is impregnated and applied to the dry paper separator after the paper making. As a coating method, a separator is manufactured by dipping in a coating method such as a direct roll coater, a dip coater, a spray coater, or a kiss roll coater, and drying by passing through a drying part such as a multi-cylinder type or a Yankee type dryer.
なお、合成樹脂系結着剤溶液の含浸塗布は、繊維の分散体を抄造した繊維層が湿紙状態のワイアーパート上あるいはフェルト又はカンバス上、あるいは、濾水、通気性の良いキャリアー上で噴霧塗布することがより好ましい。乾燥状態のセパレータへの含浸塗布方式では、セパレータの紙断やシワが発生しやすい。従って、塗布方式としては、噴霧塗布が好適である。 In addition, the impregnation application of the synthetic resin binder solution is performed by spraying the fiber layer on which the fiber dispersion is made on a wet paper wire part, a felt or a canvas, or a filtered water or a carrier having good air permeability. It is more preferable to apply. In the impregnation coating method on the separator in the dry state, the separator is likely to be cut or wrinkled. Therefore, spray coating is suitable as the coating method.
繊維径2.5μm、繊維長6mmのポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.2μm、繊維長0.6mmにフィブリル化された全芳香族ポリアミドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々25:60:15の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。
上記抄紙材料を、JIS P8222に規定する標準型手抄き装置を用いて湿体シート(繊維層)を抄造した。その後、得られた湿体シートを手抄き装置から取り出し、上記乾燥繊維の合計質量100質量部に対し、乾燥後の塗布量が20質量部になるようにカルボキシメチルセルロース水溶液を噴霧塗布した後に、ヤンキードライヤーにて130℃で乾燥して本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは31μm、密度は0.41g/cm3、透気度は8秒/100mlであった。
A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm and a fiber length of 6 mm, a fiber B made of wholly aromatic polyamide fibrillated to a fiber diameter of 0.2 μm and a fiber length of 0.6 mm, and a fiber diameter of 0.5 μm The fibers C made of solvent-spun cellulose fibrillated to a fiber length of 1 mm are charged in ion exchange water at a concentration of 0.05% by mass in a mass ratio of 25:60:15, and dispersed for 30 minutes. A papermaking material consisting of a dispersion of fibers was prepared.
A wet sheet (fiber layer) was made from the above paper making material using a standard hand-making device specified in JIS P8222. Then, after taking out the obtained wet sheet from the hand-pickup device, spray application of the carboxymethyl cellulose aqueous solution so that the coating amount after drying is 20 parts by mass with respect to 100 parts by mass of the dry fiber, The separator of the present invention was obtained by drying at 130 ° C. with a Yankee dryer.
Regarding the physical properties of the obtained separator, the thickness of the separator was 31 μm, the density was 0.41 g / cm 3 , and the air permeability was 8 seconds / 100 ml.
実施例1において、カルボキシメチルセルロース水溶液をSBR水溶液エマルジョンに変更した以外は同様にして本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは31μm、密度は0.45g/cm3、透気度は8秒/100mlであった。
In Example 1, the separator of the present invention was obtained in the same manner except that the aqueous carboxymethylcellulose solution was changed to an SBR aqueous emulsion.
Regarding the physical properties of the obtained separator, the thickness of the separator was 31 μm, the density was 0.45 g / cm 3 , and the air permeability was 8 seconds / 100 ml.
実施例1において、カルボキシメチルセルロース水溶液の乾燥後の噴霧塗布量を10質量部に変更した以外は同様にして本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは30μm、密度は0.40g/cm3、透気度は12秒/100mlであった。
In Example 1, the separator of this invention was obtained similarly except having changed the spray application quantity after drying of carboxymethylcellulose aqueous solution into 10 mass parts.
As for the properties of the obtained separator, the thickness of the separator was 30 μm, the density was 0.40 g / cm 3 , and the air permeability was 12 seconds / 100 ml.
実施例1において、カルボキシメチルセルロース水溶液の乾燥後の噴霧塗布量を60質量部に変更した以外は同様にして本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは33μm、密度は0.55g/cm3、透気度は74秒/100mlであった。
In Example 1, the separator of this invention was obtained similarly except having changed the spray application amount after drying of carboxymethylcellulose aqueous solution into 60 mass parts.
Regarding the physical properties of the obtained separator, the thickness of the separator was 33 μm, the density was 0.55 g / cm 3 , and the air permeability was 74 seconds / 100 ml.
実施例1において、カルボキシメチルセルロース水溶液の乾燥後の噴霧塗布量を150質量部に変更した以外は同様にして本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは32μm、密度は0.63g/cm3、透気度は82秒/100mlであった。
In Example 1, the separator of this invention was obtained similarly except having changed the spray application amount after drying of carboxymethylcellulose aqueous solution into 150 mass parts.
Regarding the physical properties of the obtained separator, the thickness of the separator was 32 μm, the density was 0.63 g / cm 3 , and the air permeability was 82 seconds / 100 ml.
繊維径2.5μm、繊維長6mmのポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.2μm、繊維長0.6mmにフィブリル化された全芳香族ポリアミドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々25:60:15の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。
上記抄紙材料を、JIS P8222に規定する標準型手抄き装置を用いて湿体シートを抄造した。その後、得られた湿体シートを手抄き装置から取り出し、ヤンキードライヤーにて130℃で乾燥した後に、上記乾燥繊維の合計質量100質量部に対し、乾燥後の塗布量が20質量部になるようにカルボキシメチルセルロース水溶液を噴霧塗布し、ヤンキードライヤーにて130℃で乾燥して本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは31μm、密度は0.41g/cm3、透気度は8秒/100mlであった。
A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm and a fiber length of 6 mm, a fiber B made of wholly aromatic polyamide fibrillated to a fiber diameter of 0.2 μm and a fiber length of 0.6 mm, and a fiber diameter of 0.5 μm The fibers C made of solvent-spun cellulose fibrillated to a fiber length of 1 mm are charged in ion exchange water at a concentration of 0.05% by mass in a mass ratio of 25:60:15, and dispersed for 30 minutes. A papermaking material consisting of a dispersion of fibers was prepared.
A wet sheet was made from the above papermaking material using a standard type handmaking apparatus defined in JIS P8222. Thereafter, the obtained wet sheet is taken out from the hand-making apparatus and dried at 130 ° C. with a Yankee dryer, and then the applied amount after drying becomes 20 parts by mass with respect to 100 parts by mass as the total mass of the dry fibers. Thus, the aqueous solution of carboxymethylcellulose was applied by spraying and dried at 130 ° C. with a Yankee dryer to obtain the separator of the present invention.
Regarding the physical properties of the obtained separator, the thickness of the separator was 31 μm, the density was 0.41 g / cm 3 , and the air permeability was 8 seconds / 100 ml.
繊維径3.2μm、繊維長6mmのポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.2μm、繊維長0.6mmにフィブリル化された全芳香族ポリアミドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々40:40:20の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、抄造、合成樹脂系結着剤の噴霧塗布及び乾燥処理を実施例1と同様にして本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは49μm、密度は0.32g/cm3、透気度は15秒/100mlであった。
A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 3.2 μm and a fiber length of 6 mm, a fiber B made of wholly aromatic polyamide fibrillated to a fiber diameter of 0.2 μm and a fiber length of 0.6 mm, and a fiber diameter of 0.5 μm The fibers C made of solvent-spun cellulose fibrillated to a fiber length of 1 mm were charged into the pulper at a concentration of 0.05% by mass in ion-exchanged water at a mass ratio of 40:40:20, and dispersed for 30 minutes. A papermaking material consisting of a dispersion of fibers was prepared. Thereafter, the separator of the present invention was obtained in the same manner as in Example 1 by papermaking, spray application of a synthetic resin-based binder, and drying treatment.
Regarding the physical properties of the obtained separator, the thickness of the separator was 49 μm, the density was 0.32 g / cm 3 , and the air permeability was 15 seconds / 100 ml.
繊維径2.5μm、繊維長6mmのポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.8μm、繊維長1.5mmにフィブリル化されたポリフェニレンサルファイドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々30:30:40の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、抄造、合成樹脂系結着剤の噴霧塗布及び乾燥処理を実施例1と同様にして本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは22μm、密度は0.45g/cm3、透気度は5秒/100mlであった。
Fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm and fiber length of 6 mm, Fiber B made of polyphenylene sulfide fibrillated to a fiber diameter of 0.8 μm and fiber length of 1.5 mm, Fiber diameter of 0.5 μm, Fiber Fiber C made of solvent-spun cellulose fibrillated to a length of 1 mm was introduced into the pulper at a concentration of 0.05% by mass in ion exchange water at a mass ratio of 30:30:40, and dispersed for 30 minutes. A papermaking material consisting of a dispersion was prepared. Thereafter, the separator of the present invention was obtained in the same manner as in Example 1 by papermaking, spray application of a synthetic resin-based binder, and drying treatment.
Regarding the physical properties of the obtained separator, the thickness of the separator was 22 μm, the density was 0.45 g / cm 3 , and the air permeability was 5 seconds / 100 ml.
繊維径3μm、繊維長6mmのポリエチレン繊維からなる繊維Aと、繊維径0.2μm、繊維長0.6mmにフィブリル化された全芳香族ポリアミドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々50:30:20の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、抄造、合成樹脂系結着剤の噴霧塗布及び乾燥処理を実施例1と同様にして本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは57μm、密度は0.36g/cm3、透気度は19秒/100mlであった。
A fiber A made of polyethylene fiber having a fiber diameter of 3 μm and a fiber length of 6 mm, a fiber B made of wholly aromatic polyamide fibrillated to a fiber diameter of 0.2 μm and a fiber length of 0.6 mm, a fiber diameter of 0.5 μm, and a fiber length Fiber C made of solvent-spun cellulose fibrillated to 1 mm was introduced into a pulper at a concentration of 0.05% by mass in ion exchange water at a mass ratio of 50:30:20, and dispersed for 30 minutes. A papermaking material consisting of body was prepared. Thereafter, the separator of the present invention was obtained in the same manner as in Example 1 by papermaking, spray application of a synthetic resin-based binder, and drying treatment.
Regarding the physical properties of the obtained separator, the thickness of the separator was 57 μm, the density was 0.36 g / cm 3 , and the air permeability was 19 seconds / 100 ml.
繊維径3μm、繊維長6mmのポリエチレン繊維からなる繊維Aと、繊維径0.4μm、繊維長1mmにフィブリル化された全芳香族ポリエステルからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々25:60:15の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、抄造、合成樹脂系結着剤の噴霧塗布及び乾燥処理を実施例1と同様にして本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは32μm、密度は0.45g/cm3、透気度は11秒/100mlであった。
A fiber A made of polyethylene fiber having a fiber diameter of 3 μm and a fiber length of 6 mm, a fiber B made of wholly aromatic polyester fibrillated to a fiber diameter of 0.4 μm and a fiber length of 1 mm, a fiber diameter of 0.5 μm and a fiber length of 1 mm Fiber C composed of fibrillated solvent-spun cellulose is introduced into a pulper at a concentration of 0.05% by mass in ion exchange water at a mass ratio of 25:60:15, and dispersed for 30 minutes. A papermaking material was produced. Thereafter, the separator of the present invention was obtained in the same manner as in Example 1 by papermaking, spray application of a synthetic resin-based binder, and drying treatment.
Regarding the physical properties of the obtained separator, the thickness of the separator was 32 μm, the density was 0.45 g / cm 3 , and the air permeability was 11 seconds / 100 ml.
繊維径2.5μm、繊維長6mmのポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.3μm、繊維長1mmにフィブリル化されたポリパラフェニレンベンゾビスオキサゾールからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々25:50:25の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、抄造、合成樹脂系結着剤の噴霧塗布及び乾燥処理を実施例1と同様にして本発明のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは38μm、密度は0.62g/cm3、透気度は42秒/100mlであった。
A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm and a fiber length of 6 mm, a fiber B made of polyparaphenylenebenzobisoxazole fibrillated to a fiber diameter of 0.3 μm and a fiber length of 1 mm, and a fiber diameter of 0.5 μm The fibers C composed of solvent-spun cellulose fibrillated to a fiber length of 1 mm were charged in ion exchange water at a concentration of 0.05% by mass in a mass ratio of 25:50:25, and dispersed for 30 minutes. A papermaking material consisting of a dispersion of fibers was prepared. Thereafter, the separator of the present invention was obtained in the same manner as in Example 1 by papermaking, spray application of a synthetic resin-based binder, and drying treatment.
Regarding the physical properties of the obtained separator, the thickness of the separator was 38 μm, the density was 0.62 g / cm 3 , and the air permeability was 42 seconds / 100 ml.
(比較例1)
繊維径2.5μm、繊維長6mmのポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.2μm、繊維長0.6mmにフィブリル化された全芳香族ポリアミドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々25:60:15の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。
上記抄紙材料を、JIS P8222に規定する標準型手抄き装置を用いて湿体シートを抄造した。その後、得られた湿体シートを手抄き装置から取り出した後に、何も処理しないでヤンキードライヤーにて130℃で乾燥して比較用セパレータを得た。
得られたセパレータの物性は、セパレータの厚さは30μm、密度は0.41g/cm3、透気度は8秒/100mlであった。
ータはフィルム化してしまっていた。
(Comparative Example 1)
A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm and a fiber length of 6 mm, a fiber B made of wholly aromatic polyamide fibrillated to a fiber diameter of 0.2 μm and a fiber length of 0.6 mm, and a fiber diameter of 0.5 μm The fibers C made of solvent-spun cellulose fibrillated to a fiber length of 1 mm are charged in ion exchange water at a concentration of 0.05% by mass in a mass ratio of 25:60:15, and dispersed for 30 minutes. A papermaking material consisting of a dispersion of fibers was prepared.
A wet sheet was made from the above papermaking material using a standard type handmaking apparatus defined in JIS P8222. Thereafter, the obtained wet sheet was taken out from the hand-making apparatus and then dried at 130 ° C. with a Yankee dryer without any treatment to obtain a comparative separator.
Regarding the physical properties of the obtained separator, the thickness of the separator was 30 μm, the density was 0.41 g / cm 3 , and the air permeability was 8 seconds / 100 ml.
The data was filmed.
(比較例2)
繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cをイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、抄造、合成樹脂系結着剤の噴霧塗布及び乾燥処理を実施例1と同様にして比較用のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは35μm、密度は0.41g/cm3、透気度は5秒/100mlであった。
(Comparative Example 2)
A fiber C composed of solvent-spun cellulose fibrillated to a fiber diameter of 0.5 μm and a fiber length of 1 mm is charged into ion-exchanged water at a concentration of 0.05% by mass in a pulper and dispersed for 30 minutes to form a fiber dispersion. Papermaking materials were prepared. Thereafter, papermaking, spray application of a synthetic resin binder and drying treatment were performed in the same manner as in Example 1 to obtain a comparative separator.
As for the properties of the obtained separator, the thickness of the separator was 35 μm, the density was 0.41 g / cm 3 , and the air permeability was 5 seconds / 100 ml.
(比較例3)
繊維径2.5μm、繊維長6mmのポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々80:20の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、抄造、合成樹脂系結着剤の噴霧塗布及び乾燥処理を実施例1と同様にして比較用のセパレータを得た。
得られたセパレータの物性は、セパレータの厚さは70μm、密度は0.32g/cm3、透気度は39秒/100mlであった。
(Comparative Example 3)
A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm and a fiber length of 6 mm and a fiber C made of solvent-spun cellulose fibrillated to a fiber diameter of 0.5 μm and a fiber length of 1 mm are each in a mass ratio of 80:20. Into the ion exchange water at a concentration of 0.05% by mass, it was put into a pulper and dispersed for 30 minutes to prepare a papermaking material comprising a fiber dispersion. Thereafter, papermaking, spray application of a synthetic resin binder and drying treatment were performed in the same manner as in Example 1 to obtain a comparative separator.
Regarding the physical properties of the obtained separator, the thickness of the separator was 70 μm, the density was 0.32 g / cm 3 , and the air permeability was 39 seconds / 100 ml.
実施例1〜11及び比較例1〜3で得られたセパレータにおいて下記評価を行い、蓄電デバイス用セパレータとしての特性を評価した。なお、それぞれのセパレータについて、繊維の配合割合、厚さ、密度、透気度の物性値を表1に示す。 The following evaluation was performed in the separators obtained in Examples 1 to 11 and Comparative Examples 1 to 3, and the characteristics as a separator for an electricity storage device were evaluated. In addition, about each separator, the physical-property value of the mixture ratio of fiber, thickness, density, and air permeability is shown in Table 1.
<電気二重層キャパシタの組み立てと高温長期試験中の放電容量の変化の評価>
実施例1〜11及び比較例1〜3のセパレータについて、正極、負極の電極を用いて電気二重層キャパシタを組み立てて、各々100個ずつ捲回型セルを作製した。なお、捲回型セルの作製においては、電極として電気二重層キャパシタ用の活性炭電極(宝泉株式会社製)を用いた。また、電解液としてプロピレンカーボネートに、1mol/Lとなるようにテトラエチルアンモニウムテトラフルオロボレート(キシダ化学株式会社製)を溶解したものを用いた。
作製された捲回型セルの放電容量について、初期、2000時間試験後、4000時間試験後にそれぞれLCRメーターで測定し、高温長期試験後の放電容量の変化(低下)を評価した。なお、試験条件は、80℃、2.5V印加で行った。
得られた結果を表2に示す。
<Assembly of electric double layer capacitor and evaluation of change in discharge capacity during long-term high temperature test>
About the separator of Examples 1-11 and Comparative Examples 1-3, the electric double layer capacitor was assembled using the electrode of a positive electrode and a negative electrode, and each 100 pieces each wound type cell was produced. In the production of the wound cell, an activated carbon electrode for electric double layer capacitor (made by Hosen Co., Ltd.) was used as the electrode. Moreover, what melt | dissolved the tetraethylammonium tetrafluoroborate (made by Kishida-Chemical Co., Ltd.) was used for the electrolyte solution in propylene carbonate so that it might become 1 mol / L.
About the discharge capacity of the produced wound type cell, it measured with the LCR meter after the initial stage, 2000 hours test, and 4000 hours test, respectively, and the change (decrease) of the discharge capacity after a high temperature long-term test was evaluated. The test conditions were 80 ° C. and 2.5 V applied.
The obtained results are shown in Table 2.
表2の結果から明らかなように、本発明のセパレータを用いた電気二重層キャパシタは、80℃、2.5V電圧印加試験の4000時間後も9.8F以上の十分な放電容量を維持していることが確認できた。これに対して、比較例1〜3のセパレータを用いた電気二重層キャパシタは、放電容量の低下が大きく、特性が著しく劣るものであった。 As is apparent from the results in Table 2, the electric double layer capacitor using the separator of the present invention maintains a sufficient discharge capacity of 9.8 F or more even after 4000 hours of a 2.5 V voltage application test at 80 ° C. It was confirmed that On the other hand, the electric double layer capacitor using the separators of Comparative Examples 1 to 3 had a large decrease in discharge capacity and extremely poor characteristics.
<セパレータの押し潰し強度比較>
実施例1〜11及び比較例1〜3のセパレータを170℃で1N/cm2の圧力で押し潰した後の厚さを測定した。
得られた結果を表3に示す。
<Comparison of crushing strength of separator>
The thicknesses after the separators of Examples 1 to 11 and Comparative Examples 1 to 3 were crushed at 170 ° C. with a pressure of 1 N / cm 2 were measured.
The obtained results are shown in Table 3.
表3の結果から明らかなように、本発明のセパレータを用いた電気二重層キャパシタは、押し潰し強度もほぼ初期値を保持しており、優れた性能を有することが確認された。これに対して、比較例1〜3のセパレータを用いた電気二重層キャパシタは、押し潰し試験において、著しく膜厚を減少させていた。
以上の結果から、本発明のセパレータは、薄膜で、有機溶剤やイオン性液体存在下での高温環境下での耐久性に、非常に優れていることが判った。従って、本発明のセパレータは、電気二重層キャパシタのような蓄電デバイスに好適に用いられ、電極間の短絡防止や自己放電の抑制に優れるものであった。
As is clear from the results in Table 3, it was confirmed that the electric double layer capacitor using the separator of the present invention has excellent crushing strength and an excellent performance. On the other hand, the electric double layer capacitor using the separators of Comparative Examples 1 to 3 significantly reduced the film thickness in the crushing test.
From the above results, it was found that the separator of the present invention is a thin film and very excellent in durability under a high temperature environment in the presence of an organic solvent or an ionic liquid. Therefore, the separator of the present invention is suitably used for an electricity storage device such as an electric double layer capacitor, and is excellent in preventing a short circuit between electrodes and suppressing self-discharge.
Claims (15)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009065205A JP2010219351A (en) | 2009-03-17 | 2009-03-17 | Separator for storage device, and method of manufacturing the same |
US13/256,321 US20120003525A1 (en) | 2009-03-17 | 2010-03-16 | Separator for an electricity storage device and method of manufacturing same |
CN201080012336XA CN102356441A (en) | 2009-03-17 | 2010-03-16 | Separator for electrical storage device and method for producing same |
PCT/JP2010/001861 WO2010106793A1 (en) | 2009-03-17 | 2010-03-16 | Separator for electrical storage device and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009065205A JP2010219351A (en) | 2009-03-17 | 2009-03-17 | Separator for storage device, and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010219351A true JP2010219351A (en) | 2010-09-30 |
Family
ID=42977857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009065205A Pending JP2010219351A (en) | 2009-03-17 | 2009-03-17 | Separator for storage device, and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010219351A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016194186A (en) * | 2015-03-31 | 2016-11-17 | 特種東海製紙株式会社 | Porous sheet |
WO2017169848A1 (en) * | 2016-03-31 | 2017-10-05 | 特種東海製紙株式会社 | Porous sheet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01168988A (en) * | 1987-12-24 | 1989-07-04 | Saitou Tekkosho:Kk | Apparatus for making multi-layered paper having high interlaminar adhesion strength |
JP2004207333A (en) * | 2002-12-24 | 2004-07-22 | Mitsubishi Paper Mills Ltd | Separator and wound type electric double-layered capacitor using the same |
JP2008186707A (en) * | 2007-01-30 | 2008-08-14 | Tomoegawa Paper Co Ltd | Separator for electrochemical element |
-
2009
- 2009-03-17 JP JP2009065205A patent/JP2010219351A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01168988A (en) * | 1987-12-24 | 1989-07-04 | Saitou Tekkosho:Kk | Apparatus for making multi-layered paper having high interlaminar adhesion strength |
JP2004207333A (en) * | 2002-12-24 | 2004-07-22 | Mitsubishi Paper Mills Ltd | Separator and wound type electric double-layered capacitor using the same |
JP2008186707A (en) * | 2007-01-30 | 2008-08-14 | Tomoegawa Paper Co Ltd | Separator for electrochemical element |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016194186A (en) * | 2015-03-31 | 2016-11-17 | 特種東海製紙株式会社 | Porous sheet |
WO2017169848A1 (en) * | 2016-03-31 | 2017-10-05 | 特種東海製紙株式会社 | Porous sheet |
JP2017179677A (en) * | 2016-03-31 | 2017-10-05 | 特種東海製紙株式会社 | Porous sheet |
US20190048528A1 (en) * | 2016-03-31 | 2019-02-14 | Tokushu Tokai Paper Co., Ltd | Porous sheet |
US11236468B2 (en) | 2016-03-31 | 2022-02-01 | Tokushu Tokai Paper Co., Ltd | Porous sheet |
SE545740C2 (en) * | 2016-03-31 | 2023-12-27 | Tokushu Tokai Paper Co Ltd | Porous sheet and laminate, separator and electrochemical device products with the porous sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010044264A1 (en) | Power storage device separator | |
WO2010106793A1 (en) | Separator for electrical storage device and method for producing same | |
JP5031835B2 (en) | Heat-resistant ultrafine fiber separation membrane and secondary battery using the same | |
CN104577009B (en) | Separator for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP2023012514A (en) | Method for manufacturing single layer lithium ion battery separator | |
JP6541002B2 (en) | Low shrinkage single layer lithium ion battery separator | |
JP2008186707A (en) | Separator for electrochemical element | |
JP2010225809A (en) | Separator-electrode integration type electric storage element for electrochemical element, and electrochemical element using the same | |
JP2011035373A (en) | Separator for power storage device | |
US10748713B2 (en) | Separator for electrochemical device and electrochemical device | |
JP2009076486A (en) | Separator for electrochemical element | |
JP2000003834A (en) | Electric double-layer capacitor | |
KR102660222B1 (en) | Separator for electrochemical devices and electrochemical devices | |
JP2010219335A (en) | Separator for storage device, and method of manufacturing the same | |
JP2015088703A (en) | Separator for capacitors, and capacitor using the same | |
JP2010232205A (en) | Separator for electric storage device | |
JP2010129308A (en) | Power storage device separator | |
JP2010238640A (en) | Separator for power storage device | |
JP2010098074A (en) | Separator for electric storage device | |
JP2016024970A (en) | Separator for electrochemical element | |
JP2010232202A (en) | Separator for electricity storage device | |
JP2005063684A (en) | Separator for electrochemical element | |
JP2010287697A (en) | Separator for energy storage device | |
JP2016170974A (en) | Separator for alkaline battery and alkaline battery | |
JP7191536B2 (en) | Separator for electrochemical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130625 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131029 |