JPH09243449A - Infrared ray detector - Google Patents

Infrared ray detector

Info

Publication number
JPH09243449A
JPH09243449A JP8047403A JP4740396A JPH09243449A JP H09243449 A JPH09243449 A JP H09243449A JP 8047403 A JP8047403 A JP 8047403A JP 4740396 A JP4740396 A JP 4740396A JP H09243449 A JPH09243449 A JP H09243449A
Authority
JP
Japan
Prior art keywords
light receiving
solder
infrared
window
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8047403A
Other languages
Japanese (ja)
Inventor
Takanori Sone
孝典 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8047403A priority Critical patent/JPH09243449A/en
Priority to US08/811,166 priority patent/US5914488A/en
Priority to GB9704483A priority patent/GB2310952B/en
Publication of JPH09243449A publication Critical patent/JPH09243449A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make a light reception part vacuum-airtight and reduce a size and a cost by placing an infrared ray receiving window on a front of the light reception part with a gap and adhering the window airtightly to a substrate with an adhesive face completely surrounding the light reception part to make the gap vacuum. SOLUTION: Before an infrared ray receiving window 4 and a silicon substrate 1 are adhered to each other, solder 5 is placed on a side of the window 4, it is subjected to thermal treatment in a hydrogen atmosphere to remove an oxide film of the solder 5, and at the same time, the solder 5 is pasted to a metallized layer 5 on a side of a light receiving face. Subsequently, temperature is lowered until the solder 5 is solidified, the solder 5 of the window 4 and the metallized layer 7 of the substrate 1 are aligned in position, they are subjected to thermal treatment in a vacuum, and the window 4 is adhered to the substrate 1 by the solder 5 with a gap 3 provided to completely surround an infrared ray receiving part 2 on a front of the thermal-type receiving part 2 formed on the substrate 1. Since the oxide film of the solder 5 is removed in the hydrogen atmosphere before adhesion, they can be adhered without using soldering flux, while, since they are airtightly adhered in a vacuum, the gap 3 can be made vacuum-airtightly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、赤外線検出器に関
し、さらに詳しくは、受光部に真空気密を要するボロメ
ータ方式、サーモパイル方式、および焦電方式の赤外線
検出器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detector, and more particularly to a bolometer type, thermopile type and pyroelectric type infrared detector which requires a light receiving portion to be vacuum-tight.

【0002】[0002]

【従来の技術】最近、赤外線による光学機器の利用が盛
んになっており、夜間の監視や温度計測などに活用され
ている。この応用の拡大に伴い、ボロメータ方式、サー
モパイル方式、あるいは焦電方式の熱型検出器による安
価な赤外線検出器の開発が要望されている。例えば特開
平2−196929号公報や特開平4−500437号
公報に記載されているように、検出器の各画素をブリッ
ジ構造で中空に浮かしたボロメータ方式の赤外線検出
器、SPIEプロシーディングVol.2269Inf
rared Technology XX,(199
4)の450〜459頁にあるサーモパイル方式の検出
器、あるいは特開平7−243908号公報に記載され
ている焦電方式の検出器は、シリコン基板の上に赤外線
を検知する画素をアレイ状に形成した赤外線検出素子で
あり、この素子によって赤外線を画像として検知するこ
とが可能となる。これらの熱型検出器は、量子型の赤外
線画像の検出器と比較して素子冷却が不要であるため、
低コストの赤外線検出器として提供できる利点を有して
いる。
2. Description of the Related Art Recently, optical devices using infrared rays have been actively used and used for nighttime monitoring and temperature measurement. With the expansion of this application, the development of an inexpensive infrared detector using a bolometer, thermopile, or pyroelectric thermal detector has been demanded. For example, as described in JP-A-2-196929 and JP-A-4-500437, a bolometer type infrared detector in which each pixel of the detector is floated in a hollow structure with a bridge structure, SPIE Proceeding Vol. 2269Inf
rare Technology XX, (199
4) pages 450 to 459, a thermopile type detector, or a pyroelectric type detector described in Japanese Patent Laid-Open No. 7-243908 discloses an array of infrared detecting pixels on a silicon substrate. It is an infrared detection element formed, and it becomes possible to detect infrared rays as an image by this element. These thermal detectors do not require element cooling compared to quantum infrared image detectors,
It has an advantage that it can be provided as a low-cost infrared detector.

【0003】しかしながら熱型検出器は、受光部が吸収
する入射赤外線を受光部の温度変化に変え、これを信号
として検出するものであるから、受光部の熱絶縁性を上
げることが高感度の検出器を得るために必要である。従
来の技術では、高い熱絶縁性を得るために、検出素子を
構成する基板全体を真空のパッケージ内に配置する方法
がとられてきた。真空のパッケージとしては、例えば図
7に示したように、セラミック製のステム(基台)15
に赤外線検出素子20を接着し、赤外線受光窓4を取り
付けたキャップ16を検出素子20の前面に置き、ステ
ム15に気密に接着する。キャップ16の内部はキャッ
プ16に取り付けた排気管17をとおして真空引きを行
い、排気管17の端面を封止して、最終的に真空パッケ
ージを得る。検出素子20の信号は、ワイヤボンド18
によって、素子の配線パッドとステム15を貫通してい
る信号ピン19に接続することにより、パッケージの外
に取り出される。
However, the thermal detector converts incident infrared light absorbed by the light receiving portion into a change in temperature of the light receiving portion and detects this as a signal. Therefore, it is highly sensitive to increase the thermal insulation of the light receiving portion. Needed to get detector. In the prior art, in order to obtain high thermal insulation, a method of arranging the entire substrate forming the detection element in a vacuum package has been adopted. As a vacuum package, for example, as shown in FIG. 7, a stem (base) 15 made of ceramic is used.
The infrared detecting element 20 is adhered to, the cap 16 having the infrared receiving window 4 attached thereto is placed on the front surface of the detecting element 20, and airtightly adheres to the stem 15. The inside of the cap 16 is evacuated through the exhaust pipe 17 attached to the cap 16, and the end surface of the exhaust pipe 17 is sealed to finally obtain a vacuum package. The signal of the detection element 20 is the wire bond 18
Is connected to the wiring pad of the device and the signal pin 19 penetrating the stem 15 to be taken out of the package.

【0004】このような真空パッケージによって検出素
子の熱絶縁性を保持する方法は、検出素子をいかに小さ
くしようとも、真空パッケージにより検出器全体の寸法
が決まるため、小型化を図ることが難しいのはいうまで
もない。また、真空パッケージによる検出素子の実装工
程は、繁雑であるばかりでなくセラミックステムや大型
の受光窓など高価な部品を要し、必ずしも低コストの検
出器とはならないなどの問題点があった。
In the method of maintaining the thermal insulation of the detection element by such a vacuum package, it is difficult to reduce the size of the detector because the size of the entire detector is determined by the vacuum package no matter how small the detection element may be. Needless to say. In addition, the mounting process of the detection element using the vacuum package is not only complicated, but also requires expensive parts such as a ceramic stem and a large light receiving window, which is not necessarily a low-cost detector.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
問題点を解消するためになされたもので、受光部の熱絶
縁性を図るための真空気密が得られるとともに、小型で
低コストの赤外線検出器を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and it is possible to obtain vacuum airtightness for attaining thermal insulation of a light receiving portion, and to be small in size and low in cost. The purpose is to obtain an infrared detector.

【0006】[0006]

【課題を解決するための手段】本発明の赤外線検出器
は、シリコン基板上に受光部を形成したボロメータ方
式、サーモパイル方式、および焦電方式の赤外線検出器
において、赤外線受光窓を、該受光部の前面に空隙を有
して配置し、該受光窓は、該受光部を完全に囲む接着面
で該基板に気密に接着し、かつ該空隙を真空とすること
を特徴とするものである。
An infrared detector according to the present invention is a bolometer type, thermopile type, and pyroelectric type infrared detector in which a light receiving portion is formed on a silicon substrate. Is disposed with a gap on the front surface of the light receiving window, the light receiving window is airtightly adhered to the substrate with an adhesive surface that completely surrounds the light receiving portion, and the gap is evacuated.

【0007】また、本発明の赤外線検出器において、受
光部の前面に空隙を有して配置される赤外線受光窓が、
厚さ0.1から1.5mmの範囲で、両面を研磨したシ
リコンであることを特徴とするものである。
Further, in the infrared detector of the present invention, the infrared receiving window arranged with a gap in front of the light receiving portion is
It is characterized in that it has a thickness in the range of 0.1 to 1.5 mm and is made of silicon having both sides polished.

【0008】また、本発明の赤外線検出器において、受
光部の前面に空隙を有して配置される赤外線受光窓が、
厚さ0.1から1.5mmの範囲で、両面を研磨し、か
つ両面に反射防止膜を施したシリコンであることを特徴
とするものである。
Further, in the infrared detector of the present invention, the infrared receiving window arranged with a gap in front of the light receiving portion is
It is characterized in that it has a thickness in the range of 0.1 to 1.5 mm and is made of silicon having both surfaces polished and antireflection films on both surfaces.

【0009】また、本発明の赤外線検出器において、受
光部の前面に空隙を有して配置される赤外線受光窓が、
該受光部を形成したシリコン基板に、ハンダによって気
密に接着されることを特徴とするものである。
Further, in the infrared detector of the present invention, the infrared receiving window arranged with a gap in front of the light receiving portion is
It is characterized in that it is hermetically adhered by solder to the silicon substrate on which the light receiving portion is formed.

【0010】また、本発明の赤外線検出器において、赤
外線受光窓と受光部を形成したシリコン基板との間の空
隙が1×10-2torr以下の真空であることを特徴と
するものである。
Further, the infrared detector of the present invention is characterized in that the gap between the infrared receiving window and the silicon substrate on which the light receiving portion is formed is a vacuum of 1 × 10 -2 torr or less.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1 図1は本発明の実施の形態1に関する赤外線検出器の断
面説明図である。この発明の実施の形態1の赤外線検出
器では、シリコン基板1の上に形成した熱型の赤外線受
光部2の前面に、空隙3を有して赤外線受光窓4をハン
ダ5によりシリコン基板1に接着している。図2は図1
を上部から見たものであり、受光窓4は赤外線の受光部
2を完全に囲む接着面6で接着を行い、受光部2を気密
にしている。受光窓4とシリコン基板1のハンダ5の接
着面は、ハンダの濡れ性を良くするためにあらかじめメ
タライズ層7を被覆しておいた。また、シリコン基板1
の接着面は、信号を取り出すための配線8をまたぐが、
接着時の損傷を防ぐため、シリコン基板側の接着面に当
たる部分には、スパッタ法によりあらかじめ酸化シリコ
ン膜9を保護膜として被覆した。次に、受光窓4とシリ
コン基板1との間の空隙3は真空とする必要があるが、
それは次の手順による。まず、受光窓4とシリコン基板
1とを接着する前に、受光窓側にハンダを置き、水素雰
囲気中で熱処理を行う。これによりハンダの酸化膜除去
を行うと同時にハンダを受光面側のメタライズ層に接着
する。つづいてハンダが固化するまで温度を下げ、受光
窓4のハンダとシリコン基板1のメタライズとの位置を
合わせ、そののち真空中で熱処理し受光窓4とシリコン
基板1とを気密に接着する。あらかじめ水素雰囲気でハ
ンダの酸化膜を除去しているから、ハンダ用フラックス
を用いなくとも良好に接着する。また、真空中で気密に
接着を行ったので、空隙3は真空が保たれる。このよう
にして、受光部2を真空気密とする受光素子を得た。な
お、図2におけるパッド10や配線8については、本発
明の特徴を示すために描いたもので、実際の実施の形態
1とはそのサイズや数が異なることを述べておく。
Embodiment 1 FIG. 1 is a sectional explanatory view of an infrared detector according to Embodiment 1 of the present invention. In the infrared detector according to the first embodiment of the present invention, an infrared receiving window 4 having a void 3 is formed on the silicon substrate 1 with solder 5 on the front surface of a thermal type infrared receiving portion 2 formed on the silicon substrate 1. It is glued. FIG. 2 shows FIG.
Is viewed from above, and the light receiving window 4 is adhered by an adhesive surface 6 that completely surrounds the infrared light receiving portion 2 to make the light receiving portion 2 airtight. The adhesive surface between the light receiving window 4 and the solder 5 of the silicon substrate 1 was coated with a metallization layer 7 in advance in order to improve the wettability of the solder. In addition, the silicon substrate 1
Although the adhesive surface of crosses the wiring 8 for extracting the signal,
In order to prevent damage at the time of adhesion, the silicon oxide film 9 was previously coated as a protective film by a sputtering method on the portion corresponding to the adhesion surface on the silicon substrate side. Next, the space 3 between the light receiving window 4 and the silicon substrate 1 needs to be evacuated,
It depends on the following procedure. First, before bonding the light receiving window 4 and the silicon substrate 1 to each other, solder is placed on the light receiving window side and heat treatment is performed in a hydrogen atmosphere. As a result, the oxide film of the solder is removed, and at the same time, the solder is adhered to the metallized layer on the light receiving surface side. Next, the temperature is lowered until the solder is solidified, the solder of the light receiving window 4 and the metallization of the silicon substrate 1 are aligned, and then heat treatment is performed in vacuum to hermetically bond the light receiving window 4 and the silicon substrate 1. Since the solder oxide film is removed in advance in a hydrogen atmosphere, good adhesion is achieved without using a solder flux. Further, since the airtight bonding is performed in a vacuum, the void 3 is kept in a vacuum. In this way, a light receiving element in which the light receiving section 2 is made airtight is obtained. It should be noted that the pads 10 and the wirings 8 in FIG. 2 are drawn to show the features of the present invention, and that the size and the number are different from those of the first embodiment.

【0012】また、実施の形態1の赤外線の受光部2
は、図3に示したように、ブリッジ構造11によって熱
絶縁ギャップ21を形成し、そのブリッジ11の上部に
熱型の赤外線検知回路を設けたものを、図4に示したよ
うに基板にアレイ状に複数個並べたものである。このブ
リッジ1つが画素1つに対応している。検知回路にはボ
ロメータ抵抗体13を含み、ブリッジ上部が赤外線を吸
収することによって変わる温度をボロメータの抵抗変化
に変え、ボロメータの両端の電極からブリッジ構造の支
持脚を伝って基板に配した配線8により信号を検出する
ようになっている。この方式の赤外線検出器は検知回路
の熱絶縁性が重要であり、ギャップ21を含めてブリッ
ジ11の周囲は真空状態となっている。なお、このボロ
メータ方式の受光部は本発明の一例であって、熱絶縁性
が重要であるサーモパイル方式、あるいは焦電方式の受
光部においても本発明は同様の効果が得られることは自
明である。
Further, the infrared light receiving section 2 of the first embodiment
As shown in FIG. 3, a thermal insulation gap 21 is formed by the bridge structure 11, and a thermal infrared detection circuit is provided on the bridge 11 and is arrayed on the substrate as shown in FIG. It is arranged in a line. One bridge corresponds to one pixel. The detection circuit includes a bolometer resistor 13 and converts the temperature that changes when the upper part of the bridge absorbs infrared rays into a resistance change of the bolometer, and the wiring 8 arranged on the substrate from the electrodes at both ends of the bolometer via supporting legs of the bridge structure. To detect the signal. In this type of infrared detector, the thermal insulation of the detection circuit is important, and the surroundings of the bridge 11 including the gap 21 are in a vacuum state. It should be noted that this bolometer type light receiving unit is an example of the present invention, and it is obvious that the present invention can also obtain the same effect in a thermopile type or pyroelectric type light receiving unit where thermal insulation is important. .

【0013】人体や常温物体からの赤外線の放射は、波
長10μm近傍にピークを持つことから、赤外線の受光
窓4は、10μmの赤外線を透過することができるゲル
マニウム、シリコン、硫化亜鉛、セレン化亜鉛等のどの
材料も使うことができる。なかでもシリコンは、赤外線
透過材料の中で比較的安価に入手できるため低コストが
実現できることと、接着を行う基板と同一の材料である
ため、熱膨張のミスマッチもなく、受光窓の接着が信頼
性の高いものとなる。
Since infrared radiation from a human body or a room temperature object has a peak near a wavelength of 10 μm, the infrared receiving window 4 can pass 10 μm infrared rays, germanium, silicon, zinc sulfide, zinc selenide. Any material such as can be used. Among them, silicon can be obtained at a relatively low cost among infrared ray transmissive materials, so low cost can be realized, and since it is the same material as the substrate to be bonded, there is no mismatch in thermal expansion and the bonding of the light receiving window is reliable. It will be highly responsive.

【0014】ただしシリコンは、受光窓の厚さをあまり
薄くすると、受光窓と接着を行う基板との間の真空の空
隙によって、受光窓の変形が大きくなるため好ましくな
い。実施の形態1ではシリコン受光窓4のサイズを20
×20mmとし、厚さを変えていくと、厚さ0.1mm
の窓の中心部の最大変形量は約0.1mmであるが、こ
れより薄くすると変形量は急激に大きくなる。したがっ
て、シリコン受光窓4の厚さの下限は0.1mm以上に
することが望ましい。また、シリコンは波長10μm近
傍で若干の吸収を有するため、あまり厚くすることは好
ましくない。実施の形態1による両面を研磨したシリコ
ン受光窓4では、厚さ1.5mmで波長8〜12μmの
平均吸収率が9.7%となった。赤外線透過率の減少に
よる感度の劣化を防止するには、8〜12μmの波長帯
で平均の吸収率を10%以下にすることが望ましく、し
たがって、シリコン受光窓4の厚さの上限を1.5mm
とすることが好ましい。
However, if the thickness of the light receiving window is too thin, silicon is not preferable because deformation of the light receiving window becomes large due to a vacuum gap between the light receiving window and the substrate to be bonded. In the first embodiment, the size of the silicon light receiving window 4 is set to 20.
× 20mm, and changing the thickness, the thickness 0.1mm
The maximum amount of deformation at the center of the window is about 0.1 mm, but when it is thinner, the amount of deformation sharply increases. Therefore, the lower limit of the thickness of the silicon light receiving window 4 is preferably 0.1 mm or more. Further, since silicon has some absorption in the vicinity of the wavelength of 10 μm, it is not preferable to make it too thick. In the silicon light receiving window 4 having both surfaces polished according to the first embodiment, the average absorption rate at a wavelength of 8 to 12 μm at a thickness of 1.5 mm was 9.7%. In order to prevent deterioration of sensitivity due to a decrease in infrared transmittance, it is desirable that the average absorptance is 10% or less in the wavelength band of 8 to 12 μm. Therefore, the upper limit of the thickness of the silicon light receiving window 4 is 1. 5 mm
It is preferable that

【0015】一方、シリコンを赤外線受光窓4としてそ
のまま使用すると、シリコンは高屈折率特性を有する材
料であることから反射ロスが大きく、検出器に高い感度
を求める場合には好ましくない。実施の形態1では、シ
リコンの両面に、硫化亜鉛を、厚さ1.1μm真空蒸着
法によってコーティングを行い、反射防止膜とした。こ
れにより、図6に示したように厚さ1mmのシリコン製
の受光窓において、波長10μmでの透過率が85%と
なった。
On the other hand, if silicon is used as it is as the infrared ray receiving window 4, since silicon is a material having a high refractive index characteristic, reflection loss is large, which is not preferable when a detector is required to have high sensitivity. In the first embodiment, both surfaces of silicon are coated with zinc sulfide by a vacuum vapor deposition method having a thickness of 1.1 μm to form an antireflection film. As a result, in the silicon light receiving window having a thickness of 1 mm as shown in FIG. 6, the transmittance at a wavelength of 10 μm was 85%.

【0016】赤外線受光窓4のシリコン基板への接着に
は、ハンダ、ガラスフリット、または熱圧着などがある
が、ガラスフリットは一般に処理温度が高く、受光素子
の耐熱温度以下で気密の接着を行うことは難しい。また
熱圧着は、受光窓を接着する接着部が、配線7をまたい
だときにわずかに発生する基板表面の段差により、真空
気密を行うことが難かしい。一方ハンダによる接着は、
メモリーやロジックなどのシリコン素子の実装工程にお
いて実績があり、接着温度が素子の耐熱温度以下で接着
できることはいうまでもない。実施の形態1について行
ったハンダによる接着は、図1で示したように接着箇所
で厚みのあるバンプ構造をとるため、ハンダのみで受光
窓4とシリコン基板1との間の空隙3に対し十分な高さ
を取ることができるだけでなく、基板上の配線による段
差を吸収することができた。受光窓4とシリコン基板1
のハンダの密着部6には、ハンダの濡れ性をよくするた
めに、下地側からタングステン3000Å、ニッケル3
000Å、金1000Åの3層をスパッタ装置によって
この順にメタライズした。ハンダは鉛−スズ系のものを
用い、当初水素雰囲気中350℃で熱処理してハンダの
酸化を除去(還元)し、その後1×10-2torr以下
の真空状態で350℃の温度で接着を行った。なお、シ
リコン基板側では、配線上をハンダの接着部6がまたぐ
ときの損傷を防止するため、ハンダの接着部6にはあら
かじめ7000Åの厚みの酸化シリコンを保護膜として
被覆した。
The infrared light receiving window 4 may be bonded to the silicon substrate by soldering, glass frit, thermocompression bonding or the like. However, glass frit generally has a high processing temperature, and airtight bonding is performed at a temperature lower than the heat resistant temperature of the light receiving element. It's difficult. Further, in thermocompression bonding, it is difficult to carry out vacuum airtightness due to a step difference on the substrate surface which is slightly generated when the adhesive portion for adhering the light receiving window crosses the wiring 7. On the other hand, bonding with solder is
Needless to say, there is a track record in the mounting process of silicon elements such as memories and logics, and the bonding temperature can be lower than the heat resistant temperature of the element. Since the solder bonding performed in the first embodiment has a bump structure with a thick bonding portion as shown in FIG. 1, only the solder is sufficient for the gap 3 between the light receiving window 4 and the silicon substrate 1. Not only was it possible to obtain a high height, but it was also possible to absorb the level difference due to the wiring on the substrate. Light receiving window 4 and silicon substrate 1
In order to improve the wettability of the solder, the contact portion 6 of the solder of
Three layers of 000Å and 1000 Å of gold were metallized in this order by a sputtering device. The solder used is a lead-tin type, which is initially heat-treated in a hydrogen atmosphere at 350 ° C to remove (reduce) the oxidation of the solder, and then adhere at a temperature of 350 ° C in a vacuum state of 1 × 10 -2 torr or less. went. On the silicon substrate side, in order to prevent damage when the solder bonding portion 6 crosses over the wiring, the solder bonding portion 6 was previously coated with silicon oxide having a thickness of 7,000 Å as a protective film.

【0017】素子受光部周囲の真空度は高い熱絶縁性を
得る上で重要である。真空度は、受光窓4とシリコン基
板1とを接着する際に用いた恒温層の、層内の真空計の
指示値によって検知した。実施の形態1での赤外線検出
器においては、図8に示したように、真空度を十分に上
げたときの相対感度を1として真空度と感度との相関を
みると、1×10-2torrまでは感度の大きな減少は
ないが、それより真空度が悪くなると急激に劣化した。
すなわち、真空度としては少なくとも1×10-2tor
r以下が望ましい。
The degree of vacuum around the light receiving portion of the device is important for obtaining high thermal insulation. The degree of vacuum was detected by the value indicated by a vacuum gauge in the constant temperature layer used when the light receiving window 4 and the silicon substrate 1 were bonded together. In the infrared detector according to the first embodiment, as shown in FIG. 8, when the relative sensitivity when the degree of vacuum is sufficiently increased is set to 1 and the correlation between the degree of vacuum and the sensitivity is observed, 1 × 10 −2. There was no significant decrease in sensitivity up to torr, but when the degree of vacuum was worse than that, it rapidly deteriorated.
That is, the degree of vacuum is at least 1 × 10 −2 torr.
r or less is desirable.

【0018】実施の形態2 図5は本発明における実施の形態2を示したものであ
る。実施の形態2は、受光窓14の形状を除いて実施の
形態1と同じであり、したがって同じ効果が期待でき
る。受光窓14は該受光窓の周囲の基板1との接着部を
凸にしたもので、この場合、受光窓14の加工コストは
上昇するが、受光窓4とシリコン基板1との間隔が十分
に取れるため、受光部に高さがあるものでも本発明が使
用できる。また、空隙3を得るためにハンダバンプの厚
みを必要としないので、ハンダの密着面積を小さくする
ことができるなどの利点を有する。
Second Embodiment FIG. 5 shows a second embodiment of the present invention. The second embodiment is the same as the first embodiment except the shape of the light receiving window 14, and therefore the same effect can be expected. The light receiving window 14 is formed by making the bonding portion around the light receiving window with the substrate 1 convex. In this case, although the processing cost of the light receiving window 14 increases, the distance between the light receiving window 4 and the silicon substrate 1 is sufficient. Therefore, the present invention can be used even if the light receiving portion has a height. Further, since the thickness of the solder bump is not necessary to obtain the void 3, there is an advantage that the contact area of the solder can be reduced.

【0019】[0019]

【発明の効果】本発明による赤外線検出器によれば、シ
リコン基板上に受光部を形成したボロメータ方式、サー
モパイル方式、および焦電方式の赤外線検出器におい
て、赤外線受光窓を、該受光部の前面に空隙を有して配
置し、該受光窓は該受光部を完全に囲む接着面で、該受
光部を形成した該基板に気密に接着することにより固定
し、かつ該空隙の内部を真空としたので、小型で低コス
トの赤外線検出器が得られる効果がある。
According to the infrared detector of the present invention, in the bolometer type, thermopile type and pyroelectric type infrared detectors in which the light receiving portion is formed on the silicon substrate, the infrared receiving window is provided in front of the light receiving portion. The light receiving window is an adhesive surface that completely surrounds the light receiving portion, and is fixed by air-tightly adhering to the substrate on which the light receiving portion is formed, and the inside of the air gap is vacuumed. Therefore, there is an effect that a small-sized and low-cost infrared detector can be obtained.

【0020】また、前記赤外線受光窓が、厚さ0.1m
mから1.5mmの範囲で、両面を研磨したシリコンと
した場合、低コストで、信頼性の高い赤外線検出器が得
られる効果がある。
The infrared receiving window has a thickness of 0.1 m.
When silicon is polished on both sides in the range of m to 1.5 mm, there is an effect that a low-cost and highly reliable infrared detector can be obtained.

【0021】また、前記赤外線受光窓が、厚さ0.1m
mから1.5mmの範囲で両面を研磨し、かつ両面に反
射防止膜をコーティングしたシリコンとした場合、感度
に優れた高性能の赤外線検出器が得られる効果がある。
The infrared receiving window has a thickness of 0.1 m.
When both surfaces are polished in the range of m to 1.5 mm and both surfaces are coated with an antireflection film, a high-performance infrared detector having excellent sensitivity can be obtained.

【0022】また、前記赤外線受光窓が、受光部を形成
した前記基板に、ハンダによって気密に接着される場
合、信頼性の高い赤外線検出器が得られる効果がある。
Further, when the infrared receiving window is airtightly adhered to the substrate on which the light receiving portion is formed by solder, there is an effect that a highly reliable infrared detector can be obtained.

【0023】また、前記赤外線検出器において、前記受
光窓と受光部を形成した前記基板との間の空隙の真空度
が、10-2torr以下とする場合、感度に優れた赤外
線検出器が得られる効果がある。
In the infrared detector, when the vacuum degree of the gap between the light receiving window and the substrate on which the light receiving portion is formed is 10 -2 torr or less, an infrared detector having excellent sensitivity can be obtained. It is effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の赤外線検出器の実施の形態1の構造を
示す断面説明図である。
FIG. 1 is a sectional explanatory view showing a structure of an infrared detector according to a first embodiment of the present invention.

【図2】本発明の赤外線検出器の実施の形態1を上部
(赤外線受光窓)から見た説明図である。
FIG. 2 is an explanatory diagram of the first embodiment of the infrared detector of the present invention viewed from above (infrared receiving window).

【図3】本発明の実施の形態1に用いた受光部の断面説
明図である。
FIG. 3 is a cross-sectional explanatory diagram of a light receiving portion used in the first embodiment of the present invention.

【図4】本発明の受光部の基板上での配列状態を示す断
面説明図である。
FIG. 4 is an explanatory cross-sectional view showing an arrangement state of light receiving portions of the present invention on a substrate.

【図5】本発明の赤外線検出器の実施の形態2における
他の形状の赤外線受光窓を用いた赤外線検出器の断面説
明図である。
FIG. 5 is a cross-sectional explanatory view of an infrared detector using an infrared receiving window having another shape according to the second embodiment of the infrared detector of the present invention.

【図6】本発明の実施の形態1に用いた反射防止膜を施
した赤外線透過窓の透過率を示す図である。
FIG. 6 is a diagram showing the transmittance of an infrared transmitting window provided with an antireflection film used in the first embodiment of the present invention.

【図7】従来例を示す断面説明図である。FIG. 7 is an explanatory sectional view showing a conventional example.

【図8】真空度と感度との相関を示す図である。FIG. 8 is a diagram showing a correlation between vacuum degree and sensitivity.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 受光部 3 空隙 4 受光窓 5 ハンダ 6 接着面 7 メタライズ層 8 配線 9 酸化シリコン保護膜 10 パッド 11 ブリッジ 12 反射防止膜 13 ボロメータ 14 他の受光窓 15 ステム 16 キャップ 17 排気管 18 ワイヤボンド 19 信号ピン 20 赤外線検出素子 21 ギャップ DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Light receiving part 3 Air gap 4 Light receiving window 5 Solder 6 Adhesive surface 7 Metallization layer 8 Wiring 9 Silicon oxide protective film 10 Pad 11 Bridge 12 Antireflection film 13 Bolometer 14 Other light receiving window 15 Stem 16 Cap 17 Exhaust pipe 18 Wire Bond 19 Signal pin 20 Infrared detector 21 Gap

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に受光部を形成したボロ
メータ方式、サーモパイル方式、および焦電方式の赤外
線検出器において、赤外線受光窓を、上記受光部の前面
に空隙を有して配置し、上記受光窓は、上記受光部を完
全に囲む接着面で、上記受光部を形成した基板に気密に
接着することにより固定し、かつ上記空隙を真空とする
ことを特徴とする赤外線検出器。
1. In a bolometer-type, thermopile-type, and pyroelectric-type infrared detector in which a light receiving portion is formed on a silicon substrate, an infrared light receiving window is arranged with a gap in front of the light receiving portion, and An infrared detector characterized in that the light receiving window is an adhesive surface that completely surrounds the light receiving portion, is fixed by air-tightly adhering to the substrate on which the light receiving portion is formed, and the air gap is evacuated.
【請求項2】 受光部の前面に空隙を有して配置される
赤外線受光窓が、厚さ0.1mmから1.5mmの範囲
で、両面を研磨したシリコンであることを特徴とする請
求項1記載の赤外線検出器。
2. The infrared light receiving window arranged with a gap on the front surface of the light receiving portion is silicon whose both surfaces are polished in a thickness range of 0.1 mm to 1.5 mm. 1. The infrared detector according to 1.
【請求項3】 受光部の前面に空隙を有して配置される
赤外線受光窓が、厚さ0.1mmから1.5mmの範囲
で、両面を研磨し、かつ両面に反射防止膜を施したシリ
コンであることを特徴とする請求項1記載の赤外線検出
器。
3. An infrared light receiving window arranged with a gap on the front surface of the light receiving portion has a thickness in the range of 0.1 mm to 1.5 mm, both sides of which are polished and an antireflection film is applied to both sides. The infrared detector according to claim 1, which is made of silicon.
【請求項4】 受光部の前面に空隙を有して配置される
赤外線受光窓が、上記受光部を形成したシリコン基板
に、ハンダによって気密に接着されることを特徴とする
請求項1記載の赤外線検出器。
4. The infrared light receiving window, which is arranged with a gap on the front surface of the light receiving portion, is airtightly adhered to the silicon substrate on which the light receiving portion is formed by soldering. Infrared detector.
【請求項5】 赤外線受光窓と受光部との間の空隙の真
空度が、1×10-2torr以下であることを特徴とす
る請求項1記載の赤外線検出器。
5. The infrared detector according to claim 1, wherein the degree of vacuum of the gap between the infrared light receiving window and the light receiving portion is 1 × 10 −2 torr or less.
JP8047403A 1996-03-05 1996-03-05 Infrared ray detector Pending JPH09243449A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8047403A JPH09243449A (en) 1996-03-05 1996-03-05 Infrared ray detector
US08/811,166 US5914488A (en) 1996-03-05 1997-03-04 Infrared detector
GB9704483A GB2310952B (en) 1996-03-05 1997-03-04 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8047403A JPH09243449A (en) 1996-03-05 1996-03-05 Infrared ray detector

Publications (1)

Publication Number Publication Date
JPH09243449A true JPH09243449A (en) 1997-09-19

Family

ID=12774161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8047403A Pending JPH09243449A (en) 1996-03-05 1996-03-05 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPH09243449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274460A (en) * 1998-03-23 1999-10-08 Sharp Corp Two-dimensional image detector
JP2005503659A (en) * 2001-09-17 2005-02-03 スタフォード,ジョン Micro Magnetic Latch Relay Package and Packaging Method
JP2011176297A (en) * 2010-01-27 2011-09-08 Ricoh Co Ltd Imaging module, method of manufacturing the same, and imaging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274460A (en) * 1998-03-23 1999-10-08 Sharp Corp Two-dimensional image detector
JP2005503659A (en) * 2001-09-17 2005-02-03 スタフォード,ジョン Micro Magnetic Latch Relay Package and Packaging Method
JP2011176297A (en) * 2010-01-27 2011-09-08 Ricoh Co Ltd Imaging module, method of manufacturing the same, and imaging device

Similar Documents

Publication Publication Date Title
JPH11326037A (en) Vacuum package for infrared detector and its manufacture
US5914488A (en) Infrared detector
JP2005241457A (en) Infrared sensor, and manufacturing method therefor
WO2011129307A1 (en) Method for manufacturing infrared sensor
JP2003106895A (en) Thermal infrared detecting element and method of manufacturing the same
JP2021009152A (en) Thermal infrared sensor array in wafer level package
US20160097681A1 (en) Microbolometer supported by glass substrate
US8513606B2 (en) THz wave detector
JP3097591B2 (en) Thermal infrared detector
JP2000298063A (en) Infrared ray detector
JP2006194791A (en) Infrared sensor device
JP2011220938A (en) Infrared-ray sensor manufacturing method
US6528857B1 (en) Chip size image sensor bumped package
US6509560B1 (en) Chip size image sensor in wirebond package with step-up ring for electrical contact
JP2001174323A (en) Infrared ray detecting device
JPH09329499A (en) Infrared sensor and infrared detector
KR20190118837A (en) Infrared detection sensor module
JPH09113352A (en) Infrared sensor with micro lens and its manufacture
JP2001174324A (en) Infrared ray detector and infrared ray detecting device
JPH09243449A (en) Infrared ray detector
JP2011174763A (en) Infrared detector
JP5558189B2 (en) Infrared sensor and manufacturing method thereof
JPH10115556A (en) Infrared detector
JPH06194229A (en) Infrared ray sensor
US6629633B1 (en) Chip size image sensor bumped package fabrication method