JPS6110070A - Manufacture of silicon nitride base ceramics - Google Patents
Manufacture of silicon nitride base ceramicsInfo
- Publication number
- JPS6110070A JPS6110070A JP59130282A JP13028284A JPS6110070A JP S6110070 A JPS6110070 A JP S6110070A JP 59130282 A JP59130282 A JP 59130282A JP 13028284 A JP13028284 A JP 13028284A JP S6110070 A JPS6110070 A JP S6110070A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- silicon
- ceramics
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(発明の利用分野)
本発明は窒化珪素系セラミックスの製造方法に関し、さ
らに詳しくは緻密質で、かつ強度等の特性にも優れた緻
密質の窒化珪素系セラミックスの製造方法に関する。[Detailed Description of the Invention] (Field of Application of the Invention) The present invention relates to a method for producing silicon nitride ceramics, and more specifically to a method for producing dense silicon nitride ceramics that are dense and have excellent properties such as strength. Regarding the method.
(発明の背景)
窒化珪素(Si3N4)セラミックスは、耐熱性、耐摩
耗性等に優れているため、ガスタービン、メカニカルシ
ール、バーナチップ等に多用されている。(Background of the Invention) Silicon nitride (Si3N4) ceramics have excellent heat resistance, wear resistance, etc., and are therefore widely used in gas turbines, mechanical seals, burner tips, and the like.
従来、この窒化珪素セラミックスの焼結法としては、ホ
ットプレス法、常圧焼結法および反応焼粘性が知られて
いる。Hitherto, known methods for sintering silicon nitride ceramics include hot pressing, pressureless sintering, and reactive sintering.
ホットプレス法は窒化珪素粉末からなる成形体を、17
00〜1800℃、200〜300kg/−という高温
高圧下で焼成するため、比較的少量の焼結助剤で緻密化
することができ、強度、耐食性に優れた焼結体が得られ
るが、成形体の大きさに制約があり、また単純な形状の
ものしか焼結できないという問題がある。In the hot press method, a molded body made of silicon nitride powder is
Because it is fired at a high temperature and pressure of 00 to 1800℃ and 200 to 300 kg/-, it can be densified with a relatively small amount of sintering aid, and a sintered body with excellent strength and corrosion resistance can be obtained. There are restrictions on the size of the body, and there are also problems in that only simple shapes can be sintered.
常圧焼結法は、窒化珪素粉末からなる成形体を、常圧下
、1700〜1800℃で焼成する方法であり、比較的
高強度の焼結体が得られるが、Y2O3、MgO,Aβ
203等の焼結助剤を多量に含むため、焼結時の収縮が
大きく、また高温域で強度低下が起こるという問題があ
る。The pressureless sintering method is a method in which a molded body made of silicon nitride powder is fired at 1700 to 1800°C under normal pressure, and a relatively high-strength sintered body can be obtained, but Y2O3, MgO, Aβ
Since it contains a large amount of sintering aid such as 203, there are problems in that it shrinks greatly during sintering and also suffers from a decrease in strength at high temperatures.
また反応焼結法は、珪素粉末からなる成形体を窒素雰囲
気中で焼成し、窒化反応により窒化珪素セラミックスと
する方法で、焼結時の収縮がほとんどなく、複雑な形状
のものでも焼結でき、また焼結助剤を必要としないため
、高温での強度低下がほとんどなく、さらに焼成温度が
1300〜1400℃と、他の製法に比して低温であり
、製造コストを低くすることができるという利点を有し
ている。In addition, the reaction sintering method is a method in which a compact made of silicon powder is fired in a nitrogen atmosphere and made into silicon nitride ceramics through a nitriding reaction.There is almost no shrinkage during sintering, and even complex shapes can be sintered. Also, since it does not require a sintering aid, there is almost no strength loss at high temperatures, and the firing temperature is 1300-1400°C, which is lower than other manufacturing methods, making it possible to reduce manufacturing costs. It has the advantage of
しかしながら、反応焼結法では、珪素粉末を出発原料と
するため、完全に緻密な焼結体を得ることが実質上不可
能である。すなわち、珪素成形体を全て窒化した場合に
は、窒化珪素セラミックスの密度は、珪素成形体の密度
の1.67倍になるが、緻密な窒化珪素セラミックス(
密度:3.18g/aJ)を得るためには、出発珪素成
形体の密度は、珪素の真密度の82%であることが必要
である。However, since the reactive sintering method uses silicon powder as a starting material, it is virtually impossible to obtain a completely dense sintered body. In other words, if the silicon molded body is completely nitrided, the density of the silicon nitride ceramic will be 1.67 times that of the silicon molded body, but the density of the silicon nitride ceramic (
In order to obtain a density of 3.18 g/aJ), the density of the starting silicon molded body needs to be 82% of the true density of silicon.
しかしながら、粉末を原料とする以上このような高い密
度の成形体を作ることば通寓では不可能に近い。このた
め反応焼結法窒化珪素セラミックスの気孔率は、通常2
0〜30%と比較的高くなってしまい、結果的に多孔質
セラミックスしか得られない。従って従来のホットプレ
ス法および常圧焼結法による焼結体に比較して著しく強
度が低く、実用性の点で大きな問題がある。However, as long as powder is used as a raw material, it is almost impossible to create a compact with such high density. For this reason, the porosity of reactive sintered silicon nitride ceramics is usually 2.
The content is relatively high at 0 to 30%, and as a result, only porous ceramics can be obtained. Therefore, the strength is significantly lower than that of sintered bodies produced by the conventional hot pressing method and pressureless sintering method, and there is a big problem in terms of practicality.
(発明の目的)
本発明の目的は、前記従来技術の欠点を除去し、反応焼
結法の特性を生かしながら、緻密質で、かつ強度等の特
性にも優れた窒化珪素系セラミックスを製造する方法を
提供することにある。(Objective of the Invention) The object of the present invention is to eliminate the drawbacks of the prior art described above and to manufacture silicon nitride-based ceramics that are dense and have excellent properties such as strength while taking advantage of the characteristics of the reaction sintering method. The purpose is to provide a method.
(発明の概要)
本発明者らは、上記目的達成のため、種々研究した結果
、窒化珪素(Si3N4)反応焼結体中の気孔を、珪素
−炭素(Si−C)結合を有する有機珪素化合物または
該化合物の非晶質熱分解反応生成物の溶液で充填し、こ
れを有機珪素化合物または非晶質熱分解生成物が炭化珪
素に結晶化する温度域に加熱することにより、窒化珪素
セラミックス中の気孔を埋め、緻密質にすることができ
ることを見出し、本発明に到達した。(Summary of the Invention) In order to achieve the above object, the present inventors have conducted various studies and found that pores in a silicon nitride (Si3N4) reaction sintered body can be filled with an organic silicon compound having a silicon-carbon (Si-C) bond. Or, by filling the solution with a solution of the amorphous pyrolysis reaction product of the compound and heating it to a temperature range in which the organosilicon compound or the amorphous pyrolysis product crystallizes into silicon carbide, silicon nitride ceramics can be formed. The present invention was achieved by discovering that it is possible to fill the pores and make the material dense.
本発明の緻密質窒化珪素系セラミックスの製造方法は、
珪素粉末からなる成形体を窒素雰囲気中で加熱し、窒化
反応を起こさせて多孔質の窒化珪素焼結体する工程、該
窒化珪素焼結体に珪素−炭素結合を有する有機珪素化合
物を含浸または充填する工程、次いでこれを真空または
不活性雰囲気下に該有機珪素化合物の少なくとも一部が
炭化珪素に転換される温度域に再加熱する工程を含むこ
とを特徴とする。The method for producing dense silicon nitride ceramics of the present invention includes:
A step of heating a molded body made of silicon powder in a nitrogen atmosphere to cause a nitriding reaction to produce a porous silicon nitride sintered body, impregnating the silicon nitride sintered body with an organosilicon compound having a silicon-carbon bond, or It is characterized by comprising a step of filling, and then a step of reheating it under vacuum or an inert atmosphere to a temperature range at which at least a portion of the organosilicon compound is converted to silicon carbide.
本発明方法を実施するに際しては、先ず珪素粉末からな
る成形体を、窒素雰囲気下に加熱、焼成して、窒化反応
により多孔質窒化珪素焼結体を得る。When carrying out the method of the present invention, first, a molded body made of silicon powder is heated and fired in a nitrogen atmosphere to obtain a porous silicon nitride sintered body through a nitriding reaction.
次いで得られる窒化珪素焼結体に、珪素−炭素結合を有
する有機珪素化合物の溶液を含浸充填させる。Next, the obtained silicon nitride sintered body is impregnated and filled with a solution of an organosilicon compound having a silicon-carbon bond.
この際用いられる珪素−炭素結合を有する有機珪素化合
物は、七ツマー型でもポリマー型でもよく、例えばヘキ
サメチルジシロキサン、ベンクメチルジシロキサン、オ
ルガノポリシロキサン類等が挙げられる。The organosilicon compound having a silicon-carbon bond used in this case may be either a hexamer type or a polymer type, and examples thereof include hexamethyldisiloxane, benqmethyldisiloxane, organopolysiloxanes, and the like.
上記のように含浸処理した焼結体を、真空または不活性
雰囲気(例えば窒素、アルゴン等)下に、前記有機珪素
化合物の一部または全部が熱分解および結晶化して炭化
珪素に転換される温度域に加熱して再焼成することによ
り、本発明の緻密質窒化珪素系セラミックスが得られる
。The sintered body impregnated as described above is placed in a vacuum or in an inert atmosphere (e.g. nitrogen, argon, etc.) at a temperature at which part or all of the organosilicon compound is thermally decomposed and crystallized and converted into silicon carbide. The dense silicon nitride-based ceramic of the present invention can be obtained by heating to a certain temperature and re-firing.
上記再焼結温度は、炭化珪素の結晶化を考慮すれば、8
00〜1500℃が好ましい。含浸処理回数は、使用す
る有機珪素化合物の揮発成分の量等により変化し得るが
、通常は1〜10回程度でよい。The above resintering temperature is 8
00 to 1500°C is preferable. The number of times of impregnation treatment may vary depending on the amount of volatile components of the organosilicon compound used, etc., but it is usually about 1 to 10 times.
本発明方法においては、前記窒化珪素焼結体に、前記有
機珪素化合物を熱分解して得られる非晶質熱分解反応生
成物の溶液を含浸充填してもよい。In the method of the present invention, the silicon nitride sintered body may be impregnated and filled with a solution of an amorphous thermal decomposition reaction product obtained by thermally decomposing the organic silicon compound.
該非晶質熱分解反応生成物は、前記有機珪素化合物を、
予め真空または不活性雰囲気下に、非晶質の熱分解反応
生成物が生成する温度域に加熱して得られる。非晶質熱
分解反応生成物の溶液を含浸充填させた焼結体は、前記
のように非晶質熱分解反応生成物が結晶化して炭化珪素
に転換される温度域に加熱して再焼成することにより、
本発明の窒化珪素系セラミックスとされる。The amorphous pyrolysis reaction product comprises the organosilicon compound,
It is obtained by heating in advance in a vacuum or inert atmosphere to a temperature range in which an amorphous thermal decomposition reaction product is produced. The sintered body impregnated with a solution of the amorphous pyrolysis reaction product is heated to a temperature range in which the amorphous pyrolysis reaction product is crystallized and converted into silicon carbide, and then re-sintered. By doing so,
This is the silicon nitride ceramic of the present invention.
また本発明方法においては、珪素粉末からなる成形体の
窒化工程、熱分解・充填工程、および結晶化工程は同時
に行なってもよい。例えば前記有機珪素化合物の非晶質
熱分解反応生成物への転換と、該非晶質熱分解反応生成
物の多孔質窒化珪素焼結体への含浸充填とを多孔質窒化
珪素焼結体の存在下で行ない、熱分解反応温度下でこれ
らの工程を同時に行なうこともできる。熱分解および非
晶質熱分解反応生成物を気孔に充填するときの焼成炉内
の保持温度は、有機珪素化合物の熱分解温度に応じて選
択されるが、一般には300〜800℃が好ましい。Further, in the method of the present invention, the nitriding step, the thermal decomposition/filling step, and the crystallization step of the molded body made of silicon powder may be performed simultaneously. For example, converting the organosilicon compound into an amorphous pyrolysis reaction product and impregnating and filling the amorphous pyrolysis reaction product into a porous silicon nitride sintered body in the presence of the porous silicon nitride sintered body. It is also possible to carry out these steps simultaneously under the pyrolysis reaction temperature. The holding temperature in the firing furnace when filling the pores with the thermal decomposition and amorphous thermal decomposition reaction products is selected depending on the thermal decomposition temperature of the organosilicon compound, but is generally preferably 300 to 800°C.
(発明の効果)
本発明方法によれば、気孔率が高いという問題点を有す
る反応焼結法の窒化珪素(Si3N4)の気孔を炭化珪
素成分で充填し、結合させることにより、気孔率の小さ
い緻密質の窒化珪素系セラミックスを簡単な方法で得る
ことができる。また高緻密化されることにより、高度な
技術が必要とされるホントプレス法、助剤焼結法に近い
強度特性を有するセラミックスが得られ、しがも気孔中
に炭化珪素が充填し、結合するため、従来の窒化珪素反
応焼結体に比して、耐摩耗性等の優れたセラミックスが
得られる。(Effects of the Invention) According to the method of the present invention, the pores of silicon nitride (Si3N4) produced by the reaction sintering method, which has the problem of high porosity, are filled with a silicon carbide component and bonded, thereby achieving a low porosity. Dense silicon nitride ceramics can be obtained by a simple method. In addition, by increasing the densification, it is possible to obtain ceramics with strength characteristics similar to those of the Honto Press method and the auxiliary sintering method, which require advanced technology. Therefore, ceramics with superior wear resistance etc. can be obtained compared to conventional silicon nitride reaction sintered bodies.
(発明の実施例)
実施例1
200メソシユの珪素粉末50gに、結合剤としての5
%ピリビニルアルコール水溶液5 m A+を加え、自
動乳鉢で約1時間混合後、得られた混合物を32メツシ
ユふるいで整粒した。次いで整粒粉末約2gを16φの
金型に入れ、1,000kg/−の荷重でプレス成形を
行ない、密度1.69g/dの、珪素粉末からなる成形
体を得た。この成形体を窒素雰囲気下に、1350 ’
Cで8時間焼成して、窒化反応による窒化珪素焼結体を
得た。この際の窒化率は約75%で、寸法変化はなく、
また焼結体の密度は2.35 g /L:11.気孔率
は26%であった。(Embodiments of the Invention) Example 1 50 g of 200 mesoyu silicon powder was added with 50 g as a binder.
% pyrivinyl alcohol aqueous solution (5 m A+) was added, and after mixing in an automatic mortar for about 1 hour, the resulting mixture was sized using a 32-mesh sieve. Next, about 2 g of the sized powder was put into a 16φ mold and press molded under a load of 1,000 kg/- to obtain a molded body made of silicon powder with a density of 1.69 g/d. This molded body was placed in a nitrogen atmosphere for 1350'
C. for 8 hours to obtain a silicon nitride sintered body through a nitriding reaction. The nitriding rate at this time was approximately 75%, and there was no dimensional change.
The density of the sintered body is 2.35 g/L: 11. The porosity was 26%.
次いで得られた窒化珪素焼結体を、ヘキサメチルジシロ
キサン溶液中に浸し、超音波洗浄器中で約3時間含浸処
理を行なった後、窒素雰囲気中、1000℃で2時間加
熱して再焼成した。Next, the obtained silicon nitride sintered body was immersed in a hexamethyldisiloxane solution, impregnated in an ultrasonic cleaner for about 3 hours, and then heated at 1000°C for 2 hours in a nitrogen atmosphere to re-fire. did.
この含浸−再焼成の工程を3回まで実施したときの焼結
体の密度、気孔率および硬度を第1表に示す。Table 1 shows the density, porosity, and hardness of the sintered bodies obtained by carrying out this impregnation-re-firing step up to three times.
第1表
第3図は含浸回数と気孔率の減少割合との関係を示すグ
ラフである。FIG. 3 of Table 1 is a graph showing the relationship between the number of impregnations and the rate of decrease in porosity.
上記の含浸−再焼成工程により、従来の反応焼結法では
得られなかった、緻密質の窒化珪素系セラミックスを得
ることができた。Through the above impregnation-re-firing process, dense silicon nitride ceramics, which could not be obtained by conventional reaction sintering methods, could be obtained.
実施例2
実施例1と同様にして得られた16φ×3tの珪素粉末
からなる成形体1を、第2図に示す装置に入れ、窒素雰
囲気下に1350℃で8時間焼成して、窒化反応を行な
い、引き続き焼成炉2の炉内温度を600℃に降温した
。一方予めヘキサメチルジシロキサン3を充填した気化
器4を恒温槽5により、ヘキサメチルジシロキサンの沸
点(99,7℃)以下の90℃に一定に保持しておいた
。Example 2 A molded body 1 made of silicon powder of 16φ x 3t obtained in the same manner as in Example 1 was placed in the apparatus shown in FIG. 2 and fired at 1350°C for 8 hours in a nitrogen atmosphere to undergo a nitriding reaction. After that, the temperature inside the firing furnace 2 was lowered to 600°C. On the other hand, a vaporizer 4 filled with hexamethyldisiloxane 3 in advance was maintained at a constant temperature of 90° C., which is below the boiling point of hexamethyldisiloxane (99.7° C.), by a constant temperature bath 5.
焼成炉2の炉内温度が600℃に降温した時点で三方コ
ツクロを開き、窒素ガスを、キャリアガスとして窒素ボ
ンベ7から、気化器4内へ導入して、ヘキサメチルジシ
ロキサン蒸気を焼成炉2内へ導入した。ヘキサメチルジ
シロキサン蒸気の熱分解は350℃近辺から始まるため
、焼成炉2内を600℃で4時間保持することにより、
熱分解および窒化珪素焼結体への熱分解反応生成物の充
填が行なわれた。When the temperature inside the firing furnace 2 has fallen to 600°C, the three-way door is opened, nitrogen gas is introduced from the nitrogen cylinder 7 as a carrier gas into the vaporizer 4, and hexamethyldisiloxane vapor is transferred to the firing furnace 2. introduced inside. Thermal decomposition of hexamethyldisiloxane vapor starts at around 350°C, so by maintaining the inside of the firing furnace 2 at 600°C for 4 hours,
Pyrolysis and filling of the pyrolysis reaction product into the silicon nitride sintered body was carried out.
次いで三方コツクロを切り替えて、焼成炉2内を窒素雰
囲気とした後、焼成炉2内の温渾を、1000℃まで昇
温して2時間保持し、窒化珪素焼結体の気孔中に存在す
る非晶質炭化珪素を結晶化させた。以上の工程のパター
ンを第1図に示す。Next, the three-way switch was switched to create a nitrogen atmosphere inside the firing furnace 2, and then the temperature inside the firing furnace 2 was raised to 1000°C and held for 2 hours, so that the nitrogen atmosphere present in the pores of the silicon nitride sintered body was Amorphous silicon carbide was crystallized. The pattern of the above steps is shown in FIG.
図中の破線部分は繰返し工程の場合を示す。The broken line portion in the figure shows the case of a repeated process.
上記の操作の結果、窒化珪素焼結体の気孔率は26%か
ら7%まで大幅に減少した。これは実施例1の有機珪素
化合物を含浸させる方法に比較して、熱分解生成物中に
揮発成分を含んでおらず、また粒子径も0.01〜0.
5μmと微細であるため(CVD法と同等の原理で)炭
化珪素成分を効率的に充填することができるためである
と考えられる。As a result of the above operation, the porosity of the silicon nitride sintered body was significantly reduced from 26% to 7%. Compared to the method of impregnating an organosilicon compound in Example 1, this method does not contain volatile components in the thermal decomposition product, and the particle size is 0.01 to 0.
This is thought to be because the silicon carbide component can be efficiently filled because it is as fine as 5 μm (using the same principle as the CVD method).
さらに本工程によれば、珪素粉末からなる成形体の窒化
工程と、熱分解・充填工程および結晶化工程が、一連の
連続した工程として実施されるため、処理時間を著した
短縮化できるという利点もある。Furthermore, according to this process, the nitriding process of the molded body made of silicon powder, the thermal decomposition/filling process, and the crystallization process are carried out as a series of continuous processes, which has the advantage that the processing time can be significantly shortened. There is also.
第1図は本発明の製造工程のパターン図、第2図は本発
明の実施例2の製造工程を行なうための装置の説明図、
第3図は本発明の実施例1における含浸回数と減少気孔
率との関係を示すグラフである。
l・・・珪素粉末からなる成形体、2・・・焼成炉、3
・・・ヘキサメチルジシロキサン、4・・・気化器、5
・・・恒温槽、6・・・三方コック、7・・・窒素ボン
ベ。
書矛励校(Iii7)FIG. 1 is a pattern diagram of the manufacturing process of the present invention, FIG. 2 is an explanatory diagram of an apparatus for carrying out the manufacturing process of Example 2 of the present invention,
FIG. 3 is a graph showing the relationship between the number of impregnations and the reduced porosity in Example 1 of the present invention. l... Molded body made of silicon powder, 2... Firing furnace, 3
...hexamethyldisiloxane, 4...vaporizer, 5
・・・Thermostat, 6... Three-way cock, 7... Nitrogen cylinder. Calligraphy School (Iiii7)
Claims (3)
し、窒化反応を起こさせて多孔質の窒化珪素焼結体する
工程、該窒化珪素焼結体に、珪素−炭素結合を有する有
機珪素化合物を含浸または充填する工程、次いでこれを
真空または不活性雰囲気下に該有機珪素化合物の少なく
とも一部が炭化珪素に転換される温度域に再加熱する工
程を含むことを特徴とする窒化珪素系セラミックスの製
造方法。(1) A step of heating a molded body made of silicon powder in a nitrogen atmosphere to cause a nitriding reaction to form a porous silicon nitride sintered body; A silicon nitride comprising the steps of impregnating or filling with a silicon compound, and then reheating it under vacuum or an inert atmosphere to a temperature range at which at least a portion of the organosilicon compound is converted to silicon carbide. A method for manufacturing ceramics.
性雰囲気下で、前記有機珪素化合物を非晶質の熱分解生
成物が生成される温度範囲に加熱して非晶質熱分解生成
物となし、該非晶質熱分解生成物を有機溶媒からなる溶
液に懸濁させ、上記の窒化反応による多孔質の窒化珪素
焼結体に浸入せしめ、その後前記の再加熱を行なうこと
を特徴とする窒化珪素系セラミックスの製造方法。(2) In claim 1, the organosilicon compound is heated in a vacuum or in an inert atmosphere to a temperature range in which an amorphous pyrolysis product is produced. The method is characterized in that the amorphous thermal decomposition product is suspended in a solution consisting of an organic solvent and allowed to penetrate into the porous silicon nitride sintered body produced by the above nitriding reaction, and then the above reheating is performed. A method for producing silicon nitride ceramics.
物の非晶質熱分解生成物への転換と、該非晶質熱分解生
成物の多孔質窒化珪素焼結体への浸入を、熱分解反応温
度域に保持された多孔質窒化珪素焼結体の存在下で行な
わせることを特徴とする窒化珪素系セラミックスの製造
方法。(3) In claim 2, the transformation of the organosilicon compound into an amorphous pyrolysis product and the infiltration of the amorphous pyrolysis product into a porous silicon nitride sintered body are described as 1. A method for producing silicon nitride ceramics, characterized in that the process is carried out in the presence of a porous silicon nitride sintered body maintained in a decomposition reaction temperature range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59130282A JPS6110070A (en) | 1984-06-25 | 1984-06-25 | Manufacture of silicon nitride base ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59130282A JPS6110070A (en) | 1984-06-25 | 1984-06-25 | Manufacture of silicon nitride base ceramics |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6110070A true JPS6110070A (en) | 1986-01-17 |
Family
ID=15030582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59130282A Pending JPS6110070A (en) | 1984-06-25 | 1984-06-25 | Manufacture of silicon nitride base ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6110070A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004315334A (en) * | 2003-04-21 | 2004-11-11 | Toto Ltd | Silicon nitride composite and method for manufacturing silicon nitride composite |
-
1984
- 1984-06-25 JP JP59130282A patent/JPS6110070A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004315334A (en) * | 2003-04-21 | 2004-11-11 | Toto Ltd | Silicon nitride composite and method for manufacturing silicon nitride composite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4354990A (en) | Process for sintering silicon nitride compacts | |
EP1761475B1 (en) | A process for the manufacturing of dense silicon carbide | |
JPS6256107B2 (en) | ||
US4541975A (en) | Method for producing high strength sintered silicon carbide | |
US5925405A (en) | Method of manufacturing ceramic, metallic or ceramo-metallic, shaped bodies and layers | |
US4209478A (en) | Method of sintering ceramics | |
US4564601A (en) | Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process | |
JPH01305869A (en) | Fiber structure composite ceramic material and production thereof | |
JPS6138149B2 (en) | ||
EP0368535A3 (en) | Highly densified bodies from preceramic polysilazanes filled with silicon carbide powders | |
US5447893A (en) | Preparation of high density titanium carbide ceramics with preceramic polymer binders | |
JPS63288974A (en) | Production of fiber reinforced ceramics | |
US5928583A (en) | Process for making ceramic bodies having a graded porosity | |
JPS6110070A (en) | Manufacture of silicon nitride base ceramics | |
JPS6213310B2 (en) | ||
JP2631115B2 (en) | Manufacturing method of silicon nitride sintered body | |
JPH03265573A (en) | High-strength ceramics and production thereof | |
CN109020595A (en) | A kind of preparation method and applications of aluminium carbon ceramic composite material | |
JPH025711B2 (en) | ||
JPH03109269A (en) | Sialon-based ceramics composite material reinforced with carbon fiber | |
JPS60186473A (en) | Silicon nitride sintered body and manufacture | |
JPS5941954B2 (en) | Manufacturing method of high-density ceramic sintered body | |
JPS6144767A (en) | Manufacture of high density silicon nitride reaction sintered body | |
JPH07126070A (en) | Production of silicon carbide sintered material | |
JP2543353B2 (en) | Method for producing silicon nitride based sintered body |