JPS61101740A - Engine type heat pump boiler - Google Patents

Engine type heat pump boiler

Info

Publication number
JPS61101740A
JPS61101740A JP59224513A JP22451384A JPS61101740A JP S61101740 A JPS61101740 A JP S61101740A JP 59224513 A JP59224513 A JP 59224513A JP 22451384 A JP22451384 A JP 22451384A JP S61101740 A JPS61101740 A JP S61101740A
Authority
JP
Japan
Prior art keywords
tank
hot water
heat
engine
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59224513A
Other languages
Japanese (ja)
Inventor
Kiyonobu Nonaka
野中 清信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP59224513A priority Critical patent/JPS61101740A/en
Publication of JPS61101740A publication Critical patent/JPS61101740A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To effectively and rationally utilize the heat of an engine by disposing an inlet from which hot water inside a tank is tanken out as engine coolant at a position higher than a radiator in the tank, and disposing an outlet of the used hot water into the tank at a position higher than the coolant inlet. CONSTITUTION:When a heat pump 2 is operated, thermal medium circulates in a pipe 17, is heated by exchanging heat with the ambient air in a spiral section 29, is further heated by exchanging heat with the exhaust gas of an engine 3 in a spiral section 28, is still more heated by being compressed by a heat pump compressor 36, whereupon the high-temperature thermal medium is supplied to a radiator 4 in which it is cooled by exchanging heat with the hot water in a tank 1. At this moment, the hot water in a downwardly extending tube 8 is subjected to the first stage heating by exchanging heat with the thermal medium in the radiator 4. Then, the heated hot water staying on the top of the downwardly extending tube 8 is sucked from the coolant inlet 5 by a pump 2 to cool the engine 3, and, at the same time, the hot water is subjected to the second stage heating, whereupon it returns to the top of the tank 1 from a coolant outlet 6 and is subjected to the third stage heating by exchanging heat with the exhaust gas in a winding section 24 of the exhaust pipe 2.

Description

【発明の詳細な説明】[Detailed description of the invention] 【技術分野】【Technical field】

本発明は、エンジンを動力としてヒートポンプを駆動し
、タンク内の温水を加熱するボイラに関する。
The present invention relates to a boiler that uses an engine as power to drive a heat pump to heat hot water in a tank.

【背景技術】[Background technology]

従来のボイラは、がスを燃料とするもの、また電気ヒー
タにより水を沸かすものなど種々のものがあったが、大
気を熱源とするヒートポンプを用いたボイラは存在して
いなかった。  \
There have been various types of conventional boilers, including those that use gas as fuel and those that boil water using electric heaters, but there have been no boilers that use heat pumps that use the atmosphere as a heat source. \

【発明の目的】[Purpose of the invention]

本発明は叙上のような技術的背景に鑑みて為されたもの
であり、その目的とするところは大気を熱源とするヒー
トポンプにより温水を作ることができるようにすると共
にヒートポンプにより加熱された温水を更にヒートポン
プ駆動用のエンジンの熱を利用して高温に加熱し、エネ
ルギーの有効かつ合理的利用を図ることができるように
することにある。
The present invention has been made in view of the above-mentioned technical background, and its purpose is to make it possible to produce hot water using a heat pump that uses the atmosphere as a heat source, and to make it possible to produce hot water heated by a heat pump. Furthermore, the heat pump is heated to a high temperature using the heat of the engine for driving the heat pump, thereby making it possible to use energy effectively and rationally.

【発明の開示】[Disclosure of the invention]

本発明エンジン式ヒートポンプボイラは、温水を溜める
タンク1と、タンク1内の温水を加熱するためのヒート
ポンプ2と、ヒートポンプ2を駆動するエンジン3とを
有し、ヒートポンプ2の族1%器4をタンク】内に配設
し、エンジン3冷却用の冷却水としてタンク1内の温水
をタンク1から取り出す冷却用水吸入口5をタンク1内
の放熱器4よりも上方に設け、冷却用に使用された温水
をタンク1内へ、戻すための冷却用水吐出口6をタンク
1内の冷却用水吸入口5よりも上方に設けて成ることを
特徴とするものであり、これによってヒートポンプ2の
放熱器4で加熱された温水を更にエンジン3の冷却水と
して使用して加熱することができる。 以下本発明の実施例を添付図に基いて詳述する。 温水を溜めるためのタンク1は、下部に下面開口した凹
所7が設けられており、凹所7の周囲には円筒状の垂下
筒部8が形成されていて垂下筒部8内にも温水が溜めら
れるようになっており、垂下筒部8下端部にはドレン1
6が設けられ、ドレン16のやや上には給水管15が接
続され、タンク1上面には高温湯給湯W20が接続され
、側面上部には中温渇給湯W21が接続されている。ま
た1          タンク1は外面を断熱材9に
より覆われていて缶体10内に納められている。凹所7
内には、ヒートポンプコンプレッサ36と、ヒートポン
ブフ/ブレノサ36駆動用のエンジン3と、エンジン3
始動用のモータ11が内蔵されており、中央にモータ1
1を挟んでエンジン3とモータ11が電磁クラッチのよ
うなj31クラッチ12により分離自在に連結されてお
り、モータ11とヒートポンプコンプレッサ36とが電
磁クラッチのような第2クラツチ13により接続されて
いる。これにより、エンジン3、モータ3、ヒートポン
プコンプレッサ36、第1及び第2クラ/チ12.13
がタンク1の垂下筒部8及びその中の温水に囲まれ、遮
音が図られている。ヒートポンプ2はヒートポンプコン
プレッサ36と吸熱器14と放熱器4とからなり、吸熱
器14において熱媒に熱を吸収させ、この後熱媒を圧縮
して高温の熱媒を形成し、放熱器4において高温の熱媒
に熱を放出させ、この後熱媒を膨張させて低温の熱媒を
形成し、この低温の熱媒を再び吸熱器14に送るという
サイクルを繰り返すものであるが、この放熱器4はタン
ク1の垂下前部8内に配置されており、吸熱器14はm
体10上面に配Fiされており、ヒートポンプコンプレ
フサ36と吸熱器14や放熱器4とは熱媒拓環バイブ1
7により接続されている。詳しくは、放熱器4は螺旋状
に形成されていて給水管15よりも上で、凹所7上面よ
りも下に配置されている。 エンジン3は燃料パイプ26から送られる燃料を燃焼さ
せて稼動させられ、内部に冷却水を循環させて過熱を防
止する冷却式のものであって、冷却水循環パイプ18を
通じてタンク1内の温水を冷却水として使用できるよう
にしてあり、冷却用の温水を取り出すための冷却用水吸
入口5を凹所7上面の上に開口しである。従って、冷却
用水吸入口5の位置は放熱器4よりも上に位置している
。 一方、エンジン3を冷却して高温となった温水をタンク
1内に返すための冷却用水吐出口6はタンク1内上部に
開口させられている。また、冷却用水吐出口6側の冷却
水循環パイプ18には、定温度開閉弁19が設けられて
いる。この定温度開閉弁19は、サーモワックスや形状
記憶合金を用いrこもの、電気式その池の方式のもので
あってもよぃ、そして、エンジン3を冷却した後の1=
水が、一定温度に達していないときIコはこの定温度開
閉弁19は開がず、ヒートポンプコンプレッサ36を冷
却した後タンク1内上部へ戻される高温の温水は一定の
温度を確保されている。エンジン3の排気管22はタン
ク1内を上下に貫通させられ、排気管22上端の排気口
23は缶体10」二面で開口しており、排気管22はタ
ンク1内上部において蛇行部24が形成されており、蛇
行部24表面には放熱フィン25が取り付けられており
、この蛇行部24においてタンク1内の温水とエンジン
3の排気〃ス(約300℃)とが高効率で熱交換するよ
うになっており、しかもこの蛇行部24は排気ガスの消
音効果も果たしている。一方、エンジン3の吸気口27
は凹所7内に配置されている6缶体10の上面に配設さ
れている吸熱器14は螺旋状に形成され、しかも直列に
接続された小径の螺旋部28と大径の螺旋部29とによ
り2重螺旋状に形成されており、熱媒は大径の螺旋部2
9を通った後小径の螺旋部28を通ってヒートポンプコ
ンプレッサ36に戻るよう1こなっている。そして、大
径の螺旋部29は外気と接触するようになっており、熱
媒はここで外気と接触して加熱されるものであり、小径
の螺旋部28は缶体10上面に突出しでいる排気口23
の上方に位置しており、外気と熱交換した後の熱媒はこ
こで高温の排気〃スと熱交換して更に高温に加熱される
ものである。 吸熱器】4は缶体10の上面に設けられた吸熱器収納部
30内に納められており、吸熱器収納部30内は隔壁3
1によって大径の螺旋部2つを収納した外周室41と小
径の螺旋部28を収納した内側室42とに仕切られてお
り、吸熱器収納部30の外周面には外周室41へ大気を
導入するための外気吸入口33が開口され、外周室41
と内側室42との境においては吸熱器収納部30の環状
の天板37とその中央の円板状の中板38との間に環状
の間隙43が形成され、この間隙43は隔壁31上端に
仕切られて外周室41側の外気放出孔44と内側室42
側の排気がス放出孔32に分けられており、排気口23
から排出された排気〃スは排気〃ス放出孔32から大気
へ放出され、外気吸入口33から吸引された外気は螺旋
部29と熱交換した後外気放出孔44から大気へ放出さ
れるようになっている。この画成出孔32.44の部分
の構造は、詳しくは第3図に示すようになっており、隔
壁31上端は間隙43内に突出しており、排気〃ス放出
孔32は外気放出孔44よりも狭(、排気ガス放出孔3
2の両側の縁は上方へ突出して上方で絞られたラッパ状
をしており、排気ガス放出孔32及び外気放出孔44の
両縁の天@37端部、中板384部及び隔壁31上端は
小径の螺旋部28側へ傾倒している。このため、排気〃
ス放出孔32から排気〃スが流出すると外気放出孔44
が負圧となり、外周室41内の外気が外気放出孔44か
ら外部へ強制排出され、これに件って外気吸入口33か
ら外気が吸引され、大径の螺旋部29を収納している外
周室41内の強制換気が行なわれるようになっている。 更に、画成出孔32.44の上方はトップカバー39に
より覆われており、トップカバー39の側面には通気孔
40が開口されている。その他、本装置は制御ボックス
34やコントローラ35を有している。 次に、本装置の動作及び作用を説明する1手許スイッチ
をオンにすると、エンジン3が始動できる状態になり、
第4図(a)のようにエンジン3とモータ11の間の第
1クラツチ12を接続し、モータ11とヒートポンプコ
ンプレッサ36の間の第2クラツチ13を分離した上ま
で始動用のモータ11を回転させるとエンジン3が始動
される。 エンジン3稼動後、第4図(b)のようにモータ11と
L−トボンプフンプレッサ36の間の第2クラツチ13
も接続するとエンジン3によってヒートポンプコンプレ
ッサ36が駆動され、この後モータ11の電源を切ると
モータ11の回転子はフライホイルとして回転する。尚
、故障や燃料切れの場合などには、エンジン3とモータ
11の開の第1クラツチ12を切り、モータ11とヒー
トポンプコンプレフサ36との開の第2クラツチ13を
接続してモータ11でヒートポンプ2を運転することが
できる。ヒートポンプ2を運転すると、熱媒は熱媒循環
パイプ17内を循環し、大径の螺tiE部29で大気と
熱交換して加熱され、更に小径の螺旋112Bでエンジ
ン3の排気が又と熱交換して一層高温に加熱され、この
後ヒートポンプコンプレッサ36で圧縮されて更に高温
の熱媒となって放熱器4へ送られ、ここでタンク1内の
温水と熱交換して冷却される。この時垂下筒部8内の温
水は放熱器4内の熱媒と熱交換して第1段階の加熱が行
なわれる。次に、垂下筒部8上面あたりに溜まっている
ヒートポンプ2により加熱された後の温水は、冷却用水
吸入口5から吸引されてエンジン3に送られ、エンジン
3を冷却すると共に温水自身は第2段階の加熱を行なわ
れ、一定温度以上になって冷却用水吐出口6からタンク
1上部へ戻される。戻された温水はここで排気!22の
蛇行部24内の排気〃スと熱交換して第3段階の加熱が
行なわれ、徘′X〃又は降温されるにうして第1図に示
すように、温水は3段のステップで高温に加熱されてタ
ンク1内に蓄えられ、必要に応じて高温湯給湯管20あ
るいは中温湯給湯管21から取り出されて使用されるの
である。 【発明の効果1 本発明は叙述のごとく温水を溜めるタンクと、タンク内
の温水を加熱するためのヒートポンプと、ヒートポンプ
を駆動するエンジンとを有し、ヒートポンプの放熱器を
タンク内に配設し、エンジン冷却用の冷却水としてタン
ク内の温水をタンクから取り出す冷却用水吸入口をタン
ク内の放熱器よりも上方に設け、冷却用に使用された温
水をタンク内へ戻すための冷却用水吐出口をタンク内の
冷却用水吸入口よりも上方に設けであるから、大気を熱
源としてヒートポンプによりローコストで温水を乍るこ
とができ、しかもヒートポンプを運転させるためのエン
ジンの発熱を利用し、ヒートポンプにより加熱された後
の温水をエンジン冷却用に用いることでエンジンの熱に
よりこの温水を更に加熱し、ヒートポンプだけでは得ら
れない高温の温水を得ることができ、併せてエンジンの
冷却、3      °1″“y゛’r ′l 、6.
”the、 b −) f、>INIEJIIのエンジ
ンの熱を有効かつ合理的に利用することができるもので
ある。
The engine-type heat pump boiler of the present invention includes a tank 1 for storing hot water, a heat pump 2 for heating the hot water in the tank 1, and an engine 3 for driving the heat pump 2. A cooling water inlet 5 is provided above the radiator 4 in the tank 1 and is used for cooling. The cooling water discharge port 6 for returning hot water into the tank 1 is provided above the cooling water inlet 5 in the tank 1, so that the radiator 4 of the heat pump 2 The heated water can be further used as cooling water for the engine 3 to heat it. Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The tank 1 for storing hot water is provided with a recess 7 that is open at the bottom, and a cylindrical hanging cylinder part 8 is formed around the recess 7, so that hot water can also be stored inside the hanging cylinder part 8. There is a drain 1 at the lower end of the hanging cylinder part 8.
A water supply pipe 15 is connected slightly above the drain 16, a high temperature hot water supply W20 is connected to the upper surface of the tank 1, and a medium temperature hot water supply W21 is connected to the upper side of the tank 1. The tank 1 has its outer surface covered with a heat insulating material 9 and is housed in a can body 10. recess 7
Inside, there are a heat pump compressor 36, an engine 3 for driving the heat pump buf/Brenosa 36, and an engine 3.
A starting motor 11 is built in, and motor 1 is located in the center.
1, the engine 3 and motor 11 are separably connected by a J31 clutch 12 such as an electromagnetic clutch, and the motor 11 and a heat pump compressor 36 are connected by a second clutch 13 such as an electromagnetic clutch. As a result, the engine 3, motor 3, heat pump compressor 36, first and second clutches 12.13
is surrounded by the hanging cylindrical portion 8 of the tank 1 and the warm water therein, thereby providing sound insulation. The heat pump 2 consists of a heat pump compressor 36, a heat absorber 14, and a heat radiator 4. The heat absorber 14 absorbs heat into a heat medium, and then the heat medium is compressed to form a high-temperature heat medium. This heat radiator repeats a cycle of discharging heat to a high temperature heat medium, then expanding the heat medium to form a low temperature heat medium, and sending this low temperature heat medium to the heat absorber 14 again. 4 is placed in the hanging front part 8 of the tank 1, and the heat sink 14 is located in the hanging front part 8 of the tank 1.
The heat pump compressor 36, the heat absorber 14, and the heat radiator 4 are arranged on the top surface of the body 10.
7. Specifically, the radiator 4 is formed in a spiral shape and is arranged above the water supply pipe 15 and below the upper surface of the recess 7. The engine 3 is operated by burning fuel sent from the fuel pipe 26, and is of a cooling type that circulates cooling water inside to prevent overheating, and cools the hot water in the tank 1 through the cooling water circulation pipe 18. It can be used as water, and a cooling water inlet 5 for taking out hot water for cooling is opened on the upper surface of the recess 7. Therefore, the position of the cooling water inlet 5 is located above the radiator 4. On the other hand, a cooling water outlet 6 for cooling the engine 3 and returning high-temperature hot water into the tank 1 is opened at the upper part of the tank 1 . Further, a constant temperature on-off valve 19 is provided in the cooling water circulation pipe 18 on the cooling water outlet 6 side. This constant temperature opening/closing valve 19 may be made of thermowax or shape memory alloy, or may be of an electric type.
When the water does not reach a certain temperature, the constant temperature on-off valve 19 does not open, and the high temperature hot water returned to the upper part of the tank 1 after cooling the heat pump compressor 36 is maintained at a constant temperature. . The exhaust pipe 22 of the engine 3 passes through the inside of the tank 1 up and down, and the exhaust port 23 at the upper end of the exhaust pipe 22 opens on two sides of the can body 10''. A heat radiation fin 25 is attached to the surface of the meandering portion 24, and in this meandering portion 24, the hot water in the tank 1 and the exhaust gas (approximately 300°C) of the engine 3 exchange heat with high efficiency. Furthermore, this meandering portion 24 also has the effect of muffling the exhaust gas. On the other hand, the intake port 27 of the engine 3
The heat absorber 14 disposed on the upper surface of the can body 10 is arranged in the recess 7 and is formed in a spiral shape, with a small-diameter helical portion 28 and a large-diameter helical portion 29 connected in series. The heating medium is formed in a double helical shape by the large-diameter spiral part 2.
9 and then returns to the heat pump compressor 36 through a small-diameter spiral portion 28 . The large-diameter spiral portion 29 is in contact with the outside air, and the heat medium is heated by contacting the outside air here, and the small-diameter spiral portion 28 projects from the top surface of the can body 10. Exhaust port 23
After exchanging heat with the outside air, the heat medium is heated to an even higher temperature by exchanging heat with the high-temperature exhaust gas. [Heat absorber] 4 is housed in a heat absorber housing part 30 provided on the top surface of the can body 10, and inside the heat absorber housing part 30 is a partition wall 3.
1 into an outer chamber 41 that accommodates two large-diameter spiral sections 28 and an inner chamber 42 that accommodates a small-diameter spiral section 28 . The outside air intake port 33 for introducing outside air is opened, and the outer peripheral chamber 41
An annular gap 43 is formed between the annular top plate 37 of the heat absorber storage section 30 and a disk-shaped intermediate plate 38 at the center at the boundary between the inner chamber 42 and the upper end of the partition wall 31. It is partitioned into an outside air discharge hole 44 on the outer peripheral chamber 41 side and an inner chamber 42.
The side exhaust is divided into soot discharge holes 32, and the exhaust port 23
The exhaust gas discharged from the exhaust gas discharge hole 32 is released to the atmosphere from the exhaust gas discharge hole 32, and the outside air sucked from the outside air intake port 33 exchanges heat with the spiral portion 29, and then is released to the atmosphere from the outside air release hole 44. It has become. The structure of the defining outlet holes 32 and 44 is shown in detail in FIG. Narrower than (, exhaust gas release hole 3
The edges on both sides of 2 have a trumpet shape that protrudes upward and is constricted at the top. is inclined toward the small-diameter spiral portion 28 side. For this reason, the exhaust
When the exhaust gas flows out from the gas discharge hole 32, the outside air discharge hole 44
becomes a negative pressure, the outside air in the peripheral chamber 41 is forcibly discharged to the outside from the outside air discharge hole 44, and the outside air is sucked in from the outside air intake port 33, and the outside air inside the peripheral chamber 41 is forcibly discharged to the outside from the outside air discharge hole 44. Forced ventilation is performed in the room 41. Furthermore, the upper part of the defining outlet hole 32.44 is covered by a top cover 39, and a ventilation hole 40 is opened in the side surface of the top cover 39. In addition, this device has a control box 34 and a controller 35. Next, turn on the one-hand switch that explains the operation and function of this device, and the engine 3 will be ready to start.
As shown in FIG. 4(a), the first clutch 12 between the engine 3 and the motor 11 is connected, and the starting motor 11 is rotated until the second clutch 13 between the motor 11 and the heat pump compressor 36 is separated. When this is done, engine 3 is started. After the engine 3 is started, the second clutch 13 is connected between the motor 11 and the L-bond pump presser 36 as shown in FIG. 4(b).
When the engine 3 is also connected, the heat pump compressor 36 is driven by the engine 3, and when the power to the motor 11 is then turned off, the rotor of the motor 11 rotates as a flywheel. In the event of a failure or fuel shortage, the first clutch 12 between the engine 3 and the motor 11 is disconnected, and the second clutch 13 between the motor 11 and the heat pump compressor 36 is connected, so that the motor 11 can operate the heat pump. 2 can be driven. When the heat pump 2 is operated, the heat medium circulates in the heat medium circulation pipe 17 and is heated by exchanging heat with the atmosphere in the large-diameter screw tiE part 29, and is further heated by the exhaust gas of the engine 3 in the small-diameter screw 112B. It is exchanged and heated to a higher temperature, and then compressed by the heat pump compressor 36 to become a higher temperature heat medium and sent to the radiator 4, where it exchanges heat with the hot water in the tank 1 and is cooled. At this time, the hot water in the hanging cylinder part 8 exchanges heat with the heating medium in the radiator 4 to perform the first stage of heating. Next, the hot water that has been heated by the heat pump 2 and accumulated around the upper surface of the hanging cylinder part 8 is sucked through the cooling water inlet 5 and sent to the engine 3, cooling the engine 3 and discharging the hot water itself into the second tank. The cooling water is heated in stages and when it reaches a certain temperature or higher, it is returned to the upper part of the tank 1 from the cooling water outlet 6. The returned hot water is exhausted here! The third stage of heating is performed by exchanging heat with the exhaust gas in the meandering section 24 of 22, and as the temperature is lowered, the hot water is heated in three stages as shown in Figure 1. It is heated to a high temperature and stored in the tank 1, and is taken out from the high-temperature water supply pipe 20 or medium-temperature water supply pipe 21 and used as needed. [Effect of the invention 1] As described above, the present invention has a tank for storing hot water, a heat pump for heating the hot water in the tank, and an engine for driving the heat pump, and a radiator of the heat pump is disposed inside the tank. A cooling water inlet is installed above the radiator in the tank to take out hot water from the tank as cooling water for engine cooling, and a cooling water outlet is installed to return hot water used for cooling back into the tank. Since it is installed above the cooling water inlet in the tank, it is possible to supply hot water at low cost with a heat pump using the atmosphere as a heat source.Furthermore, the heat generated by the engine to operate the heat pump is used to heat the water with the heat pump. By using the heated water for engine cooling, this hot water is further heated by the heat of the engine, and it is possible to obtain hot water at a high temperature that cannot be obtained with a heat pump alone. y゛'r 'l, 6.
``the, b -) f, > INIEJII engine heat can be used effectively and rationally.

【図面の簡単な説明】[Brief explanation of drawings]

11図は本発明の一実施例を示す断面図、tjS2図は
同上の原理図、第3図は同上の排気〃ス放出孔及び外気
放出孔の部分の断面図、第4図(、)(b)はヒートポ
ンプコンプンツサの始動方法を示す説明図、第5図はモ
ータによるヒートポンプコンプレッサ運転時の説明図で
あり、1はタンク、2はヒートポンプ、3はエンジン、
4は放熱器、5は冷却用水吸入口、6は冷却用水吐出口
である。 代理人 弁理士 石 1)長 七 第3図 t+ン 第4図 (G) (b) 第5図 手続補正書(自発) 昭和59年 12月78 1、事件の表示 昭和59年特許頗第224513!;j2、発 明 の
名称 エンジン式ヒートボンづボイラ 3、補正をする者 事件との関係      特許出願人 性  所  大阪府門真市大字門真1048番地名 称
 (583)松下電工株式会社 代表者小 林  郁 4、代理人 郵便番号 530 5、補正命令の日付 自発 訂   正   書 願書番号  特願昭59−224513号本願明細書第
2頁第4行〜!l′S5行の[大シ(を熱源・・・(中
略)・・・していなかった8」を削除して「エンジン式
ヒートポンプボイラで貯湯専用のボイラを用いて効果的
にコンパクトにまとめられたものは見当たらなかった。 」を挿入致します。
Figure 11 is a cross-sectional view showing an embodiment of the present invention, Figure tjS2 is a principle diagram of the same as above, Figure 3 is a cross-sectional view of the exhaust gas discharge hole and outside air discharge hole part of the same as above, and Figure 4 (, ) ( b) is an explanatory diagram showing how to start the heat pump compressor, and Fig. 5 is an explanatory diagram when the heat pump compressor is operated by a motor, where 1 is a tank, 2 is a heat pump, 3 is an engine,
4 is a radiator, 5 is a cooling water inlet, and 6 is a cooling water outlet. Agent Patent Attorney Ishi 1) Chief 7 Figure 3 t+n Figure 4 (G) (b) Figure 5 Procedural Amendment (Voluntary) December 78, 1981 1. Indication of the case 1982 Patent No. 224513 ! ;j2, Name of the invention: Engine-type heat-bonded boiler 3, Relationship with the case of the person making the amendment Patent applicant: 1048 Kadoma, Kadoma City, Osaka Prefecture Name (583) Iku Kobayashi 4, Representative of Matsushita Electric Works Co., Ltd. Agent postal code 530 5, voluntary correction of date of amendment order Application number Japanese Patent Application No. 59-224513 Specification, page 2, line 4~! In line l'S5, delete [8 that did not use a large heat source...(omitted)...] and add ``Effectively compacted by using an engine-type heat pump boiler and a boiler exclusively for hot water storage.''"No items were found." will be inserted.

Claims (1)

【特許請求の範囲】[Claims] (1)温水を溜めるタンクと、タンク内の温水を加熱す
るためのヒートポンプと、ヒートポンプを駆動するエン
ジンとを有し、ヒートポンプの放熱器をタンク内に配設
し、エンジン冷却用の冷却水としてタンク内の温水をタ
ンクから取り出す冷却用水吸入口をタンク内の放熱器よ
りも上方に設け、冷却用に使用された温水をタンク内へ
戻すための冷却用水吐出口をタンク内の冷却用水吸入口
よりも上方に設けて成るエンジン式ヒートポンプボイラ
(1) It has a tank that stores hot water, a heat pump that heats the hot water in the tank, and an engine that drives the heat pump, and the radiator of the heat pump is installed inside the tank and is used as cooling water for engine cooling. A cooling water inlet for taking out the hot water in the tank from the tank is installed above the radiator in the tank, and a cooling water outlet for returning the hot water used for cooling to the tank is installed at the cooling water inlet in the tank. An engine-type heat pump boiler installed above.
JP59224513A 1984-10-25 1984-10-25 Engine type heat pump boiler Pending JPS61101740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59224513A JPS61101740A (en) 1984-10-25 1984-10-25 Engine type heat pump boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224513A JPS61101740A (en) 1984-10-25 1984-10-25 Engine type heat pump boiler

Publications (1)

Publication Number Publication Date
JPS61101740A true JPS61101740A (en) 1986-05-20

Family

ID=16814970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224513A Pending JPS61101740A (en) 1984-10-25 1984-10-25 Engine type heat pump boiler

Country Status (1)

Country Link
JP (1) JPS61101740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142795A1 (en) * 2015-03-06 2016-09-15 Gogogen S.R.L. Device and method for the cogeneration of electrical energy and thermal energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142795A1 (en) * 2015-03-06 2016-09-15 Gogogen S.R.L. Device and method for the cogeneration of electrical energy and thermal energy

Similar Documents

Publication Publication Date Title
WO1987007360A1 (en) Heat exchanging system
JPS61101740A (en) Engine type heat pump boiler
JPS61101741A (en) Engine type heat pump boiler
JP5478216B2 (en) Hot water supply power generation system and operation control method thereof
JPS6038565A (en) Hot-water supply machine
JP4297233B2 (en) Engine working machine with soundproof case
CN216522327U (en) But waste heat utilization's biphase heat medium boiler
JPS6032532Y2 (en) Engine-driven heat pump hot water generator
JPH09170491A (en) Hot gas engine
JP2677597B2 (en) Engine working machine
JPS58221340A (en) Gas instantaneous hot-water heater utilizing stirling engine
JPS5920570Y2 (en) Indoor heating device
JP2004251263A (en) Power generation device, heat utilizing device, and combined device of them using highly efficient heat recovery of cooling water waste heat/exhaust gas heat of internal combustion engine and reburning heat of incomplete combustion exhaust gas by counterflow type heat exchange boiler
JP2003307366A (en) Cooling and heating equipment for building
JPS59141752A (en) Water heater using heat engine
JPS6241171Y2 (en)
JPS5914671Y2 (en) Hot air generator for drying
JPS6216595Y2 (en)
JPH0327254Y2 (en)
JP2547767Y2 (en) Multipurpose heat utilization organization
JPS63220052A (en) Heat exchanger
JPS5937256A (en) Intake air heater for internal combustion engine
JP3734949B2 (en) Heat utilization system container using hydrogen storage alloy and method of filling hydrogen into the container
JP2969208B2 (en) Evaporative cooling engine of cogeneration
JPH07113567A (en) Vaporization-cooled engine for cogeneration