JPS61101771A - ヒ−トポンプ式冷暖房給湯機 - Google Patents

ヒ−トポンプ式冷暖房給湯機

Info

Publication number
JPS61101771A
JPS61101771A JP59224775A JP22477584A JPS61101771A JP S61101771 A JPS61101771 A JP S61101771A JP 59224775 A JP59224775 A JP 59224775A JP 22477584 A JP22477584 A JP 22477584A JP S61101771 A JPS61101771 A JP S61101771A
Authority
JP
Japan
Prior art keywords
hot water
contact
air conditioning
water supply
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59224775A
Other languages
English (en)
Inventor
正美 今西
秀一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59224775A priority Critical patent/JPS61101771A/ja
Publication of JPS61101771A publication Critical patent/JPS61101771A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はヒートポンプ式給湯機に関し、特に効率を高
めるとともに冷暖房をも可能にしたヒートポンプ式給湯
機に関するものである。
〔従来の技術〕
従来の空気熱源ヒートポンプ式給湯機の例を第4図に示
す。図において、1は給湯用圧縮機、2は給湯用凝縮器
、3は膨張機構、4は送風機5を備えた蒸発器であり、
これらを順次冷媒配管で連結してヒートポンプ回路を構
成している。そして実線矢印は冷媒の流れを示す。
6は貯湯タンク、7は貯湯タンク6下部にもうけた給水
口で、市水配管8と減圧逆止弁9を介して貯湯タンク6
に接続されている。10は貯湯タンク6上部にもうけた
給湯口で、給湯配管1工を介して給湯栓12に接続して
いる。
13け貯湯タンク6下部にもうけた循環水取出口、14
は貯湯タンク上部にもうけた循環水返し口、15は循環
ポンプであり、そして給湯用凝縮器2と水管で接続して
いる。16は貯湯タンク6下部に取付けられた電気ヒー
タである。
つぎに、上記第4図に示した各構成機器の運転制御回路
の一例を第5図に示す。図において、18は給湯運転ス
イッチ、19は貯湯タンク6内の水温を検出するサーモ
スタット、20はヒートポンプ運転からヒータ運転へ切
換えるサーモスタット、21は電気ヒータ16に相当す
るヒ〜り回路、22は給湯用圧縮機1に相当する給湯用
圧縮機モータ回路、23は送風機5に相当する送風機モ
ータ回路、24は循環ポンプ15に相当するポンプモー
タ回路である。
次に、動作について説明する。まず、給湯運転スイッチ
18を閉接し、サーモスタット19が閉成し、サーモス
タット20が第5図に示すように、b接点側に接点接続
しでいると、すなわち貯湯タンク6の水温が所定値以下
の場合、給湯用圧縮機モータ回路22.送風機モータ回
路23.及びポンプモータ回路24が作動しヒートポン
プ運転を行なう。これにより給湯用圧縮@1から吐出さ
れた高温高圧冷媒ガス(フロン12)は給湯用凝縮器2
において、貯湯タンク6下部から循環ポンプ15によっ
て送られる給湯水と熱交換し、給湯水を加熱し、自らは
凝縮液化し、膨張機構3で減圧され蒸発器4にて空気よ
り採熱し、蒸発し、給湯用圧縮機1にもどる冷凍サイク
ルを形成する。一方、給湯水側は市水配管8.減圧逆止
弁9を通り給水口?より給水される。また貯湯タンク6
を満している給湯水は循環水取出口13より循環ポンプ
15たよって給湯用凝縮器2に送られ加熱され循環水返
し口14をへて貯湯タンク6にもど9循環される。この
ようにして貯湯タンク6内の給湯水は順次循環用熱ぢれ
昇温されていく。この時、貯湯タンク6内は貯湯水の循
環により均一な温度分布になっている。こうして昇温を
続は貯湯タンク6内の給湯水が所定温度以上になると、
サーモスタット20の接点はb接点側よりa接点側に切
換わり、給湯用圧縮機モータ回路22.送風機モータ回
路23及びポンプモータ回路24は停止する。同時に、
ヒータ回路21が作動し、電気ヒータ16に通電される
。貯湯タンク6内の給湯水が所定の温度となると、サー
モスタット19は開成し、ヒータ回路21が停止する。
〔発明が解決しようとする問題点〕
以上のように従来の空気熱源ヒートポンプ式給湯機は構
成されていた。従って、外気温度が低い冬期(例えば0
℃以下)では、空気からの採熱量が少ない為、蒸発圧力
が低くな9、給湯能力が小さかった0また、高温給湯水
を得ようとすれば、凝縮圧力が上昇し、給湯用圧縮機1
の圧縮比(=凝縮圧力/蒸発圧力)が8以上となり、か
つ給湯用圧縮機】の吐出冷媒外気温が上昇しく例えば1
30℃以上)給湯用圧縮機1の信頼性及び内命に大きな
影響を与える為、給湯用圧v3機1の運転を停止させ、
その代替として、補助熱源(例えば電気ヒータ)によっ
て昇温する等の手段がとられていた。しかし、これは機
器の効率(成績係数)を悪くしていた。
また、空気熱源ヒートポンプ式であるため、夏期、外気
温が高い4付、給湯能力が天さく・冬期外気温が低い場
合には給湯能力が小さくなる。これは、給湯負荷とは全
く逆の傾向でめり、負荷は外気温が高い夏期には小さく
、外気温の低い冬期には大きくなる。従って、機器の特
性と、負荷とのバランス7戸とれず、@種選定において
は、がなυ大きな容量の機器が必要であった。
〔問題を解決するための手段〕
従って、この発明によるヒートポンプ式冷暖房給湯機は
、空気熱源ヒートポンプの水側熱交換器および水熱源ヒ
ートポンプ給湯機の蒸発器を熱的に結合させるとともに
、給湯用冷凍サイクルの運転中に空調用水回路の水温が
低下した場合には、空調用水回路の水温を検出する凍結
保j用サーモスタットにより給湯用冷凍サイクルの運転
を停止し、かつ空調用冷凍サイクルを加熱運転させるも
のである。また、ドックアップ加熱運転中は電気ヒータ
へ通電することによって貯湯タンク内の水温を上昇させ
るものである。
〔作 用〕
この様に構成されたヒートポンプ式冷暖房給湯機に於い
ては、給湯用冷凍サイクル運転中に水温が低下しても、
給湯用冷凍サイクルを停止させて空調用冷凍サイクルを
加熱運転させるものであるために、空調用水回路の凍結
を防止することが出来る。また、ドックアップ加熱運転
中は電気ヒータへの通電によって貯湯タンク内の水温を
上昇させるものであるために、効率が高められるととも
に冷暖房をも可能となるものである。
〔実施例〕
通常、単段の冷凍サイクルに於いて、凝縮温度と蒸発温
度の差が太きく、特に給湯水温度が高くなると冷凍サイ
クルの成績係数(c、o、p)は悪くなる。これは圧縮
機の圧縮比が大きくなり、パ    偉績効率が低下す
るためである。
例えば、給湯水温度67℃、外気θ℃の場合について、
単段圧縮の空気熱源ヒートポンプチラーの場合と、二元
冷凍、即ち低段側を空気熱源ヒートポンプチラーとし、
高段側に水熱源ヒートポンプ給湯機を設けて、低段側の
凝縮熱を高段側の採熱量とした場合の圧縮機の偉績効率
を比較してみる。第3図にレシプロ圧縮機の圧縮比と偉
績効率との関係、及びそれぞれの方式の運転特性を表わ
すモリエル線図を示す。単段方式の場合(冷媒としてフ
ロン22使用)、高圧32 K1c/−a d s 。
低圧4にり/ d a d s圧縮比8となり、偉績効
率は42チである。二元冷凍方式の場合、低段側(冷媒
としてR−22使用)、高圧14にり/ i a d 
s低圧4 My/ad a d s圧縮比3.5となり
、体積効率72チ、高段側(冷媒としてフロン12使用
)、高圧20砂/L:pIad8低圧6.6 Ky/c
a a d s圧縮比3となり、偉績効率は75%であ
る。これらの偉績効率をもとに、それぞれのモリエル線
図上からみた理論加熱C,O,Pは、単段方式では1.
4、二元冷凍方式では2を越え、二元冷凍方式の方が効
率が良くなる。
次に、本発明によるヒートポンプ式冷暖房給湯機の一実
施例を第1図に示す。図において、lは給湯用圧縮機、
2は給湯用凝縮器、3は膨張機構16は貯湯タンク、7
は貯湯タンク6下部に設けた給水口で、市水配管8と減
圧逆止弁9を介して貯湯タンク6に接続されている。1
0は貯湯タンク6上部に設けた給湯口で、給湯配管11
を介して給湯栓12に接続している。
13は貯湯タンク6下部に設けた循環水取出口、14は
貯湯タンク6上部に設けた循環水返し口、15は循環ポ
ンプであって、水管によって給湯用凝縮器2と接続され
ている。16は貯湯タンク6の下部内に取り付けられた
加熱用の電気ヒータ、19は貯湯タンク6の下部内に取
り付けられたサーモスタットである。25は空調用冷凍
サイクルと水回路を共用して空調用の冷温水を作る水側
熱交換器、26はアキュムレータであって、これらは冷
媒配管によって順次連結されることにより水熱源ヒート
ポンプ回路を構成している。27はアキュムレータ25
に取り付けられたクランクケースヒータ、28はアキュ
ムレータ26に取り付けられたヒータである。
29は空調用圧縮器、30は四方弁、31は膨張機構、
32は送風機33を備えた空気側熱交換器、これらと上
記水側熱交換器を順次冷媒配管で連結して空気熱源ヒー
トポンプ回路を構成している。
34は空調用循環ポンプ、35は三方弁36を備えた放
熱器であって、これらと水側熱交換器25を順次水配管
で連結することにより、空調用水回路を構成している。
そしてこの第1図に示す構成図に於いて、実線矢印は暖
房時に於ける冷媒の流れを示し、破線矢印は冷房時に於
ける冷媒の流れを示し、更に白抜き矢印は冷温水の流れ
を示している。
次に、上記第1図に示した各構成機器の運転制御回路の
一実施例を第2図に示す。図において、18は給湯運転
スイッチ、19は貯湯タンク6内の水温を検出し、所定
温度に達すると、接点を開成するサーモスタット、21
は電気ヒータ16に相当するヒータ回路、22は給湯用
圧縮機1に相当する給湯用圧縮器モータ回路、24は循
環ポンプ15に相当するポンプモータ回路、37は装置
の運転時間を制御するタイマ、38はタイマ37の出力
接点、39は補助リレー、40al、40a2は補助リ
レー39の出力接点、41は暖房運転時に空調用温水の
温度を検出し、所定値以上になると閉成して給湯用圧縮
機上−タ22を制御するサーモスタット、42は補助リ
レー、43は補助リレー42の出力接点、45は空調用
水回路の水温を感知し、空調用水回路の加熱運転の開始
を制御するサーモスタット、46はサーモスタット45
よりも設定値が高く、空調用水制路の水温を感知して空
調用水回路の加熱運転の開始を制御するサーモスタット
” 7” 補助’J し%  4 s a l+48a
2+48a3+48a’+48a5+49bl、49b
2は補助リレー47の出力接点、50は遅延タイマ、5
1は遅延タイマ50の出力限時接点、52は空調運転ス
イッチ、53は補助リレー、54 a ” + 54 
a 2r 55 + 56は補助リレー53の出力接点
、57は補助リレー、58は補助リレー57の出力接点
、59は冷暖房切換スイッチ、60は補助リレー、61
al、61a2゜63cl、63c2+63c3は補助
リレー60の出力接点、64はサーモスタット45よシ
設定値が低く、かつ空調用冷媒回路の冷媒温を検出して
冷房運転時のみ作用する凍結防止サーモスタット、65
は補助リレー、66は補助リレー65の出力接点、67
は空調用循環ポンプ34に相当するポンプモータ回路、
68は空調用冷水温度を検出し、冷房運転を制御するサ
ーモスタットであり、サーモスタット45よりも設定値
が高く設定されている。69は空調用温水温度を検出し
\暖房運転を制御するサーモスタットであり、サーモス
タット41よりも設定値が高く設定されている。70は
空調用圧縮機29に相当する空調用圧縮機モータ回路、
71は送風機73に相当する送風機モータ回路、72は
四方弁30のコイル、73は補助リレー、73al 、
73blは補助リレー73の出力接点、74は補助リレ
ー、74 a ’ + 74 a 2は補助リレー74
の出力接点である。
以下、上記第1図、第2図に示すヒートポンプ式冷暖房
給湯機の動作を詳細に説明する。
まず、給湯運転スイッチ18が閉成されて、空調運転ス
イッチ52が切側に接点接続されている場合、すなわち
貯湯加熱運転モードについて説明する。
貯湯加熱運転時間帯になると、タイマ37の作用により
、接点38が閉成する。この時1貯湯タンク6内の水が
所定水温以下の場合には1サーモスタツト19は閉成し
ており、補助リレー39が励磁されるとともに接点40
a1が閉成されてポンプモータ回路24が作動する。補
助リレー65は電源投入と同時に励磁され、接点66が
閉成される。また、補助リレー39が励磁されて接点4
0a2が閉成されることによシ、補助リレー53が励磁
されるために、接点54a1.54a2は閉成、接点5
5は開成、接点56がa側に接点接続され、接点543
2は冷房用凍結防止サーモスタット64を短絡する。
また、接点55が開成しているために、空調用圧縮機モ
ータ回路70.送風機モータ回路71の運転制御は接点
48a1の開閉により制御される。
この時、冷暖切換スイッチ59が暖器接点に接続してい
る場合は、補助リレー60が励磁され1接点61al 
+61a2が閉成、接点63cl。
63c2,63c3がa側に接点接続され、接点61a
1で冷房用凍結防市サーモスタット64を短絡している
接点54a1が閉成されると、補助リレー57が励磁さ
れ、接点58がa側に接点接続され、空調用循環ポンプ
モータ回路67が作動する。一方、補助リレー47が非
励磁の場合、接点49b1は閉成されており、給湯用圧
縮機モータ回路22が作動し、貯湯加熱運転を開始し、
また補助リレー42が励磁され、接点43が開成し、そ
れまで給湯用圧縮機モータ回路22が停止している間通
電されていたクランクケースヒータ27およびヒータ2
8が非通電となる。そして給湯用圧縮機1より送られて
来る高温高圧冷媒は給湯用凝縮器2において貯湯タンク
6の下部から循環ポンプ15によって送られてきた給湯
水と熱交換することにより放熱凝縮し、更に膨張機構3
で減圧され、水側熱交換器25で空調用循環ポンプ34
によって送られてきた冷水と熱交換することにより冷却
し、冷媒は採熱蒸発し、アキュムレータ26をへテ給湯
用圧縮機lへもどる冷凍サイクルを形成する。
一方、市水配管8.減圧逆止弁9を通り給水ロアより給
水され、貯湯タンク6を満たしている給湯水は、循環水
取出口13より循環ポンプ15によって給湯用凝縮器2
に送られて加熱され、循環水返し口14をへて貯湯タン
ク6にもどるように循環される。
このようにして貯湯タンク6内の水は順次循環加熱され
て昇温する0また、給湯側の冷凍サイクルにとっては熱
源水回路の空調用水回路は、空調用循環ポンプ34によ
り水側熱交換器25に送られ、水側熱交換器25で冷却
されて三方弁36へ送られる。空調負荷がある場合は三
方弁36の切換によって放熱器35へ送られ、空調負荷
がない場合は三方弁36の切換によって放熱器35をバ
イパスして空調用循環ポンプ34にもどる0空調負荷が
水側熱交換器25に於ける冷却能力を下回ると、空調用
水回路の水温は次第に低下していく。
ここで、冷暖房切換スイッチ59が冷側接点に接続され
ている場合には、補助リレー60は非励磁となり、接点
63C3はb側接点に接続される。
また、冷暖房切換スイッチ59が暖器接点に接続されて
いる場合には、補助リレー60が励磁され、その接点6
3C3がa側接点に接続されるO接点63C3がa側接
点に接続されている時に空調用水回路の本温か給湯側冷
凍サイクルの採熱によって所定の水温以下になると、ま
ずサーモスタット69、さらにサーモスタット46が閉
成されるために補助リレー74が励磁され、その接点7
4a1が閉成して補助リレー47および遅延タイマ50
が励磁されるために接点48@4が閉成する。また接点
63c3がb側接点に接続している時に空調用水回路の
水温が給湯側冷凍サイクルの採熱により所定の水温以下
になると、まずサーモスタット68が閉成し、さらにサ
ーモスタット45が閉成する。サーモスタット48が閉
成すると、補助リレー73が非励磁になり、接点73b
1が閉成して補助リレー47、遅延タイマ50が励磁さ
れて接点48a3が閉成する。つまり、冷暖房切換スイ
ッチ59が、暖器接点に接続されている場合には、サー
モスタット45及びサーモスタット68にくラヘて設定
値の高いサーモスタット4G及びサーモスタット69と
接点48a4.接点74a1によって回路を形成し、冷
暖房切換スイッチ59が冷側接点に接続されている場合
には、設定値の低いサーモスタット45及びサーモスタ
ット68と接点48a3+接点73b1によって回路を
形成する。補助リレー47が励磁されると、接点49b
1が開成して給湯用圧縮機モータ回路22が停止するた
めに貯湯加熱運転が一旦停止させられる。同時に接点4
8a5が閉成してヒータ回路21が作動するために、電
気ヒータ16に通電される。まだ・補助リレー42が非
励磁となることから接点43は閉成し、クランクケース
ヒータ27およびヒータ28に通電される。
一方、接点48alが閉成すると空調用圧縮機モータ回
路70と送風機モータ回路71が動作する。この時、接
点48a2が閉成し、接点49b2が開成するために四
方弁30のコイル72は非通電の状態になってから、一
定時間後に遅延タイマ50の接点51が閉成し、四方弁
30のコイル72が通電される。これによって空調用冷
凍サイクルは一定時間、冷房運転したのち暖房運転、す
なわち給湯側冷凍サイクルの熱源水のバックアップ加熱
運転に入る。冷房運転時は空調用圧縮機29より送られ
た高温高圧冷媒は四方弁30によって破線矢印の示す方
向に切換えられ空気側熱交換器32へ送られ凝縮し、膨
張機構31で減圧され水側熱交換器25へ送られ蒸発し
、四方弁30をへて空調用圧縮機29へもどることによ
り空調用冷凍サイクルを形成する。一定時間の冷房運転
後〜バックアップ加熱運転が行なわれると、四方弁30
の切換により空調用圧縮機29より送シ出された高温高
圧冷媒ガスは、四方弁30を通って実線矢印の示す方向
に送られ、水側熱交換器25に於いて空調用循環ポンプ
34で送られてきた冷温水と熱交換されて加熱し、自か
らは放熱凝縮して膨張機構31で減圧され、空気側熱交
換器32で採熱蒸発し、四方弁30をへて空調用圧縮機
29へもどる。このバックアップ加熱運転によって空調
用水回路の水温が上昇し、接点63C3がb側接点に接
続されている場合は、サーモスタット68が閉成する温
度まで上昇すると補助リレー73が励磁し、接点73b
1が開成して補助リレー47.遅延タイマ50の励磁が
とけて接点48a1が開成するために、空調用圧縮機モ
ータ回路70と送風機モータ回路71が動作を停止し、
バックアップ加熱運転が終了する。一方、接点48a5
が開成することでヒータ回路21の動作が停止し、電気
□ ヒータ16が非通電になり接点49b1が閉成する
ことで給湯用圧縮機モータ回路22が動作して再び貯湯
加熱運転を開始し補助リレー42が励磁されて接点43
が開成してクランクケースヒータ27とヒータ28が非
通電になる。また、接点63C3がa側接点に接続され
ている場合はサーモスタット69が開成する温度まで空
調用水回路の水温が上昇すると補助リレー74が非励磁
となり、接点74a1が開成して補助リレー47.遅延
タイマ50の励磁がとけ、接点48a1が開成して空調
用圧縮機モータ回路70と送風機モータ回路71の動作
が停止し、これに伴なってバックアップ加熱運転が終了
する。一方、接点48a5が開成することでヒータ回路
21の動作が停止し、電気ヒータ16が非通電となって
接点49blが閉成することで給湯用圧縮機モータ回路
22が動作し、再び貯湯加熱運転を開始し、クランクケ
ースヒータ27とクランクケースヒータ28が非通電に
なる。このようにして貯湯加熱運転によって貯湯タンク
6内の水温が所定の温度以上となり、サーモスタット1
9が開成するか、あるいは貯湯加熱運転時間帯が終了し
てタイマ37の動作により接点38が開成すると、補助
リレー39の励磁がとけ、接点40at、40a2が開
成する。接点40a1が開成するとポンプモータ回路2
4が停止するために給湯用圧縮機モータ回路22が停止
し、補助リレー42の励磁がとけて接点43が閉成する
ためにクランクケースヒータ27.ヒータ28が通電さ
れる。一方、接点40a2が開成することで補助リレー
53の励磁がとけて接点54al、54a2が開成する
ために接点55が閉成し、接点56がb側接点に接続す
るために接点54a1が開成して補助リレー57の励磁
がとけて接点58がb側接点に接続されることにより空
調用循環ポンプモータ回路67が停止して給湯加熱運転
が終了する。
つぎに給湯運転スイッチ18が閉成され、空調運転スイ
ッチ52が入側接点に接続されており、冷暖房切換スイ
ッチ59が暖器接点に接続されている場合、つ″!シ貯
湯加熱運転と暖房運転を同時に行なう場合について説明
する。電源が投入されると補助リレー65が励磁されて
接点66が閉成される。空調運転スイッチ52が入側接
点に接続されると補助リレー57が励磁されて接点58
がa側接点に接続される。また、冷暖房切換スイッチ5
9が暖器接点に接続されると、補助リレー60が励磁し
、その接点61a!、61a2が閉成して接点63c1
.63c2+63c3がそれぞれa側接点に接続される
。接点61a1が閉成すると凍結防止サーモスタット6
4が短絡される。接点58がa側接点に接続すると、空
調用循環ポンプモータ回路67が動作し、補助リレー5
3が非励磁であるので\接点55が閉成されており、接
点63C2がa側接点に接続されているので、空調用水
回路の冷温水が所定の水温以下の場合はサーモスタット
69が閉成されて補助リレー74が励磁されることによ
り接点74a2が閉成され、空調用圧縮機モータ回路7
0と送風機モータ回路が動作する。また接点61a2が
閉成されて四方弁30のコイル72が通電され、暖房運
転を行なう。空調用圧縮機29を出た高温高圧の冷媒ガ
スは四方弁30で実線矢印の方向に切換えられて水側熱
交換器25に送られ、ここで空調用循環ポンプ34から
送ちれた空調用冷温水と熱交換して加熱し、自からは放
熱凝縮し、膨張機構31で減圧され、空気側熱交換器3
2で大気より採熱し、蒸発して四方弁30をへて空調用
圧縮機29にもどり、冷水サイクルを形成する。空調用
循環ポンプ34から送られた空調用冷温水は水側熱交換
器25で加熱され三方弁36へ送られ、三方弁36によ
り空調負荷のある場合は放熱器35へ送られ、空調負荷
のない場合は放熱器35をバイパスし、空調用循環ポン
プ34へもどる。空調用水回路の冷温水が所定の水温以
上になるとサーモスタット69が開成されて補助リレー
74が非励磁になり、接点74a2が開成されて空調用
圧縮機モータ回路70と送風機モータ回路71が停止す
ることから暖房運転が停止される。このように、暖房運
転の運転制御はサーモスタット69によって行なわれる
。この暖房運転を行なっている時に、同時に貯湯加熱運
転を行なう場合は、給湯運転スイッチ18が閉成され、
貯湯加熱運転時間帯になるとタイマ:、      3
7の動作によって接点38が閉成し、貯湯タンク6内の
貯湯水温が所定の温度以下である場合には、サーモスタ
ット19が閉成して補助リレー39が励磁される。これ
により接点40a1が閉成さし、ポンプモータ回路24
が動作する。接点49blが閉成し、接点63c 1が
a側接点に接゛続され、接点56がb側接点に接続され
る、とともに空調用水回路の冷温水が所定の温度以下の
場合にはサーモスタット41が開成するために給湯用圧
縮機モータ回路22は動作せず、即ち貯湯加熱運転は停
止され、空調用水回路の冷温水が所定の温度以上の場合
にはサーモスタツz1が7成して給湯用圧縮機モータ回
路22が動作することにより貯湯加熱運転を行なう。ま
た、給湯用圧縮機モータ回路22が動作している時には
補助リレー42が励磁され、接点43が開成してクラン
クケースヒータ27とヒータ28は非通電となる。この
ようにして、貯湯加熱運転と暖房運転が同時に行なわれ
る。
つぎに給湯運転スイッチ18が閉成され、空調運転スイ
ッチ52が入側接点に接続されていて、冷暖房切換スイ
ッチ59が冷側接点に接続している場合、つまシ貯湯加
熱運転と冷房運転を同時に行なう場合について説明する
。ここで、電源が投入されると補助リレー65が励磁さ
れ接点66が閉成される。空調運転スイッチ52が入側
接点に接続されると補助リレー57が励磁されて接点5
8がa側接点に接続される。また冷暖房切換スイッチが
冷側接点に接続されると、補助リレー60の励磁が解か
れることから接点61al 、61a2が開成し、接点
63cl 、63c!、63c3がそれぞれb側接点に
接続される。
接点58がa側接点に接続することで空調用循環ポンプ
モータ回路67が動作するが・補助リレー53が非励磁
であるために接点55が閉成されており、接点63c2
がb側接点に接続されているので、空調用水回路の冷温
水が所定の水温以上の場合はサーモスタット68が閉成
されて補助リレー73が励磁されて接点73a 1が閉
成し、空調用圧縮機モータ回路70と送風機モータ回路
71が動作する。また、接点61a2が開成されて四方
弁30のコイル72が非通電になるために冷房運転を行
なう。ここで、空調用圧縮機29から出力された高温高
圧の冷媒ガスは四方弁30で破線矢印の方向に切換えら
れて空気側熱交換器32から大気へ放熱されることによ
り凝縮し、膨張機構31で減圧され水側熱交換器25に
送られ、ここで空調用循環ポンプ34から送られた空調
用冷温水と熱交換して冷却し、自からは採熱より蒸発し
て四方弁30をへて空調用圧縮機29にもどることによ
り冷凍サイクルを形成する。空調用循環ポンプ34から
送られた空調用冷温水は水側熱交換器25で冷却されて
三方弁36へ送られ、三方弁36により空調負荷のある
場合は放熱器35へ送られ・空調負荷のない場合は放熱
器35をノくイ・くスし空調用循環ポンプ34へもどる
。空調用水回路の冷温水が所定の水温以下になると、サ
ーモスタット68が開成されて補助リレー73が非励磁
になり、接点73a1が開成されて空調用圧縮機モータ
回路70と送風機モータ回路71が停止して冷房運転が
停止する。このように冷房運転の運転制御はサーモスタ
ット68によって行なわれる。
この冷房運転を行なっている時に、同時に貯湯加熱運転
を行なう場合は、給湯運転スイッチ18が閉成され1貯
湯加熱運転時間帯になるとタイマ37の動作により接点
38が閉成し、貯湯タンクG内の貯湯水温が所定の温度
以下の場合には、サーモスタット19が閉成して補助リ
レー39が励磁される。これによシ接点40a1が閉成
され、ポンプモータ回路24が動作する。接点40b1
が閉成されていると、接点63clがb側接点に接続さ
れており、給湯用圧縮機モータ回路22が動作し、貯湯
加熱運転を行なう。貯湯加熱運転時は補助リレー42が
励磁されて接点43が開成し、クランクケースヒータ2
7とヒータ28が非通電になる。空調負荷が少なく、冷
房運転がサーモスタット68の開成により停止し、なお
給湯側冷凍サイクルの採熱により空調用水回路の冷温水
温度が下りつづけた場合には、接点63c3がb側接点
に接続され、空調用水回路の冷温水温度が所定の温度以
下になるとサーモスタット45が閉成する。
しかし、サーモスタット68は開成しているために、補
助リレー73は非励磁となり、接点73b1は閉成して
補助リレー47と遅延タイマ50が励磁し、接点48a
3が閉成する。これにより接点49b1が閉成し、給湯
用圧縮機モータ回路22が停止し、一旦貯湯加熱運転が
停止する。また接点48a5が閉成し、ヒータ回路21
が作動して電気ヒータ16に通電される。同時に補助リ
レー42が非励磁になり、接点43が閉成し、クランク
ケースヒータ27とヒータ28に通電される。
一方、接点48a1が閉成することで、空調用圧縮機モ
ータ回路70と送風機モータ回路71が動作する。また
、接点48a2が閉成し、接点49b2が開成し、四方
弁30のコイル72は非通電の状態になってから、一定
時間後に遅延タイマ50の接点51が閉成し、四方弁3
0のコイル72が通電される。これによって空調用冷凍
サイクルは一定時間、冷房運転したのち暖房運転、すな
わち給湯側冷凍サイクルの熱源水のバックアップ加熱運
転に入る。このバックアップ加熱運転によって空調用水
回路の冷温水温度が上昇し、サーモスタット68が閉成
する温度まで上昇すると、補助リレー73が励磁して接
点73b1が開成し・補助リレー47.遅延タイマ50
の励磁がとけて接点48a2が開成し、四方弁30のコ
イル72が非通電になり、バックアップ加熱運転が終了
し)接点48a1が開成され、サーモスタット68によ
って空調用圧縮機モータ回路70と送風機モータ回路7
1の動作が制御される冷房運転を行なう。
また、接点48a5が開成することでヒータ回路21の
動作が停止し電気ヒータ16が非通電になり接点49b
lが閉成し、給湯用圧縮機モータ回路22が動作すると
、再び貯湯加熱運転を開始して補助リレー42が励磁さ
れると接点43が開成し、クランクケースヒータ27と
クランクケースヒータ28が非通電となる。
〔発明の効果〕
以上説明した様に、この発明によるヒートポンプ式冷暖
房給湯機は、給湯用冷凍サイクル運転中に空調用水回路
の水温が低下した場合には、空調用水回路の水温を検出
する凍結保j用サーモスタットによυ給湯用冷凍サイク
ルの運転を停止し、かつ空調用冷凍サイクルをバックア
ップ加熱運転させるものであるために、空調用水回路の
凍結を防止することが出来る。また、バックアップ加熱
運転中はすみやかに加熱を行なう為、給湯用冷凍サイク
ルが一時停止となるが、電気ヒータへの通電によって貯
湯タンク内水温を昇温させる為、スムーズな昇温か行な
える等の種々優れた効果を有する。
【図面の簡単な説明】
第1図はこの発明によるヒートポンプ式冷暖房給湯機の
一実施例を示す構成図、第2図は第1図に示す構成図に
対する電気系を示す回路図、第3図はレシプロ圧縮機の
圧縮比と体積効率の関係を示す図、第4図は従来の空気
熱源ヒートポンプ式給湯機の一例を示すシステム図、第
5図は第4図に対する電気系を示す回路図である。 図において、1は給湯用圧縮機、2は給湯用凝縮器、3
は膨張機講、6は貯湯タンク、15は循環ポンプ、1℃
は電気ヒータ、25は水側熱交換器、26はアキュムレ
ータ、27はクランクケースヒータ、28はクランクケ
ースヒータ、29は空調用圧縮機、30は四方弁、31
は膨張機構、32は空気側熱交換器、34は空調用循環
ポンプ、35は放熱器、36は三方弁、41はサーモス
タット、45はサーモスタット、46はサーモスタット
、50は遅延タイマ、68はサーモスタット、69はサ
ーモスタット、72はコイルである。 なお、図中、同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄(ほか2名) 第す図 手続補正書(自発) 1、事件の表示   特願昭59−224775号2、
発明<7)名称   ヒートポンプ式冷暖房給湯機3、
補正をする者 事件との関係  特許出願人 住 所     東京都千代田区丸の内二丁目2番3号
名 称  (601)三菱電機株式会社代表者片山仁八
部 4、代理人 住 所     東京都千代田区丸の内二丁目2番3号
5、?I!1正の対象 (1)明細書の発明の詳細な説明の欄 (2)明wJ害の図面の簡単な説明の鎧6、補正の内容 (1)明細書筒6頁20行目「ドックアップ」とあるを
「バックアップ」と補正する。 (2)同第7頁9行目「トンクアップ」とあるを「バッ
クアップ」と補正する。 (3)同第8頁8行目r 32kg/crl a d 
sJとあるをr 32kg1ctd  a  b sJ
と補正する。 (4)同第8頁9行目r 4kg/cd a d sJ
とあるをr 4kg/c+d a b sJと補正する
。 f51同第8頁11行目r 14kg/c+f’a d
 sJとあるをr 14kg/cf a b sJと補
正する。 (6)同第8頁12行目r 4kg/cf a d s
Jとあるを「4kg/crj a b sJ ト補iE
 f 71゜(7)同第8頁14行目 ’1     r20kg/ci a d s低圧6.
8kg/ c+/ a d sJとあるを r20kg/cイabs低圧6.6kg/cn? a 
b sJと補正する。 (8)同@11頁11行目Uサーモスタノl−45Jと
あるを[サーモスタット41及びサーモスタッ1−45
 jと補正する。 (9)同第12頁13行目〜14行目「サーモスタット
41より」とあるを[サーモスタット46よりも」と補
正する。 θ0)同第17頁1行目[サーモスタット48」とある
を「サーモスタット68Jと補正する。 (11)同第200頁12行目クランクケースヒータ2
8」とあるを「ヒータ28」と補正する。 (12)同第23頁2行目「冷水サイクル」とあるを「
冷凍サイクル」と補正する。 (13)同第29頁12行目〜13行目「クランクケー
スヒータ28」とあるを「ヒータ28Jと補正する。 (14)同第300頁20行目28はクランクケースヒ
ータ、」とあろを「28はヒータ、」と補正する。

Claims (1)

    【特許請求の範囲】
  1.  圧縮機,給湯用凝縮器,膨張機構及び蒸発器として作
    用する水側熱交換器が順次冷媒配管により接続されて構
    成される給湯用冷凍サイクルと、給湯用循環ポンプによ
    つて上記給湯用凝縮器に流通された貯湯タンク内の給湯
    水と熱交換関係を形成する給湯水回路と、圧縮機,四方
    弁,非利用側熱交換器,膨張機構及び水側熱交換器が順
    次冷媒配管により接続されて構成される空調用冷凍サイ
    クルと、空調用循環ポンプにより上記水側熱交換器を介
    して負荷側に流通される空調用冷温水回路とを備え、上
    記水側熱交換器によつて給湯用冷凍サイクルと冷温水を
    介して熱交換関係に空調用冷凍サイクルを配設するとと
    もに、上記給湯用冷凍サイクル運転中に上記空調用水回
    路の水温が低下した場合には、凍結保護用サーモスタツ
    トにより上記空調用水回路の水温を検出して給湯用冷凍
    サイクルの運転を停止するとともに空調用冷凍サイクル
    ルをバックアツプ加熱運転させると共に、上記貯湯タン
    ク内に設けた電気ヒータを通電加熱させることを特徴と
    するヒートポンプ式冷暖房給湯機。
JP59224775A 1984-10-23 1984-10-23 ヒ−トポンプ式冷暖房給湯機 Pending JPS61101771A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59224775A JPS61101771A (ja) 1984-10-23 1984-10-23 ヒ−トポンプ式冷暖房給湯機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224775A JPS61101771A (ja) 1984-10-23 1984-10-23 ヒ−トポンプ式冷暖房給湯機

Publications (1)

Publication Number Publication Date
JPS61101771A true JPS61101771A (ja) 1986-05-20

Family

ID=16819014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224775A Pending JPS61101771A (ja) 1984-10-23 1984-10-23 ヒ−トポンプ式冷暖房給湯機

Country Status (1)

Country Link
JP (1) JPS61101771A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008582A (ja) * 2006-06-30 2008-01-17 Toho Gas Co Ltd 吸着式暖房・給湯装置
WO2010098073A1 (ja) * 2009-02-24 2010-09-02 ダイキン工業株式会社 ヒートポンプシステム
WO2010113372A1 (ja) * 2009-03-31 2010-10-07 三菱電機株式会社 空調給湯複合システム
JP2011027299A (ja) * 2009-07-23 2011-02-10 Corona Corp 貯湯式暖房装置
WO2011045976A1 (ja) * 2009-10-16 2011-04-21 株式会社 日立製作所 空調給湯システム
WO2012077156A1 (ja) * 2010-12-07 2012-06-14 三菱電機株式会社 ヒートポンプ装置
WO2012114462A1 (ja) * 2011-02-22 2012-08-30 株式会社日立製作所 空調給湯システム及び空調給湯システムの制御方法
WO2012114461A1 (ja) * 2011-02-22 2012-08-30 株式会社日立製作所 空調給湯システム及び空調給湯システムの制御方法
EP2623898A4 (en) * 2010-09-27 2018-01-17 Toshiba Carrier Corporation Hot water supply system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008582A (ja) * 2006-06-30 2008-01-17 Toho Gas Co Ltd 吸着式暖房・給湯装置
WO2010098073A1 (ja) * 2009-02-24 2010-09-02 ダイキン工業株式会社 ヒートポンプシステム
JP2010196951A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム
US8984901B2 (en) 2009-02-24 2015-03-24 Daikin Industries, Ltd. Heat pump system
EP2402684A4 (en) * 2009-02-24 2015-04-08 Daikin Ind Ltd HEAT PUMP SYSTEM
CN102326037A (zh) * 2009-02-24 2012-01-18 大金工业株式会社 热泵系统
WO2010113372A1 (ja) * 2009-03-31 2010-10-07 三菱電機株式会社 空調給湯複合システム
JP2010236817A (ja) * 2009-03-31 2010-10-21 Mitsubishi Electric Corp 空調給湯複合システム
US9003823B2 (en) 2009-03-31 2015-04-14 Mitsubishi Electric Corporation Combined air-conditioning and hot-water supply system
JP2011027299A (ja) * 2009-07-23 2011-02-10 Corona Corp 貯湯式暖房装置
WO2011045976A1 (ja) * 2009-10-16 2011-04-21 株式会社 日立製作所 空調給湯システム
CN102472537A (zh) * 2009-10-16 2012-05-23 株式会社日立制作所 空气调节热水供给系统
JP2011085331A (ja) * 2009-10-16 2011-04-28 Hitachi Ltd 空調給湯システム
EP2623898A4 (en) * 2010-09-27 2018-01-17 Toshiba Carrier Corporation Hot water supply system
WO2012077156A1 (ja) * 2010-12-07 2012-06-14 三菱電機株式会社 ヒートポンプ装置
JP5595521B2 (ja) * 2010-12-07 2014-09-24 三菱電機株式会社 ヒートポンプ装置
US9140459B2 (en) 2010-12-07 2015-09-22 Mitsubishi Electric Corporation Heat pump device
JP5629367B2 (ja) * 2011-02-22 2014-11-19 株式会社日立製作所 空調給湯システム
JP5492347B2 (ja) * 2011-02-22 2014-05-14 株式会社日立製作所 空調給湯システム及び空調給湯システムの制御方法
WO2012114461A1 (ja) * 2011-02-22 2012-08-30 株式会社日立製作所 空調給湯システム及び空調給湯システムの制御方法
WO2012114462A1 (ja) * 2011-02-22 2012-08-30 株式会社日立製作所 空調給湯システム及び空調給湯システムの制御方法

Similar Documents

Publication Publication Date Title
JP2004003801A (ja) 二酸化炭素を冷媒として用いた冷凍装置
JPS61101771A (ja) ヒ−トポンプ式冷暖房給湯機
JPS6155018B2 (ja)
JPH0432669A (ja) ヒートポンプシステムとその制御方法
JPS61101769A (ja) ヒ−トポンプ式冷暖房給湯機
JPH0432307B2 (ja)
JP2004251557A (ja) 二酸化炭素を冷媒として用いた冷凍装置
JPH0219389B2 (ja)
JPS61101770A (ja) ヒ−トポンプ式冷暖房給湯機
JPS60248966A (ja) ヒ−トポンプ式冷暖房給湯機
JPS60248965A (ja) ヒ−トポンプ式冷暖房給湯機
JPS58124138A (ja) 蓄熱式空気調和機の補助熱源運転制御方法
JPS60248963A (ja) ヒ−トポンプ式冷暖房給湯機
JPS60248970A (ja) ヒ−トポンプ式冷暖房給湯機
JP3954781B2 (ja) 氷蓄熱式空気調和装置の運転方法及び氷蓄熱式空気調和装置
JPH0233104Y2 (ja)
JPH0743025A (ja) 冷凍サイクル
JPS60248962A (ja) ヒ−トポンプ式冷暖房給湯機
JPH05118696A (ja) ヒートポンプ装置
JPS60248969A (ja) ヒ−トポンプ式冷暖房給湯機
JPS60248967A (ja) ヒ−トポンプ式冷暖房給湯機
JPS5946463A (ja) 給湯装置
JP2002061897A (ja) 蓄熱式空気調和機
JP2004028576A (ja) 空調冷凍装置
JPH10170095A (ja) エンジン駆動式ヒートポンプ装置