JPS61101767A - Air-conditioning and hot-water supply heat pump device - Google Patents
Air-conditioning and hot-water supply heat pump deviceInfo
- Publication number
- JPS61101767A JPS61101767A JP22477184A JP22477184A JPS61101767A JP S61101767 A JPS61101767 A JP S61101767A JP 22477184 A JP22477184 A JP 22477184A JP 22477184 A JP22477184 A JP 22477184A JP S61101767 A JPS61101767 A JP S61101767A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- heating
- heat pump
- pump device
- late
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
- Central Heating Systems (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、ヒートポンプを用いて冷暖房及び貯湯槽の
水を加熱することができるようKした冷暖房・給湯ヒー
トポンプ装置に関し、特に冷房時の廃熱および通常ある
いは第2深夜電力を利用して貯湯槽の水加熱を経済的に
なし得るようにした冷暖房用・給湯ヒートポンプ装置に
関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heat pump device for heating, cooling, and hot water supply that uses a heat pump to heat water in a hot water storage tank. The present invention also relates to a heat pump device for air conditioning and hot water supply that can economically heat water in a hot water storage tank using normal or second night power.
〔従来の技術J
従来、ヒートポンプを使用した冷暖房装置としcは、例
えば空気調和設備の実務の知識昭和51年反版P83に
示される第5図に示すものがある。[Prior Art J] Conventionally, there is a heating and cooling system using a heat pump, as shown in FIG. 5, for example, in Practical Knowledge of Air Conditioning Facilities, 1976, Reprint P83.
同図において、1は圧縮機、2は冷暖房切換用の四方弁
、3a 、3bは室内熱交換器、4は可逆式の冷媒膨張
機構であって、冷房、暖房時の流れ方向に対応した膨張
弁4a、4bから構成されている。5は室外熱交換器で
あり、また6a、6bは上記室内熱交換器3m、3bの
四方弁2連結側に設けた電磁弁である。In the figure, 1 is a compressor, 2 is a four-way valve for switching between air conditioning and heating, 3a and 3b are indoor heat exchangers, and 4 is a reversible refrigerant expansion mechanism that expands in accordance with the flow direction during cooling and heating. It is composed of valves 4a and 4b. 5 is an outdoor heat exchanger, and 6a and 6b are solenoid valves provided on the four-way valve 2 connection side of the indoor heat exchangers 3m and 3b.
このように構成された従来のヒートポンプ装置において
、複数の部屋を冷房する場合は、第5図に示すように圧
縮機1から吐出した高温高圧の冷媒ガスは図中の実線矢
印のように流れて四方弁2から室外熱交換器5に至り、
ここで冷却されて凝縮する。そして凝縮した間圧の液冷
媒は膨張弁4aを通ることで減圧される。このとき室内
熱交換器3a、3bの二方電磁弁6a、6bは各々負荷
が発生することで開くため、膨張弁4aかりの低圧の液
冷媒は室内熱交換器:3 p、 、 3 bで蒸発し室
内空気から熱を奪いガス化する。この低圧冷媒カスは四
方弁2を通り圧縮わ’4 +に吸い込まれ、丹び圧縮さ
れて吐き出すサイクル・が繰り返される。In the conventional heat pump device configured in this way, when cooling multiple rooms, the high temperature and high pressure refrigerant gas discharged from the compressor 1 flows as shown in the solid arrow in the figure, as shown in Figure 5. From the four-way valve 2 to the outdoor heat exchanger 5,
Here it is cooled and condensed. The pressure of the condensed liquid refrigerant at an intermediate pressure is reduced by passing through the expansion valve 4a. At this time, the two-way solenoid valves 6a and 6b of the indoor heat exchangers 3a and 3b open due to the generation of loads, so the low-pressure liquid refrigerant from the expansion valve 4a is transferred to the indoor heat exchangers: 3p, 3b. It evaporates, absorbing heat from the indoor air and turning it into gas. This low-pressure refrigerant scum passes through the four-way valve 2, is sucked into the compression tube '4+, and the cycle of being compressed and discharged is repeated.
また、暖房運転時にあっては、圧縮機1から吐出した高
温高圧の冷媒ガスは図中の破線矢印のように流れて四方
弁2から室内熱交換器3a 、 3bに至り、ここで放
熱して凝縮することにより室内を暖房する。さらに凝縮
した高圧の液冷媒は膨張弁4bを通ることで減圧され、
この低圧の准冷媒は室外熱交換器5に至り、外気で加熱
されることで蒸発する。蒸発した低圧ガスは四方弁2を
通り、圧縮機1に吸い込まれ、再び圧縮されて吐出する
サイクルが操り返えされる。In addition, during heating operation, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 flows as shown by the broken line arrow in the figure and reaches the indoor heat exchangers 3a and 3b from the four-way valve 2, where it radiates heat. Heats the room by condensing. Furthermore, the condensed high-pressure liquid refrigerant is depressurized by passing through the expansion valve 4b,
This low-pressure quasi-refrigerant reaches the outdoor heat exchanger 5, where it is heated by the outside air and evaporates. The evaporated low-pressure gas passes through the four-way valve 2, is sucked into the compressor 1, is compressed again and discharged, and the cycle is repeated.
また、第6図は、従来の冷暖房・給湯ヒートポンプ装置
の例(出典:冷凍第58巻第671号P22)を示すも
ので、第1図と同一符号は同一またげ相当部分を示−r
つ また7を゛工貯湯槽であつ、その内部には貯湯槽加
熱コイルが設けられ、この加熱コイル8は電磁弁6bを
介して室内熱交換器3aと電磁弁6aとの直列回路に並
列に接続されている。9は貯湯槽6の市水取入口、10
は貯湯槽7に連結した給湯用蛇口である。Furthermore, Fig. 6 shows an example of a conventional heating/cooling/hot water heat pump device (source: Refrigeration Vol. 58, No. 671, P22), and the same reference numerals as in Fig. 1 indicate the same straddle-corresponding parts.
In addition, 7 is an engineered hot water storage tank, and a hot water storage tank heating coil is provided inside the tank, and this heating coil 8 is connected in parallel to the series circuit of the indoor heat exchanger 3a and the solenoid valve 6a via the solenoid valve 6b. It is connected. 9 is the city water intake of hot water tank 6, 10
is a hot water supply faucet connected to the hot water storage tank 7.
上記のように構成されたヒートポンプ装置において、給
湯加熱を行なう時には、電磁弁6aを閉じ、電磁弁6b
を開く。これにより圧縮機1から吐出される高温高圧の
冷媒ガスは、第2図中の破線矢印のように流れ、四方弁
2から電磁弁6bを通って加熱コイル8に至り、ここで
放熱して凝縮することにより貯湯槽6内の水を加熱する
。凝縮した高温高圧の液冷媒は膨張弁4bを通ることで
減圧され、室外熱交換器5に至り、外気で加熱されて蒸
発する。そしてこの低圧ガスは四方弁2を通り圧縮機1
へ吸い込まれ再び圧縮されるサイクルを繰り返すことで
給湯加熱を行なう。In the heat pump device configured as described above, when heating hot water, the solenoid valve 6a is closed and the solenoid valve 6b is closed.
open. As a result, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 flows as indicated by the broken line arrow in Figure 2, passes from the four-way valve 2, passes through the solenoid valve 6b, and reaches the heating coil 8, where it radiates heat and condenses. By doing so, the water in the hot water tank 6 is heated. The condensed high-temperature, high-pressure liquid refrigerant is depressurized by passing through the expansion valve 4b, reaches the outdoor heat exchanger 5, is heated by the outside air, and evaporates. This low pressure gas then passes through a four-way valve 2 to a compressor 1.
The hot water is heated by repeating the cycle of being sucked into the tank and compressed again.
また、暖房運転時には電磁弁6aが開に、電磁弁6bが
閉になり、さらに冷房運転時には電磁弁6bが開に、電
磁弁6aが閉になって第2図の破線矢印または実線矢印
に示す冷媒の流れを生じさせることで暖房または冷房を
行なうものであり、その動作は第2図において述べたも
のと同様である。Also, during heating operation, the solenoid valve 6a is open and solenoid valve 6b is closed, and during cooling operation, the solenoid valve 6b is open and the solenoid valve 6a is closed, as shown by the broken line arrow or solid line arrow in FIG. Heating or cooling is performed by generating a flow of refrigerant, and its operation is similar to that described in FIG. 2.
しかしながら、上記講成洸よる従来のヒートポンプ装置
によって給湯加熱を行なう場合は、第5図に示すように
室内熱交換器3a 、3bの一方を加熱コイルに置き換
え、この加熱コイルを貯湯槽に装着し、冷媒回路を暖房
運転することで貯湯槽内の水を加熱する方式であるため
、冷房時の廃熱を回収して給湯加熱するなどの経済的な
運転ができない。However, when hot water is heated by the conventional heat pump device by Kosei-Ko mentioned above, one of the indoor heat exchangers 3a and 3b is replaced with a heating coil, and this heating coil is attached to the hot water tank, as shown in Fig. 5. Since this method heats the water in the hot water tank by heating the refrigerant circuit, it is not possible to perform economical operations such as recovering waste heat from cooling to heat hot water.
また、インバータを有していないため、圧縮機の回転数
制御が行なえない。更に通常の深夜電力帯(例えば午后
11時から翌日7時まで)および第2深夜電力時間帯(
例えば午前1時から午前6時まで)を利用することによ
る経済的な運転が行なえない等の種々問題を有している
。Furthermore, since it does not have an inverter, the rotation speed of the compressor cannot be controlled. Furthermore, the normal late-night power period (for example, from 11 p.m. to 7 a.m. the next day) and the second late-night power period (
For example, there are various problems such as not being able to drive economically by using the vehicle from 1:00 a.m. to 6:00 a.m.).
〔問題点を解決するための手段J
従って、この発明は、圧縮機の吐出側に三方弁を設は圧
縮機からの高温高圧の冷媒を貯湯槽内の加熱コイルに導
き、水を加熱することで凝縮した冷媒を膨張弁及び室内
外熱交換器を通して圧縮機に戻すものである。[Means for Solving the Problems J] Accordingly, the present invention provides a three-way valve on the discharge side of the compressor to guide high-temperature, high-pressure refrigerant from the compressor to a heating coil in a hot water storage tank to heat water. The condensed refrigerant is returned to the compressor through an expansion valve and an indoor/outdoor heat exchanger.
また、圧縮機の回転数ケ制御するインバータを設け、通
常の深夜゛電力時間帯では成績係数の高い低周波数によ
る運転を行ない、第2深夜窺力時間帯では能力優先の高
周波数による運転をタイマー機構により制御して行うも
のである。In addition, an inverter is installed to control the rotation speed of the compressor, and during the normal late-night power hours, it operates at a low frequency with a high coefficient of performance, and during the second late-night power hours, it operates at a high frequency that prioritizes performance. It is controlled by a mechanism.
この様に構成された冷暖房・給湯ヒートポンプ装置に於
いては、冷房と給湯加熱を同時に行い得る冷房の廃熱回
収が可能となると共に、暖房時における暖房運転を最優
先モードとしながら、通常の深夜電力時間帯には成績係
数を高くするため低周波数(又は最低周波数)で運転し
、第2深夜電力時間帯には能力を十分出すため、高周波
数(又は最高周波数)で運転するように制御することに
なる。In the air-conditioning/heating/hot-water heat pump device configured in this way, it is possible to recover waste heat from cooling, which can perform cooling and hot water heating at the same time. During the power hours, it is operated at a low frequency (or the lowest frequency) to increase the coefficient of performance, and during the second late night power hours, it is controlled to operate at a high frequency (or the highest frequency) in order to provide sufficient capacity. It turns out.
〔実施例コ
第1図はこの発明にかかる冷暖房・給湯ヒートポンプ装
置の一実施例を示す構成図を示すものであって、第5図
、第6図と同一部分は同一記号を用いて示しである。1
1は圧縮機lから吐出される高温高圧冷媒の流路切り換
えを行なう三方弁で、その流入ボー)aと一方の吐出ボ
ー)b&j接続されている。また上記三方弁11の加熱
コイル8の一端が接続され、加熱コイル8の他端は別々
の電磁弁12.13を介して膨張機構4の両端側に接続
されている。[Example 1] Figure 1 shows a configuration diagram showing one embodiment of the air conditioning/hot water supply heat pump device according to the present invention, and the same parts as in Figures 5 and 6 are indicated using the same symbols. be. 1
Reference numeral 1 denotes a three-way valve for switching the flow path of high-temperature, high-pressure refrigerant discharged from the compressor 1, and its inflow bow (a) and one discharge bow (b) and j are connected. Further, one end of the heating coil 8 of the three-way valve 11 is connected, and the other end of the heating coil 8 is connected to both ends of the expansion mechanism 4 via separate electromagnetic valves 12 and 13.
14は圧縮機lの容量制御用インバータ、15は上記三
方弁11.′電磁弁12,13及びインバータ14.を
制御するタイマ付き制御装置であり、このタイマ付き制
御装置15には市水温度検知器16及び貯湯槽7の下部
水温を検知する検知器17からの検知信号が入力される
ようになっている。14 is an inverter for controlling the capacity of compressor l, 15 is the three-way valve 11. 'Solenoid valves 12, 13 and inverter 14. This timer-equipped controller 15 is configured to receive detection signals from a city water temperature detector 16 and a detector 17 that detects the lower water temperature of the hot water tank 7. .
次に、上記のように構成された本実施例の動作を各状態
に分けて説明する。Next, the operation of this embodiment configured as described above will be explained separately for each state.
(al 暖房時
圧縮機1から吐出された高温高圧の冷gは、三方弁11
の流入及び吐出ボートa、bから四方弁2の破線の経路
を経由し、室内熱交換器3a及び3bの一方または両方
に至り、ここで凝縮された後、膨張機構4で減圧され、
さらに室外熱交換器5において蒸発し、この蒸発した冷
媒ガスは四方弁2を通り圧縮機1に戻る。(al During heating, the high temperature and high pressure cold g discharged from the compressor 1 is transferred to the three-way valve 11.
The inflow and discharge boats a and b pass through the broken line path of the four-way valve 2 to one or both of the indoor heat exchangers 3a and 3b, where they are condensed and then depressurized by the expansion mechanism 4.
It is further evaporated in the outdoor heat exchanger 5, and this evaporated refrigerant gas passes through the four-way valve 2 and returns to the compressor 1.
、(b)冷房時
このときの圧縮機1から吐出した冷媒は、三方弁1,1
流入及び吐出ボー)a、bから四方弁2の実線の経路を
経由し、室外熱交換器5に至り、ここで外気と熱交換し
て凝縮し、さらに膨張機構4で減圧された後、室内熱交
換器3a及び3bの一方もしくは両方に至り、蒸発する
。この蒸発したガス冷媒は四方弁2を経由して再び圧縮
機1に戻る。, (b) During cooling, the refrigerant discharged from the compressor 1 at this time flows through the three-way valves 1 and 1.
Inflow and discharge bow) From a and b, via the solid line path of the four-way valve 2, it reaches the outdoor heat exchanger 5, where it exchanges heat with the outside air and condenses, and is further depressurized by the expansion mechanism 4, and then returns to the room. It reaches one or both of heat exchangers 3a and 3b and evaporates. This evaporated gas refrigerant returns to the compressor 1 via the four-way valve 2.
(c) 冷房給湯時
この場合の圧縮機lから吐出した冷媒は、三方弁11の
流入及び吐出ボートa、bから貯湯槽加熱コイル8に至
り、ここで凝縮し、これにより貯湯槽7内の水を加熱す
る。そして凝縮した液冷媒は電磁弁13を経て膨張機構
4に至り、減圧された後、室内熱交換器3a及び3bの
いずれか一方または両方に至り、ここで室内の熱を吸収
して蒸発し、このガス冷媒は、四方弁2の実線を経由し
て再び圧縮機1に戻る。このようにして、冷房と同時に
給湯加熱することになる。(c) During cooling hot water supply In this case, the refrigerant discharged from the compressor 1 reaches the hot water tank heating coil 8 through the inflow and discharge boats a and b of the three-way valve 11, where it is condensed, and as a result, the temperature inside the hot water tank 7 is Heat the water. The condensed liquid refrigerant then passes through the electromagnetic valve 13, reaches the expansion mechanism 4, is depressurized, and then reaches one or both of the indoor heat exchangers 3a and 3b, where it absorbs indoor heat and evaporates. This gas refrigerant returns to the compressor 1 via the solid line of the four-way valve 2. In this way, hot water is supplied and heated at the same time as cooling.
(dl 給湯加熱時
このとき、圧縮機1から吐出された冷媒は、三方弁11
の流入及び吐出一方a、cから貯湯槽加熱コイル8に至
り、ここで凝縮して貯湯槽7内の水を加熱する。そして
凝縮した液冷媒はt磁弁12から膨張機構4を通って室
外熱交換器5に至り、ここで蒸発する。蒸発したガス冷
媒は四方弁2を経由して再び圧縮機1に戻る。(dl At this time, the refrigerant discharged from the compressor 1 is heated by the three-way valve 11.
The inflow and discharge of water from one side a and c leads to the hot water storage tank heating coil 8, where it condenses and heats the water in the hot water storage tank 7. The condensed liquid refrigerant then passes from the T-magnetic valve 12 through the expansion mechanism 4 to the outdoor heat exchanger 5, where it evaporates. The evaporated gas refrigerant returns to the compressor 1 via the four-way valve 2.
以上は各運転時における冷媒の流れについて述べたが、
暖房期にあっては、通常暖房最優先となり、かつ暖房負
荷に応じた暖房運転がなされる。The above describes the flow of refrigerant during each operation, but
During the heating season, heating is usually given top priority and heating operation is performed according to the heating load.
一般て住宅の暖房負荷は、第2図に示すように朝6時か
ら9時頃までに第1のピークがあり、そして日中(12
時から155時頃は天候に応じて幾分かの第2のピーク
があり、さらに夕方から夜間(17時から24時頃ンに
かけて第3のピークがある。そして24時以降は負荷が
な(なる。As shown in Figure 2, the heating load in a home generally has its first peak between 6 a.m. and 9 a.m., and then during the day (12 p.m.).
There is a second peak from 15:00 to 155:00 depending on the weather, and a third peak from evening to night (from 17:00 to 24:00), and after 24:00 there is no load ( Become.
そこで、この発明では24時以降の深夜電力時間帯(6
〜7時間)を利用して給湯加熱運転する場合につい℃、
第3図の運転制御フローを参照しながら説明する。なお
、第3図の制御手順のプログラムは制御装置15の内部
メモリに格納されているものとする。Therefore, in this invention, the late-night power hours after 24:00 (6:00 p.m.
℃, when running hot water heating operation using
This will be explained with reference to the operation control flow shown in FIG. It is assumed that the program for the control procedure shown in FIG. 3 is stored in the internal memory of the control device 15.
第3図において、ステップ81は手動による運転モード
の選択部分であって、冷房モードであると判定された場
合にはステップS2に移行して冷媒回路が冷房運転とな
るように三方弁11.電磁弁12.13を制御する。ま
たステップS1で冷房以外のモードであると判定された
場合にはステップS3に進み、暖房負荷がある場合には
ステップS4に移行して暖房運転を行う。In FIG. 3, step 81 is a manual operation mode selection part, and if it is determined that the cooling mode is selected, the process moves to step S2 and the three-way valve 11. Controls solenoid valves 12.13. Further, if it is determined in step S1 that the mode is other than cooling, the process proceeds to step S3, and if there is a heating load, the process proceeds to step S4 to perform heating operation.
一方ステップS3に於いて暖房負荷がないと判定された
場合にはステップS5に進み、貯湯槽7の水温が沸き上
げ設定温度TH℃以下か否かを判定し、設定値T、以上
のときはステップ83に戻る。On the other hand, if it is determined in step S3 that there is no heating load, the process proceeds to step S5, in which it is determined whether the water temperature in the hot water storage tank 7 is below the boiling set temperature TH°C, and if it is above the set value T, the process proceeds to step S5. Return to step 83.
貯湯槽7の水温が設定値TH以下のときは貯湯槽加熱を
開始する。ステップS6,87ではタイマーによって深
夜電力時間帯を判定し、通常の深夜電力時間帯であれば
ステップS9に進んで低周波数運転を行い、第2深夜電
力時間帯であれはステップS8に進んで高周波数による
能力優先運転を行う。When the water temperature in the hot water storage tank 7 is below the set value TH, heating of the hot water storage tank is started. In steps S6 and 87, a timer determines the late-night power period. If it is a normal late-night power period, the process proceeds to step S9 and low-frequency operation is performed, and if it is a second late-night power period, the process proceeds to step S8 to perform high-frequency operation. Performs capacity priority operation based on frequency.
また、深夜成力時間帯以外であればステップ10へ進ん
で設定時間内であるかどうかを判定する。Further, if it is outside the late night time period, the process proceeds to step 10 to determine whether it is within the set time.
時間外であれば再びステップS3に戻る。時間内でも貯
湯槽水温が昼間の沸き上げ設定温度TH℃以上のときは
ステップS3へ戻る。また、貯湯槽水温が設定温度TH
℃以下のときはインバータ周波数H2を高めることによ
り、第4図に示す様に定格給湯加熱能力を高める能力優
先運転を実行する。If it is outside the time, the process returns to step S3 again. If the water temperature of the hot water storage tank is equal to or higher than the daytime boiling temperature set temperature TH° C. even within the specified time, the process returns to step S3. Also, the water temperature of the hot water tank is the set temperature TH.
When the temperature is below .degree. C., the inverter frequency H2 is increased to execute a capacity priority operation that increases the rated hot water heating capacity as shown in FIG.
なお、上記実施例では、室内熱交換器が2台ある場合に
ついて説明したが、これは3台以上の場合でも同様に適
用できる。また、三方弁11の代わりに二方弁2個の組
み合わせたものでも良いほか、三方弁11な流量調整可
能な酩動弁としても良い。In the above embodiment, the case where there are two indoor heat exchangers has been described, but the same can be applied to the case where there are three or more indoor heat exchangers. Further, instead of the three-way valve 11, a combination of two two-way valves may be used, or the three-way valve 11 may be an inductive valve that can adjust the flow rate.
以上説明したように、この発明による冷暖房・給湯ヒー
トポンプ装置は、給湯加熱運転を深夜電力(通前及び第
2を含む)を用いるとともに、インバータの周波数を適
当に制御して運転するものであるために高成績係数運転
が可能となり、更に屯カコストが安くなる効果を有する
。As explained above, the air conditioning/hot water heat pump device according to the present invention uses late-night electricity (including regular and secondary power) for hot water heating operation, and operates by appropriately controlling the frequency of the inverter. This makes it possible to operate with a high coefficient of performance, and has the effect of reducing truck costs.
第1図はこの発明による冷暖房・給湯ヒートポンプ装置
riの一実施例を示す構成図、第2図は一般住宅の暖房
負荷発生パターン図、第3図は第1図に示すタイマー付
制御装置の制御動作を示すフローチャート図、第4図は
インバータ周波数と定格給湯加熱能力との関係を示す図
、第5図、第6図は従来の冷暖房・給湯ヒートポンプ装
置を示す構成図である。
1・・・圧縮機、2・・・四方弁、3a 、3b・・・
室内熱交換器、4・・・膨張機構、5・・・室外熱交換
器、7・・・貯湯槽、11・・・三方弁(切換弁)、8
・・・加熱コイル、12.13・・・電磁弁、14・・
・インバータ、15・・・タイマ付き制御装置、16°
・・・市水温度検知器、17・・・貯湯槽温度検知器。
なお、図中同一部分または相当部分は同一符号により示
す。
代理人 大 岩 増 雄(ほか2名)手続補正書(自
発)
1、事件の表示 特願昭59−224771号2、
発明の名称 冷暖房・給湯ヒートポンプ装置3、補
正をする者
代表者片山仁へ部
4、代理人
住 所 東京都千代田区丸の内二丁目2番−3号
5、補正の対象
(1) 明細書の発明の詳細な説明の欄6、補正の内
容
(1) 明細書第5頁8,19行目に「第2図」とあ
るを、「第1図」と補正する。
(2) 同第6頁6〜7行目に「第5図」とあるを、
「第6図」と補正する。
(3) 同第10頁9行目に「吐出一方」とあるを、
「吐出ボート」と補正する。
(4) 同第12頁15〜16行目に「インバータ周
波数HzJとあるを、「インバータ周波数f[HzlJ
と補正する。Fig. 1 is a configuration diagram showing an embodiment of the air conditioning/hot water supply heat pump device ri according to the present invention, Fig. 2 is a heating load generation pattern diagram of an ordinary house, and Fig. 3 is a control of the timer-equipped control device shown in Fig. 1. FIG. 4 is a flowchart showing the operation, FIG. 4 is a diagram showing the relationship between inverter frequency and rated hot water heating capacity, and FIGS. 5 and 6 are configuration diagrams showing a conventional heating/cooling/hot water heat pump device. 1... Compressor, 2... Four-way valve, 3a, 3b...
Indoor heat exchanger, 4... Expansion mechanism, 5... Outdoor heat exchanger, 7... Hot water storage tank, 11... Three-way valve (switching valve), 8
...Heating coil, 12.13...Solenoid valve, 14...
・Inverter, 15...Control device with timer, 16°
...City water temperature detector, 17...Hot water tank temperature detector. In addition, the same parts or corresponding parts in the figures are indicated by the same reference numerals. Agent: Masuo Oiwa (and 2 others) Procedural amendment (voluntary) 1. Indication of case: Patent Application No. 59-224771 2.
Title of the invention Air conditioning/hot water heat pump device 3, Person making the amendment Representative Hitoshi Katayama Department 4, Agent address 2-2-3-5 Marunouchi, Chiyoda-ku, Tokyo Subject of amendment (1) Invention in the description Detailed Explanation Column 6, Contents of Amendment (1) On page 5, lines 8 and 19 of the specification, "Fig. 2" is amended to read "Fig. 1." (2) It says "Figure 5" on page 6, lines 6-7,
Corrected to "Figure 6". (3) On page 10, line 9 of the same page, it says “discharge on one side”.
Correct it to "discharge boat." (4) On page 12, lines 15 and 16, "inverter frequency HzJ" is replaced with "inverter frequency f [HzlJ
and correct it.
Claims (4)
暖房切換用四方弁、室内熱交換器、膨張機構、および室
外熱交換器を閉ループに連結して冷媒回路を構成する冷
暖房ヒートポンプ装置において、上記圧縮機と上記四方
弁間に設けられ圧縮機から吐出される冷媒流路を切り換
える切換弁と、この切換弁の吐出ポートと上記膨張機構
の両端側間に電磁弁を介して接続され貯湯槽内の水を加
熱する加熱コイルと、深夜電力時間帯内では上記加熱コ
イルを上記切換弁により上記冷媒回路に接続するととも
に、通常の深夜電力開始時間からは低周波数による運転
を行い、第2深夜電力開始時間帯開始時間からは高周波
数運転に切換えて設定温度まで給湯加熱制御するタイマ
ー付き制御手段とを設けたことを特徴とする冷暖房・給
湯ヒートポンプ装置。(1) In an air conditioning heat pump device in which a refrigerant circuit is configured by connecting a compressor whose capacity can be controlled by an inverter, a four-way air conditioning switching valve, an indoor heat exchanger, an expansion mechanism, and an outdoor heat exchanger in a closed loop, the compression A switching valve is provided between the four-way valve and the four-way valve to switch the refrigerant flow path discharged from the compressor, and a switching valve is connected between the discharge port of the switching valve and both ends of the expansion mechanism through a solenoid valve. The heating coil that heats the water is connected to the refrigerant circuit by the switching valve during the late-night power hours, and the operation is performed at a low frequency from the normal late-night power start time, and the second late-night power is started. A heating/cooling/hot water heat pump device characterized by being provided with a control means with a timer that switches to high frequency operation from the start time of a time period and controls the heating of hot water to a set temperature.
ンバータの周波数を最低周波数にしたことを特徴とする
特許請求の範囲第1項に記載の冷暖房・給湯ヒートポン
プ装置。(2) The cooling/heating/hot water heat pump device according to claim 1, wherein the frequency of the inverter is set to the lowest frequency during hot water heating operation during normal late-night power hours.
タの周波数を最大周波数としたことを特徴とする特許請
求の範囲第1項または第2項に記載の冷暖房・給湯ヒー
トポンプ装置。(3) The cooling/heating/hot water heat pump device according to claim 1 or 2, wherein the frequency of the inverter during the hot water heating operation during the second midnight time slot is set to the maximum frequency.
最優先としつつ、その暖房運転の休止中に給湯加熱する
ようにしたことを特徴とする第1項記載の冷暖房・給湯
ヒートポンプ装置。(4) The air-conditioning/heating/hot water heat pump device according to item 1, wherein the heating operation mode is given top priority during and outside the late-night power hours, and the hot water is heated while the heating operation is suspended.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22477184A JPS61101767A (en) | 1984-10-23 | 1984-10-23 | Air-conditioning and hot-water supply heat pump device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22477184A JPS61101767A (en) | 1984-10-23 | 1984-10-23 | Air-conditioning and hot-water supply heat pump device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61101767A true JPS61101767A (en) | 1986-05-20 |
Family
ID=16818958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22477184A Pending JPS61101767A (en) | 1984-10-23 | 1984-10-23 | Air-conditioning and hot-water supply heat pump device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61101767A (en) |
-
1984
- 1984-10-23 JP JP22477184A patent/JPS61101767A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0432669A (en) | Heat pump system controlling method therefor | |
JP3404133B2 (en) | Thermal storage type air conditioner | |
JP2003185287A (en) | Manufacturing system for supercooled water and hot water | |
JP2003287311A (en) | Air-conditioner, and air-conditioner control method | |
JPS61101767A (en) | Air-conditioning and hot-water supply heat pump device | |
JPS611968A (en) | Air-conditioning and hot-water supply heat pump device | |
JPS611967A (en) | Air-conditioning and hot-water supply heat pump device | |
JP3304866B2 (en) | Thermal storage type air conditioner | |
JPS61107065A (en) | Air-conditioning and hot-water supply heat pump device | |
JPS61107066A (en) | Air-conditioning and hot-water supply heat pump device | |
JP2003222416A (en) | Heat storage type air conditioner | |
JPS61223463A (en) | Air-conditioning and hot-water supply heat pump device | |
JPS60240969A (en) | Air-conditioning-hot-water supply heat pump device | |
JPH10205932A (en) | Air conditioner | |
JPH0849938A (en) | Regenerative air-conditioner | |
JPS62261862A (en) | Heat pump system | |
JPH0730959B2 (en) | Air conditioner | |
JPS60240968A (en) | Air-conditioning-hot-water supply heat pump device | |
JP3253276B2 (en) | Thermal storage type air conditioner and operation method thereof | |
JPS61101769A (en) | Heat pump type air-conditioning hot-water supply machine | |
JPH0849934A (en) | Regenerative type air conditioner | |
JP3778740B2 (en) | Operation method of air conditioner equipped with heat storage unit | |
JPH10132419A (en) | Heat pump cold/heat storage hot water supply system | |
JPH0123089Y2 (en) | ||
JPS61186769A (en) | Air-conditioning and hot-water supply heat pump device |