JPS6110169Y2 - - Google Patents

Info

Publication number
JPS6110169Y2
JPS6110169Y2 JP8239678U JP8239678U JPS6110169Y2 JP S6110169 Y2 JPS6110169 Y2 JP S6110169Y2 JP 8239678 U JP8239678 U JP 8239678U JP 8239678 U JP8239678 U JP 8239678U JP S6110169 Y2 JPS6110169 Y2 JP S6110169Y2
Authority
JP
Japan
Prior art keywords
magnetic
self
permanent magnet
detection element
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8239678U
Other languages
Japanese (ja)
Other versions
JPS551735U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8239678U priority Critical patent/JPS6110169Y2/ja
Publication of JPS551735U publication Critical patent/JPS551735U/ja
Application granted granted Critical
Publication of JPS6110169Y2 publication Critical patent/JPS6110169Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【考案の詳細な説明】 本考案は、自己一核形成磁気線を用いた磁性体
検出素子に係り、とくに周囲を歯を形成した回転
磁性体円板の回転数検出等に好適な磁性体検出素
子に関する。
[Detailed description of the invention] The present invention relates to a magnetic substance detection element using self-mononucleated magnetic lines, and is particularly suitable for detecting the rotational speed of a rotating magnetic disc with teeth formed around the periphery. Regarding elements.

自己一核形成磁気線は、第1図に示す如く、中
心部の比較的保持力の小さな中心核1と、その周
囲の比較的保持力の大きな外殻2とを有するよう
に処理された強磁性線である。その外殻2の磁化
には約30エルステツド以上の磁界をかける必要が
あり、中心核1は保持力が相対的に低いので約10
エルステツド以下の磁界で磁化が反転する。そし
て、自己一核形成磁気線は、外殻2と中心核1と
が同一方向に磁化されているときに磁化状態とな
り、外殻2と中心核1とが相互に逆向きに磁化さ
れているときには、恒常的に円筒状磁区が形成さ
れて減磁状態となる性質を有している。
As shown in FIG. 1, the self-mononucleated magnetic line is a strong magnetic line that has been treated to have a central core 1 with a relatively small coercive force in the center and an outer shell 2 with a relatively large coercive force around it. It is a magnetic wire. To magnetize the outer shell 2, it is necessary to apply a magnetic field of about 30 oersted or more, and the core 1 has a relatively low coercive force, so about 10 oersted
Magnetization is reversed in a magnetic field below Oersted. The self-mononucleated magnetic line is in a magnetized state when the outer shell 2 and the central core 1 are magnetized in the same direction, and the outer shell 2 and the central core 1 are magnetized in opposite directions. In some cases, a cylindrical magnetic domain is permanently formed, resulting in a demagnetized state.

上記の如き自己一核形成磁気線の周囲にコイル
を設け、第2図Aに示すような交番対称磁界を印
加すると、中心核1がその磁界と同一方向に磁化
され、減磁状態から磁化状態に変わる際及び磁化
状態から減磁状態に変わる際に、第2図Bに示す
如くパルス電圧がコイルに誘起される。
When a coil is provided around the self-mononucleated magnetic wire as described above and an alternating symmetrical magnetic field as shown in FIG. When changing from a magnetized state to a demagnetized state, a pulsed voltage is induced in the coil as shown in FIG. 2B.

ところで、自己一核形成磁気線に上記のような
交番対称磁界を印加した場合には、両極性のパル
ス電圧が等振幅で得られるが、そのパルス電圧の
振幅が0.5V程度であつてあまり大きくなく、一
方向のパルス電圧のみを利用する場合には、信号
対雑音比等の点、あるいは直接サイリスタ等のス
イツチング素子をトリガすることを考慮したとき
に不利である。
By the way, when the above-mentioned alternating symmetrical magnetic field is applied to the self-mononucleating magnetic line, bipolar pulse voltages with equal amplitude can be obtained, but the amplitude of the pulse voltage is about 0.5V, which is not very large. However, if only a unidirectional pulse voltage is used, this is disadvantageous in terms of signal-to-noise ratio or when directly triggering a switching element such as a thyristor.

本考案は、上記の点に鑑み、自己一核形成磁気
線に交番非対称磁界が加わるようにして充分大き
な振幅の一方向のパルス電圧を取出し可能にした
磁性体検出素子を提供しようとするものである。
In view of the above points, the present invention aims to provide a magnetic substance detection element that can extract a unidirectional pulse voltage of sufficiently large amplitude by applying an alternating asymmetric magnetic field to self-mononucleated magnetic lines. be.

以下、本考案に係る磁性体検出素子の実施例を
図面に従つて説明する。
Embodiments of the magnetic substance detection element according to the present invention will be described below with reference to the drawings.

第3図及び第4図は本考案の第1実施例を示
す。これらの図において、被検出体として回転磁
性体円板3が示され、この回転磁性体円板3の周
縁には歯4、溝5が交互に形成されている。一
方、磁性体検出素子10は、自己一核形成磁気線
11と、この周囲に巻回されるコイル12と、そ
の自己一核形成磁気線11の後端に接続されるL
字形のヨーク13と、第1の永久磁石14及び第
2の永久磁石15とから成る。その第1の永久磁
石14は、自己一核形成磁気線11の外殻及び中
心核の両者を磁化可能な充分強い磁界を印加する
ものであつて、前記自己一核形成磁気線11に並
行して配設される。また、第2の永久磁石15は
L字形のヨーク13の先端部に取付けられ、前記
自己一核形成磁気線11の先端と第2の永久磁石
15の先端との間に空隙Gが形成される。ここ
で、第2の永久磁石15は、空隙G内に磁性体が
介在したとき前記第1の永久磁石14の磁界を打
消して逆向きの非対称磁界を自己一核形成磁気線
11を印加するものである。
3 and 4 show a first embodiment of the present invention. In these figures, a rotating magnetic disc 3 is shown as an object to be detected, and teeth 4 and grooves 5 are alternately formed on the periphery of the rotating magnetic disc 3. On the other hand, the magnetic body detection element 10 includes a self-nucleating magnetic wire 11, a coil 12 wound around the self-nucleating magnetic wire 11, and an L connected to the rear end of the self-nucleating magnetic wire 11.
It consists of a letter-shaped yoke 13, a first permanent magnet 14, and a second permanent magnet 15. The first permanent magnet 14 applies a magnetic field strong enough to magnetize both the outer shell and the central core of the self-uninucleating magnetic line 11, and is arranged in parallel to the self-uninucleating magnetic line 11. It will be arranged as follows. Further, the second permanent magnet 15 is attached to the tip of the L-shaped yoke 13, and a gap G is formed between the tip of the self-mononucleated magnetic wire 11 and the tip of the second permanent magnet 15. . Here, when a magnetic body is present in the air gap G, the second permanent magnet 15 cancels the magnetic field of the first permanent magnet 14 and applies an asymmetrical magnetic field in the opposite direction to the self-mononuclear magnetic line 11. It is something.

以上の第1実施例の構成において、回転磁性体
円板3が回転軸20により矢印Aの如く回転する
と、第5図Aの如く、磁性体検出素子10の空隙
G内を歯4、溝5が交互に通過する。ここで、溝
5が空隙Gに位置したときは、第2の永久磁石1
5の影響は無視できるから、第5図Bの如く、第
1の永久磁石14による充分大きな磁界が矢印B
方向に自己一核形成磁気線11に印加され、その
外殻及び中心核共に磁化される。この時第5図C
の如く、2.5V程度の充分振幅の大きなパルス電
圧がコイル12に発生される。次に、歯4が空隙
Gに位置すると、第2の永久磁石15のN極、ヨ
ーク13、自己一核形成磁気線11、歯4、第2
の永久磁石15のS極の経路で磁路が形成され、
第5図Bに示すように矢印C方向の弱い磁界によ
り中心核の磁化が反転される。この時、第5図C
の如く、小振幅のパルス電圧が逆極性でコイル1
2に発生される。
In the configuration of the first embodiment described above, when the rotating magnetic disk 3 rotates as shown by the arrow A by the rotating shaft 20, the teeth 4 and the grooves 5 pass through the gap G of the magnetic detecting element 10 as shown in FIG. 5A. pass alternately. Here, when the groove 5 is located in the air gap G, the second permanent magnet 1
Since the influence of 5 can be ignored, as shown in FIG. 5B, a sufficiently large magnetic field by the first permanent magnet 14
direction is applied to the self-mononucleating magnetic line 11, and both its outer shell and central core are magnetized. At this time, Figure 5C
A pulse voltage of about 2.5V with a sufficiently large amplitude is generated in the coil 12 as shown in FIG. Next, when the tooth 4 is located in the gap G, the N pole of the second permanent magnet 15, the yoke 13, the self-nucleating magnetic line 11, the tooth 4, the second
A magnetic path is formed by the path of the S pole of the permanent magnet 15,
As shown in FIG. 5B, the magnetization of the central nucleus is reversed by a weak magnetic field in the direction of arrow C. At this time, Figure 5C
As shown in the figure, the pulse voltage of small amplitude is reverse polarity and
2.

上記第1実施例によれば、自己一核形成磁気線
11に対し相互に逆向きの磁界を印加する2個の
永久磁石14,15を組合せて、被検出体として
の回転磁性体円板3の歯4の有無に応じて非対称
磁界が自己一核形成磁気線11に印加されるよう
にしたから、歯4の通過個数に1対1に対応した
充分大きな振幅のパルス電圧を取出すことができ
る。このため、回転磁性体円板3の回転角度又は
回転速度検出を良好な信号対雑音比の下で実行で
きる。また、自動車の点火系統に応用する場合等
において、パルス電圧で直接サイリスタ等を点弧
でる利点もある。
According to the first embodiment, two permanent magnets 14 and 15 that apply mutually opposite magnetic fields to the self-nucleated magnetic line 11 are combined, and the rotating magnetic disc 3 as the object to be detected is Since an asymmetrical magnetic field is applied to the self-mononucleating magnetic line 11 depending on the presence or absence of the teeth 4, it is possible to extract a pulse voltage with a sufficiently large amplitude corresponding to the number of passing teeth 4 on a one-to-one basis. . Therefore, the rotation angle or rotation speed of the rotating magnetic disc 3 can be detected under a good signal-to-noise ratio. Furthermore, when applied to an automobile ignition system, etc., there is an advantage that a thyristor or the like can be directly ignited with a pulse voltage.

第6図は第2実施例を示す。この図において、
磁性体検出素子10Aは、自己一核形成磁気線1
1と、この周囲に巻回されるコイル12と、その
自己一核形成磁気線11の上端に配置される第1
の永久磁石14と、L字形の第1ヨーク13A
と、前記自己一核形成磁気線11の下端に空隙G
を隔てて配置される第2の永久磁石15と、前記
第1ヨーク13A下端に空隙G′を介して対向す
るL字形の第2ヨーク13Bとから成る。そし
て、前記空隙G,G′を回転磁性体円板3の歯4
が横切るように磁性体検出素子10Aは配置され
る。
FIG. 6 shows a second embodiment. In this diagram,
The magnetic body detection element 10A has a self-mononuclear magnetic line 1
1, a coil 12 wound around the coil 12, and a first coil 12 disposed at the upper end of the self-nucleated magnetic wire 11.
permanent magnet 14 and an L-shaped first yoke 13A.
and a gap G at the lower end of the self-mononuclear magnetic line 11.
, and an L-shaped second yoke 13B that faces the lower end of the first yoke 13A with a gap G' in between. Then, the gaps G and G' are connected to the teeth 4 of the rotating magnetic disk 3.
The magnetic body detection element 10A is arranged so as to cross the magnetic body detection element 10A.

以上の第2実施例の構成におたて、回転磁性体
円板3が回転軸20により矢印Aの如く回転する
と、第7図Aの如く、磁性体検出素子10Aの空
隙G,G′内を歯4、溝5が交互に通過する。こ
こで、歯4が空隙G,G′内に位置したときは、
第1の永久磁石14のN極、第1ヨーク13A、
歯2、自己一核形成磁気線11、第1の永久磁石
14のS極の経路で磁路が構成されるから、第7
図Bの如く、第1の永久磁石14による充分大き
な磁界が矢印D方向に自己一核形成磁気線11に
印加され、その外殻及び中心核共に磁化される。
この時第7図Cの如く、2.5V程度の充分振幅の
大きなパルス電圧がコイル12に発生される。次
に溝5が空隙G,G′に位置すると、第2の永久
磁石15のN極、第2ヨーク13B、第1ヨーク
13A、第1の永久磁石14、自己一核形成磁気
線11、第2の永久磁石15のS極の経路で磁路
が形成され、第7図Bに示すように矢印E方向の
弱い磁界により中心核の磁化が反転される。この
時第7図Cの如く、小振幅のパルス電圧が逆極性
でコイル12に発生される。
In the configuration of the second embodiment described above, when the rotating magnetic disc 3 is rotated by the rotating shaft 20 in the direction of the arrow A, as shown in FIG. The teeth 4 and the grooves 5 alternately pass through. Here, when the tooth 4 is located within the gaps G and G',
N pole of the first permanent magnet 14, first yoke 13A,
Since a magnetic path is constituted by the path of the tooth 2, the self-nucleating magnetic line 11, and the S pole of the first permanent magnet 14, the seventh
As shown in FIG. B, a sufficiently large magnetic field by the first permanent magnet 14 is applied to the self-nucleating magnetic line 11 in the direction of arrow D, and both its outer shell and central core are magnetized.
At this time, as shown in FIG. 7C, a sufficiently large pulse voltage of about 2.5V is generated in the coil 12. Next, when the groove 5 is located in the gaps G and G', the N pole of the second permanent magnet 15, the second yoke 13B, the first yoke 13A, the first permanent magnet 14, the self-nucleated magnetic line 11, and the A magnetic path is formed along the path of the S pole of the second permanent magnet 15, and the magnetization of the central core is reversed by a weak magnetic field in the direction of arrow E, as shown in FIG. 7B. At this time, as shown in FIG. 7C, a pulse voltage of small amplitude is generated in the coil 12 with opposite polarity.

上記第2実施例によつても、前述の第1実施例
と同等の効果を上げることができる。
The second embodiment described above can also achieve the same effects as the first embodiment described above.

第8図は第3実施例を示す。この図において、
磁性体検出素子10Bは、第6図の磁性体検出素
子10Aの空隙G′を省略してコ字形のヨーク1
3Cを用いており、その他の部分は磁性体検出素
子10Aと同様となつている。この磁性体検出素
子10Bの空隙Gを回転磁性体円板3の歯4が横
切るようにすれば、歯4が空隙G内に位置したと
き第1の永久磁石14による矢印F方向の磁界が
自己一核形成磁気線11に加わり、溝5が空隙G
内に位置したときは第2の永久磁石15による矢
印H方向の磁界が加わることになる。従つて、円
板位置、磁界、パルス電圧の関係は、第2実施例
と同じく第7図A,B,Cの通りになる。
FIG. 8 shows a third embodiment. In this diagram,
The magnetic body detection element 10B has a U-shaped yoke 1 by omitting the gap G' of the magnetic body detection element 10A in FIG.
3C is used, and the other parts are the same as the magnetic body detection element 10A. If the teeth 4 of the rotating magnetic disk 3 cross the gap G of the magnetic body detection element 10B, when the teeth 4 are located in the gap G, the magnetic field in the direction of the arrow F caused by the first permanent magnet 14 is self-directed. The groove 5 joins the single nucleation magnetic line 11, and the groove G
When located inside, a magnetic field from the second permanent magnet 15 in the direction of arrow H is applied. Therefore, the relationships among the disk position, magnetic field, and pulse voltage are as shown in FIGS. 7A, B, and C, the same as in the second embodiment.

なお、上記各実施例では、被検出体として回転
磁性体円板3を示したが、直線的に歯を配列した
磁性板、往復運動を行う磁性体等の検出が可能で
あることは勿論である。
In each of the above embodiments, the rotating magnetic disk 3 is shown as the object to be detected, but it is of course possible to detect a magnetic plate with linearly arranged teeth, a magnetic body that moves reciprocally, etc. be.

叙上のように、本考案によれば、自己一核形成
磁気線に交番非対称磁界が加わるようにして充分
大きな振幅の一方向のパルス電圧を取出せる磁性
体検出素子を得る。
As described above, according to the present invention, a magnetic substance detection element is obtained which can obtain a unidirectional pulse voltage with a sufficiently large amplitude by applying an alternating asymmetric magnetic field to a self-mononucleated magnetic line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自己一核形成磁気線を示す断面図、第
2図は自己一核形成磁気線に交番対称磁界を印加
した場合の作用を示す波形図、第3図は本考案に
係る磁性体検出素子の第1実施例を示す平面図、
第4図は同側面図、第5図は第1実施例の作用を
示す説明図、第6図は第2実施例を示す側面図、
第7図は第2実施例の作用を示す説明図、第8図
は第3実施例を示す側面図である。 1……中心核、2……外殻、3……回転磁性体
円板、4……歯、5……溝、10,10A,10
B……磁性体検出素子、11……自己一核形成磁
気線、12……コイル、13,13A乃至13C
……ヨーク、14,15……永久磁石、G,
G′……空隙。
Fig. 1 is a cross-sectional view showing a self-mononucleating magnetic line, Fig. 2 is a waveform diagram showing the effect when an alternating symmetrical magnetic field is applied to the self-mononucleating magnetic line, and Fig. 3 is a magnetic body according to the present invention. A plan view showing a first embodiment of the detection element,
FIG. 4 is a side view of the same, FIG. 5 is an explanatory view showing the operation of the first embodiment, and FIG. 6 is a side view showing the second embodiment.
FIG. 7 is an explanatory view showing the operation of the second embodiment, and FIG. 8 is a side view showing the third embodiment. 1...Central core, 2...Outer shell, 3...Rotating magnetic disc, 4...Teeth, 5...Groove, 10, 10A, 10
B... Magnetic substance detection element, 11... Self-mononucleated magnetic wire, 12... Coil, 13, 13A to 13C
... Yoke, 14, 15 ... Permanent magnet, G,
G′...Void.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 自己一核形成磁気線と、この周囲に巻回される
コイルと、その自己一核形成磁気線の外殻及び中
心核磁化用の第1の永久磁石と、前記中心核の磁
化反転用の第2の永久磁石と、この第2の永久磁
石による磁界を前記自己一核形成磁気線に印加す
る磁路の一部を成すヨークと、該磁路に少くとも
1箇所設けられた被検出体としての磁性体を通過
させる空隙とを備えたことを特徴とする磁性体検
出素子。
a self-nucleated magnetic wire, a coil wound around the self-nucleated magnetic wire, an outer shell of the self-nucleated magnetic wire, a first permanent magnet for magnetizing the central core, and a first permanent magnet for reversing the magnetization of the central core. a yoke forming a part of a magnetic path for applying a magnetic field by the second permanent magnet to the self-mononucleated magnetic line; and a detected object provided at least at one location in the magnetic path. 1. A magnetic substance detection element comprising: a gap through which a magnetic substance passes through.
JP8239678U 1978-06-17 1978-06-17 Expired JPS6110169Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8239678U JPS6110169Y2 (en) 1978-06-17 1978-06-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8239678U JPS6110169Y2 (en) 1978-06-17 1978-06-17

Publications (2)

Publication Number Publication Date
JPS551735U JPS551735U (en) 1980-01-08
JPS6110169Y2 true JPS6110169Y2 (en) 1986-04-02

Family

ID=29003211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8239678U Expired JPS6110169Y2 (en) 1978-06-17 1978-06-17

Country Status (1)

Country Link
JP (1) JPS6110169Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7068751B2 (en) * 2019-08-22 2022-05-17 ヒロセ電機株式会社 Motion detector and mold device

Also Published As

Publication number Publication date
JPS551735U (en) 1980-01-08

Similar Documents

Publication Publication Date Title
US3780313A (en) Pulse generator
JPS6110169Y2 (en)
JPH01114759A (en) Displacement speed detector
JP2001194182A (en) Magnetic sensor
JPS5937695Y2 (en) pulse generator
JPS6241461Y2 (en)
JPH0161016B2 (en)
JP3092681B2 (en) Phase detector
JPS6139841A (en) Dc brushless motor
JPS6349947Y2 (en)
JPH0441332Y2 (en)
JPH02435U (en)
JPS60162919A (en) Magnetic scale signal detector
JPH0412652Y2 (en)
JPS54121914A (en) Dc brushless motor
JP2539926Y2 (en) Motor rotation position detector
JPH022072Y2 (en)
JPS58179148A (en) Motor with speed detector
JPH0228457Y2 (en)
JPH0118851Y2 (en)
JPH02140907A (en) Magnetization in radial direction
JPS63255602A (en) Position detector
JPS59183328A (en) Detector for rotation
JPH01262414A (en) Magnetic encoder
JPS6135155A (en) Brake device