JPS61100959A - Infrared solid-state image pickup element - Google Patents

Infrared solid-state image pickup element

Info

Publication number
JPS61100959A
JPS61100959A JP59221314A JP22131484A JPS61100959A JP S61100959 A JPS61100959 A JP S61100959A JP 59221314 A JP59221314 A JP 59221314A JP 22131484 A JP22131484 A JP 22131484A JP S61100959 A JPS61100959 A JP S61100959A
Authority
JP
Japan
Prior art keywords
infrared
solid
state image
optical
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59221314A
Other languages
Japanese (ja)
Inventor
Yoshinori Iida
義典 飯田
Tadashi Utagawa
忠 歌川
Okio Yoshida
吉田 興夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59221314A priority Critical patent/JPS61100959A/en
Publication of JPS61100959A publication Critical patent/JPS61100959A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

PURPOSE:To miniaturize the whole device without requiring an optical filter and a cooling device for the optical filter, to reduce the loss of incident infrared beams and to obtain excellent infrared image pickup characteristics by forming an optical window by a material, through which infrared beams are transmitted and which interrupts a visible hole. CONSTITUTION:A chip 3 for a solid-state image pickup element is mounted onto a ceramic substrate 1 through silver paste or low-temperature solder 2, and electrically connected to external lead pins 5 by bounding wires 4, and adhesives 6 are applied onto the upper surface of the ceramic substrate 1. An optical window 7a for an optical filter consisting of an optical material, through which infrared beams are transmitted and which interrupts visible beams, such as silicon is laminated onto the adhesives, and an inert gas 8 is encapsulated into a space between the chip and the optical window, thus preparing the infrared solid-state image pickup element 9. Silicon or germanium is used as the optical window 7a, and the optical window is grounded, thus electrostatically shielding the solid-state image pickup element 3, then eliminating the need for a process for electrostatic shielding.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は赤外用固体撮像素子に関する。待に。[Detailed description of the invention] [Technical field of invention] The present invention relates to an infrared solid-state image sensor. Wait.

赤外光を透過し、可視光を遮断する光学材料たとえばシ
リコンまたはゲルマニウム,あるいは赤外透過性の光学
フィルターの光学窓ガラスをMする赤外用固体撮像素子
に関する。
The present invention relates to an infrared solid-state imaging device that uses an optical material that transmits infrared light and blocks visible light, such as silicon or germanium, or an optical window glass of an infrared-transmissive optical filter.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

籾,在、赤外域に感知波長頭載を持つ赤外用固体撮像素
子として、InSbやH#CdTe 等の比合物牛導体
,あるいはたとえばPtSi−S▲シタットキーバリア
捜フォトダイオードを用いた赤外用固体撮像素子がある
が、何れも摂氏零下数十度またはそれ以上に冷却した状
態でなければ、所望の!住を発蓮しないことが知られて
いる。
Currently, infrared solid-state imaging devices with sensing wavelengths in the infrared range are available using composite conductors such as InSb and H#CdTe, or infrared photodiodes using PtSi-S▲ sitat key barrier detection photodiodes. There are external solid-state imaging devices, but they all need to be cooled to several tens of degrees below zero or more to achieve the desired image quality. It is known that it does not take up residence.

また、迫常このような赤外用固体撮像素子素子では第2
図のように所定の赤外光のみを透過する光学フィルター
(lのを赤外用固体撮像素子(Iυの前面に配置して背
R 雑音成分となる可視光および不要な赤外光を除去し
ている。
In addition, in such an infrared solid-state image sensor element, the second
As shown in the figure, an optical filter (l) that transmits only a certain amount of infrared light is placed in front of the infrared solid-state image sensor (Iυ) to remove visible light and unnecessary infrared light that become noise components. There is.

嘉2図に示した】11常の構成の場合,以下の問題があ
る。
In the case of the configuration shown in Figure 2], there are the following problems.

rll光学フィルターからの熱輻射による背景雑音を低
減するために赤外用固体撮像素子の冷却と同時に光学フ
ィルターの冷却を行なう必要がある。
In order to reduce background noise due to thermal radiation from the rll optical filter, it is necessary to cool the optical filter at the same time as cooling the infrared solid-state image sensor.

12)光学フィルターおよび光学フィルターの冷却袈1
4を組み込むことは赤外用固体撮像装置全体の小型化の
妨なげとなる。
12) Optical filter and optical filter cooling shield 1
4 becomes an obstacle to miniaturization of the entire infrared solid-state imaging device.

{3}入射赤外光が光学フィルターとサファイアガラス
の2.4の光学窓材料8通過するために、入射赤外光の
エネルギー損失が大きい。このことは可視光と比較して
低エネルギーである赤外光の撮ぼにおいて無視できない
問題であり、光学フィルターおよびサファイアガラスの
厚さ、配置等、光学系の設計に細心の注意を払わなけれ
ば、赤外用固体撮像素子の特性を十分に発揮することか
で者ない。
{3} Since the incident infrared light passes through the optical filter and the 2.4 optical window material 8 of sapphire glass, the energy loss of the incident infrared light is large. This is a problem that cannot be ignored when photographing infrared light, which has lower energy than visible light, and requires careful attention to the design of the optical system, including the thickness and arrangement of the optical filter and sapphire glass. , it is essential to fully demonstrate the characteristics of an infrared solid-state image sensor.

一方、サファイアガラスの光学窓に、赤外光透過性の接
着剤で直接光学フィルターを貼り合わせる構造をされば
、上記3点の問題を避けることがで傘る。しかし光学フ
ィルターとサファイアガラスの熱膨張係数の差異がある
ため、冷却時に歪みが発生し光学フィルターが、はがれ
る孕もあり得る。
On the other hand, if an optical filter is bonded directly to a sapphire glass optical window using an adhesive that transmits infrared light, the above three problems can be avoided. However, due to the difference in thermal expansion coefficient between the optical filter and the sapphire glass, distortion may occur during cooling and the optical filter may peel off.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した従来の赤外、用固体撮洩素子の欠点
を改良したもので赤外用固体撮像素子とは別に光学フィ
ルターおよび光学フィルター用冷却Haを必要とせず、
したがって赤外用固体撮像装置全体の小型化が可能であ
り、また、入射赤外光の損失が少なく良好な赤外光撮像
特性を得ることが可能な赤外用固体撮像素子を提供する
ことを目的とする。
The present invention improves the drawbacks of the conventional infrared solid-state image pickup device described above, and does not require an optical filter and a cooling Ha for the optical filter in addition to the infrared solid-state image pickup device.
Therefore, it is an object of the present invention to provide an infrared solid-state image sensor that allows the entire infrared solid-state image sensor to be miniaturized and that can obtain good infrared light imaging characteristics with less loss of incident infrared light. do.

〔発明のg安〕[G cheap of invention]

本発明は赤外用固体撮像素子の光学窓に、赤外光を透過
し、かつ可視光を遮断する光学材料たとえばシリコンま
たはゲルマニウム、あるいは赤外光透過性の光学フィル
ターを使用Tることを特徴とする。
The present invention is characterized in that the optical window of the infrared solid-state image sensor uses an optical material that transmits infrared light and blocks visible light, such as silicon or germanium, or an optical filter that transmits infrared light. do.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、赤外用固体撮像装置の小型化が可能と
なり、かつ入射赤外光の損失を低減することで良好な赤
外光撮像特性を得ることが可能となる。
According to the present invention, it is possible to downsize an infrared solid-state imaging device, and to obtain good infrared imaging characteristics by reducing the loss of incident infrared light.

また、InSbを使用した固体撮像素子においては、長
時間可視光を照射すると、バッジベージ目ン稗の界面状
態が変化し撮像特性の劣化が発生することが本発明によ
れば固体撮像素子に可視光を照射することがなくなり、
上記のような撮像特性の劣化は起こらない。
In addition, in a solid-state image sensor using InSb, if visible light is irradiated for a long period of time, the interface state of the badge-beige grain will change and the imaging characteristics will deteriorate. No more irradiation,
Deterioration of imaging characteristics as described above does not occur.

また、光学窓にシリコンまたはゲルマニウムを使用した
場合は、光学窓8接地することで向体熾陳素子を静電シ
ールドすることが可能となり、外部からの飛び込み雑音
を除去し、温度分解能の良い赤外用固体撮像素子が、得
られる。
In addition, when silicon or germanium is used for the optical window, by grounding the optical window 8, it becomes possible to electrostatically shield the anti-objective element. An external solid-state imaging device is obtained.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面を用いて説明する。嘉1図は本発
明の一笑権例を示す赤外用固体撮像素子の断面図である
。構成は光学窓を除いて従来の赤外用固体撮像素子(9
)と回して良い。セラミック基板(1)に銀ペーストす
るいは低温ハンダ(2)を介して固体撮像素子のチップ
(3)をマウントし、ボンディングワイヤ(4)により
外部のリードピン15)と4気結線を行なりた後に接着
剤(6)をセラミック基板(1)の上面に塗布し、その
上に赤外光を透過し1.可視光を遮断する光学材料たと
えばシリコンまたはゲルマニウム、あるいは赤外光透過
性の光学フィルターの光学窓(7a)を貼り合わせ、内
部に不活性ガス(8)の入った構造の赤外用固体撮像素
子(9)となる。
Embodiments of the present invention will be described using the drawings. FIG. 1 is a cross-sectional view of an infrared solid-state imaging device showing an example of the present invention. The configuration is a conventional infrared solid-state image sensor (9
). A solid-state imaging device chip (3) was mounted on a ceramic substrate (1) using silver paste or low-temperature solder (2), and a four-wire connection was made with an external lead pin 15) using a bonding wire (4). Afterwards, an adhesive (6) is applied to the top surface of the ceramic substrate (1), and infrared light is transmitted thereon.1. An infrared solid-state imaging device (infrared solid-state imaging device) having a structure in which an optical material that blocks visible light, such as silicon or germanium, or an optical window (7a) of an optical filter that transmits infrared light is bonded to the inside, and an inert gas (8) is contained inside. 9).

第2図に示す従来の赤外用固体撮像素子(11)では、
サファイアの光学M C7b)を使用しているため、サ
ファイアの透過波長帯域、0.17〜5.3μmの光を
透過する。したがって可視光成分も透過するため、第2
図のように可視光を遮断し所定の赤外光のみを透過する
光学フィルター(10)を設置する必要があった。
In the conventional infrared solid-state image sensor (11) shown in Fig. 2,
Since a sapphire optical M C7b) is used, light in the sapphire transmission wavelength band of 0.17 to 5.3 μm is transmitted. Therefore, since visible light components also pass through, the second
As shown in the figure, it was necessary to install an optical filter (10) that blocks visible light and transmits only predetermined infrared light.

’K 1 e!Jに示す本発明の構造においては、光学
窓(7りに、赤外光を透過し可視光を遮断する光学材料
たとえばシリコンまたはゲルマニウムあるいは赤外光透
過型の光エフイルターを使用しているため、可視光成分
を遮断する。したがって、赤外用固体撮像素子とは別に
可視光遮断用光学フィルターを設置Tる必要はなくなる
'K 1 e! In the structure of the present invention shown in J, the optical window (7) uses an optical material that transmits infrared light and blocks visible light, such as silicon or germanium, or an infrared light transmitting type light filter. , visible light components are blocked.Therefore, there is no need to install an optical filter for blocking visible light separately from the infrared solid-state image sensor.

また、固体撮像素子の静電シールドのためにはサファイ
アの光学窓上にITQなどの赤外光透過性の透明電極を
形成し接地する方法があるが、術1図に示す本発明の構
造において1よ、光学窓(7a)にシリコンまたはゲル
マニウムを便用すれば、光学窓を接地することで固体r
? 1M累子(3)の靜dシールドが可能となり、1伊
心シールド用プロセスが不便となる。
In addition, for electrostatic shielding of a solid-state image sensor, there is a method of forming an infrared transparent transparent electrode such as ITQ on the sapphire optical window and grounding it, but in the structure of the present invention shown in Figure 1, 1. If silicon or germanium is conveniently used for the optical window (7a), solid r
? 1M Seiko (3) silent shielding becomes possible, and the process for 1Ishin shielding becomes inconvenient.

また、赤外用固体熾な素子のWi便な評価方法として、
約77°にの液体窒素中に直接浸漬して冷却・評価する
方法がある。第2図に示す従来構造の赤外用固体撮像素
子話子の場倉、可視光を遮断し赤外光を透視する光学フ
ィルターを設直しなければ赤外感If、等の評価は行な
えなかりたが、本発明による第1図の構造によれば、光
学フィルターを必要とせず、赤外光を含む光を1葉照射
することで赤外感度等の評価が可能となる。
In addition, as a convenient evaluation method for solid-state infrared elements,
There is a method of cooling and evaluating by directly immersing it in liquid nitrogen at about 77 degrees. As shown in Figure 2, it was not possible to evaluate the infrared sensitivity If of the infrared solid-state image pickup device shown in Figure 2 unless we installed an optical filter that blocks visible light and allows infrared light to pass through. According to the structure shown in FIG. 1 according to the present invention, it is possible to evaluate infrared sensitivity, etc. by irradiating one beam with light containing infrared light without requiring an optical filter.

【図面の簡単な説明】[Brief explanation of drawings]

嘱1図は本発明に係る赤外用固体撮像素子の一実施例を
示す断面図、筆2図は従来の赤外用固体撮像素子の断面
】でちる。 1図に2いて、 1・・・セラミック本成、2・・・環ペーストあるいは
低温ハンダ、3・・・固体撮像素子、4・・・ボンディ
ングワイヤ、5・・・リードピン、6・・・層着剤、7
a・・・赤外光を透過し可視光を遮断する光学窓、7b
・・・サファイアの光学窓、8・・・不活性ガス、9・
・・赤外用固体撮像素子、10・・・赤外透過性の光学
フィルター、11・・・赤外用固体撮像素子。
Figure 1 is a sectional view showing an embodiment of the infrared solid-state image sensor according to the present invention, and Figure 2 is a cross-sectional view of a conventional infrared solid-state image sensor. 2 in Figure 1, 1... Ceramic material, 2... Ring paste or low temperature solder, 3... Solid-state image sensor, 4... Bonding wire, 5... Lead pin, 6... Layer Adhesive, 7
a... Optical window that transmits infrared light and blocks visible light, 7b
...Sapphire optical window, 8...Inert gas, 9.
... Infrared solid-state image sensor, 10... Infrared-transmissive optical filter, 11... Infrared solid-state image sensor.

Claims (2)

【特許請求の範囲】[Claims] (1)赤外用固体撮像素子において、光学窓を、赤外光
を透過し可視光を遮断する材料で形成した事を特徴とす
る赤外用固体撮像素子。
(1) An infrared solid-state image sensor, characterized in that the optical window is formed of a material that transmits infrared light and blocks visible light.
(2)赤外光を透過し可視光を遮断する材料として、シ
リコン、ゲルマニウムあるいは赤外光透過性の光学フィ
ルターを用いた事を特徴とする前記特許請求の範囲第1
項記載の赤外用固体撮像素子。
(2) The first claim characterized in that silicon, germanium, or an optical filter that transmits infrared light is used as the material that transmits infrared light and blocks visible light.
The infrared solid-state imaging device described in Section 1.
JP59221314A 1984-10-23 1984-10-23 Infrared solid-state image pickup element Pending JPS61100959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59221314A JPS61100959A (en) 1984-10-23 1984-10-23 Infrared solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59221314A JPS61100959A (en) 1984-10-23 1984-10-23 Infrared solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS61100959A true JPS61100959A (en) 1986-05-19

Family

ID=16764855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59221314A Pending JPS61100959A (en) 1984-10-23 1984-10-23 Infrared solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS61100959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773435A3 (en) * 1995-07-21 1998-03-11 Texas Instruments Incorporated Method and devices for measuring radiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773435A3 (en) * 1995-07-21 1998-03-11 Texas Instruments Incorporated Method and devices for measuring radiation

Similar Documents

Publication Publication Date Title
CN100552393C (en) Infrared ray sensor and manufacture method thereof
CN103988062B (en) Infrared sensor
JP3375147B2 (en) Semiconductor photodetector
WO2011129307A1 (en) Method for manufacturing infrared sensor
JPS63308375A (en) Solid-state image sensing device
JP2000298063A (en) Infrared ray detector
JP2011220938A (en) Infrared-ray sensor manufacturing method
JPH11326037A (en) Vacuum package for infrared detector and its manufacture
US6509560B1 (en) Chip size image sensor in wirebond package with step-up ring for electrical contact
US5006711A (en) Multielement infrared detector for thermal imaging
US4445034A (en) Compound infrared detector
JPS61123288A (en) Solid-state pick up device
US4566024A (en) Matrix infrared detector
JPS61100959A (en) Infrared solid-state image pickup element
US5438200A (en) Composite photodetector substrate and method of forming the same
JPH0915040A (en) Pyroelectric type infrared detector
JPH08116042A (en) Solid-state image sensing device and its manufacture
CN113314619A (en) Multi-spectrum optical sensor packaging structure and packaging method thereof
JP2004328386A (en) Solid-state imaging device
JPS62190776A (en) Photoelectric conversion device
JPH09243449A (en) Infrared ray detector
JPH04114456A (en) Photoelectric converter
JPH0271122A (en) Infrared image sensor
JPH0219727A (en) Pyroelectric type infrared detecting element array, pyroelectric type infrared detector and their production
JPS5910762Y2 (en) Optical coupling semiconductor device