JPS61100236A - Correlation detection type ultrasonic blood stream meter - Google Patents

Correlation detection type ultrasonic blood stream meter

Info

Publication number
JPS61100236A
JPS61100236A JP59210800A JP21080084A JPS61100236A JP S61100236 A JPS61100236 A JP S61100236A JP 59210800 A JP59210800 A JP 59210800A JP 21080084 A JP21080084 A JP 21080084A JP S61100236 A JPS61100236 A JP S61100236A
Authority
JP
Japan
Prior art keywords
circuit
sample
output
detection type
type ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59210800A
Other languages
Japanese (ja)
Other versions
JPH0318458B2 (en
Inventor
雨宮 填一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59210800A priority Critical patent/JPS61100236A/en
Priority to US06/782,921 priority patent/US4693319A/en
Priority to DE8585112767T priority patent/DE3585766D1/en
Priority to EP85112767A priority patent/EP0177942B1/en
Publication of JPS61100236A publication Critical patent/JPS61100236A/en
Publication of JPH0318458B2 publication Critical patent/JPH0318458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Acoustics & Sound (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レンジ・ゲート回路を用いることによりサン
プル・ボリュームを実質的に超音波ビーム方向に長くし
た相関検出型超音波血流計に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a correlation detection type ultrasonic blood flow meter in which the sample volume is substantially elongated in the ultrasonic beam direction by using a range gate circuit. It is.

〔従来技術と問題点〕[Prior art and problems]

第3図は従来の超音波パルス流速計(特開昭58−71
464号公報参照)を示す図でって、11はコントロー
ル回路、12は超音波ドライブ回路、13はトランスデ
ユーサ、14はスイッチ、15は増幅器、16と17は
遅延回路、18と19は加算器、20と21は受信増幅
器、22は第1振幅値サンプル・ホールド回路、23を
第2振幅値サンプル・ホールド回路、24は相互相関ピ
ーク時間差検出回路、25は速度算出回路、31は超音
波パルスドプラ流速計、32はベクトル算出回路をそれ
ぞれ示している。
Figure 3 shows a conventional ultrasonic pulse current meter (Japanese Patent Application Laid-Open No. 58-71
11 is a control circuit, 12 is an ultrasonic drive circuit, 13 is a transducer, 14 is a switch, 15 is an amplifier, 16 and 17 are delay circuits, and 18 and 19 are adders. 20 and 21 are receiving amplifiers, 22 is a first amplitude value sample/hold circuit, 23 is a second amplitude value sample/hold circuit, 24 is a cross-correlation peak time difference detection circuit, 25 is a speed calculation circuit, 31 is an ultrasonic wave A pulse Doppler current meter, 32 indicates a vector calculation circuit, respectively.

コントロール回路11から送られて来たスタート信号に
より超音波ドライブ回路12はスイッチ14を介してト
ランスデユーサ13を駆動し、超音波パルス又はバース
ト波を外部に送信する。外部から戻って来た反射波は、
トランスデユーサ13で受信されスイッチ14を介して
増幅器15へ供給され、増幅される。増幅器15で増幅
された出力は、複数の遅延回路16及び17の組に加え
られ、フェイズ・アレイ・アンテナと同様な原理に基づ
き、各遅延回路の組を構成する遅延回路の遅延時間を所
定時間に設定することによって、受信超音波に指向性を
持たせることができる。従って遅延回路16の組及び1
7の組は、それぞれ異なる指向性を有する反射波を取出
し、各組ごとに加算器18又は19に加えられる。加算
器18の出力は受信増幅器20へ加えられて増幅され、
振幅サンプル回路としての第1振幅値サンプル・ホール
ド回路22へ供給される。第1振幅値サンプル・ホール
ド回路22においては、同時刻、即ち同距離長のサンプ
ル点の振幅データをコントロール回路11からのサンプ
ル・ポジション指示によりサンプル・ホールドする。加
算器19に加えられた他の1つの指向性を有する反射波
出力は受信増幅器21へ加えられて増幅され、第2振幅
値サンプル・ホールド回路23に供給される。第2振幅
値サンプル・ホールド回路23においては、同時刻、即
ち同距離長のサンプル点の振幅データをコントロール回
路11からのサンプル・ポジション指示によりサンプル
・ホールドする。前述の振幅値サンプル・ホールド、に
よって発生した2つのデータ列を相互相関ピーク時間差
検出回路24に加え、2つのデータ列の相互相関がピー
クとなる時間差を求める。相互相関ピーク時間差検出回
路24の出力は速度算出回路25へ加えられ、これを2
つのサンプル・ホールド藺隔及びパルス送信間隔で割り
、ビーム方向と垂直な方向の流速を算出する。なお、サ
ンプル・ホールド間隔は、2つの指向方向の角度と、ト
ランスデユーサから各サンプル・ポイントまでの距離に
より求まる。超音波パルス・ドプラ流速計31は超音波
ビーム方向の流速を測定するものである。速度算出回路
25から出力される流速度と超音波パルス・ドプラ流速
計31から出力される流速度はベクトル算出回路32に
入力され、ベクトル的に加算される。
The ultrasonic drive circuit 12 drives the transducer 13 via the switch 14 in response to a start signal sent from the control circuit 11, and transmits ultrasonic pulses or burst waves to the outside. The reflected waves returning from the outside are
The signal is received by the transducer 13, supplied to the amplifier 15 via the switch 14, and amplified. The output amplified by the amplifier 15 is applied to a set of multiple delay circuits 16 and 17, and based on the same principle as a phase array antenna, the delay time of the delay circuits constituting each set of delay circuits is set to a predetermined time. By setting this, the received ultrasonic waves can be given directivity. Therefore, the set of delay circuits 16 and 1
The 7 sets each take out reflected waves having different directivity, and each set is added to an adder 18 or 19. The output of adder 18 is applied to receive amplifier 20 and amplified;
The first amplitude value sample and hold circuit 22 is supplied as an amplitude sample circuit. The first amplitude value sample and hold circuit 22 samples and holds amplitude data at sample points at the same time, that is, at the same distance, in response to a sample position instruction from the control circuit 11. The reflected wave output having another directivity applied to the adder 19 is applied to the receiving amplifier 21, amplified, and supplied to the second amplitude value sample/hold circuit 23. The second amplitude value sample and hold circuit 23 samples and holds amplitude data at sample points at the same time, that is, at the same distance, in response to a sample position instruction from the control circuit 11. The two data strings generated by the amplitude value sampling and holding described above are applied to the cross-correlation peak time difference detection circuit 24, and the time difference at which the cross-correlation of the two data strings reaches its peak is determined. The output of the cross-correlation peak time difference detection circuit 24 is applied to the speed calculation circuit 25, which is
Divide by the sample-hold interval and the pulse transmission interval to calculate the flow velocity in the direction perpendicular to the beam direction. Note that the sample-hold interval is determined by the angles of the two directivity directions and the distance from the transducer to each sample point. The ultrasonic pulse Doppler current meter 31 measures the flow velocity in the ultrasonic beam direction. The flow velocity output from the velocity calculation circuit 25 and the flow velocity output from the ultrasonic pulse Doppler current meter 31 are input to the vector calculation circuit 32 and added vectorially.

第4図は第3図の超音波パルス流速計において    
!第1振幅値サンプル・ホールド回路22及び第2振幅
値サンプル・ホールド回路23として単なるサンプル・
ホールド回路を使用したときの問題点を説明する図であ
る。第4図において、TDはトランスデユーサ列、B1
とB2は超音波ビーム、SvlとSV2はサンプル・ボ
リュームをそれぞれ示している。また、矢印は血球の流
れを示している。
Figure 4 shows the ultrasonic pulse current meter shown in Figure 3.
! The first amplitude value sample and hold circuit 22 and the second amplitude value sample and hold circuit 23 are simply sample and hold circuits.
FIG. 3 is a diagram illustrating a problem when using a hold circuit. In FIG. 4, TD is a transducer row, B1
and B2 indicate the ultrasound beam, and Svl and SV2 indicate the sample volume, respectively. Further, arrows indicate the flow of blood cells.

、第4図のように、血球の流れが超音波ビームの方向と
垂直でない場合にはサンプル・ボリュームSv1とSV
2を共通に通過する血球数が減少し、両サンプル・ボリ
ュームから得た信号間の相関が少なくなり、正確な血流
速度検出を行うことが出来ない。
, as shown in Fig. 4, when the flow of blood cells is not perpendicular to the direction of the ultrasound beam, the sample volumes Sv1 and SV
The number of blood cells passing through both sample volumes decreases, and the correlation between the signals obtained from both sample volumes decreases, making it impossible to accurately detect blood flow velocity.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の考察に基づくものであって、血球の流
れの方向に影響されることなく常に正確な血流速度測定
を行うことが出来る相関検出型超音波血流計を提供する
ことを目的としている。
The present invention is based on the above considerations, and aims to provide a correlation detection type ultrasonic blood flow meter that can always accurately measure blood flow velocity without being affected by the direction of blood cell flow. The purpose is

〔目的を達成するための手段〕[Means to achieve the purpose]

そしてそのため、本発明の相関検出型超音波血流計は、
超音波の反射波信号をそれぞれ正弦波及び余弦波の参照
波を用いて検波する直交検波器と、該直交検波器の正弦
波側及び余弦波側の直交検波出力をそれぞれ入力とする
2つのレンジ・ゲート回路と、該2つのレンジ・ゲート
回路の出力側にそれぞれ接続された高域フィルタと、該
2つの高域フィルタの出力信号の二乗和を求める回路と
、2個の二乗和信号の相互相関を算出する回路とを具備
することを特徴とするものである。
Therefore, the correlation detection type ultrasonic blood flow meter of the present invention,
A quadrature detector that detects reflected ultrasound signals using sine wave and cosine wave reference waves, respectively, and two ranges that receive orthogonal detection outputs on the sine wave side and cosine wave side of the quadrature detector, respectively.・A gate circuit, a high-pass filter connected to the output sides of the two range gate circuits, a circuit for calculating the sum of squares of the output signals of the two high-pass filters, and a circuit for calculating the sum of squares of the output signals of the two high-pass filters, and a circuit for calculating the sum of squares of the output signals of the two high-pass filters, and The present invention is characterized by comprising a circuit for calculating correlation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を参照しつつ説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図は本発明の振幅値サンプル・ホールド回路の1例
を示す図である。第1図において、41Aと41Bは掛
算器、42Aと42Bは低域フィルタ、43Aと43B
はレンジ・ゲート回路、44Aと44Bは高域フィルタ
、45Aと45Bは自乗回路、46は加算器、47は入
力線、48は出力線、49と50は多重化されたブロッ
ク、51は遅延回路をそれぞれ示す。ここで、41A、
41B、42A、42Bは直交検波器を構成している。
FIG. 1 is a diagram showing an example of an amplitude value sample and hold circuit according to the present invention. In Fig. 1, 41A and 41B are multipliers, 42A and 42B are low-pass filters, and 43A and 43B.
is a range gate circuit, 44A and 44B are high-pass filters, 45A and 45B are square circuits, 46 is an adder, 47 is an input line, 48 is an output line, 49 and 50 are multiplexed blocks, and 51 is a delay circuit. are shown respectively. Here, 41A,
41B, 42A, and 42B constitute a quadrature detector.

レンジ・ゲート回路43Aは、サンプル・ホールド回路
の一種であるが、第2図のような構成をしている。第2
図において、52は演算増幅器、53は抵抗、54はコ
ンデンサ、Slと82はスイッチを示している。第2図
において、スイッチS1がオフ(開)の状態の下でスイ
ッチS2がオン(閉)すると、出力はOレベルに低下し
、スイッチS2がオフ(開)の状態の下でスイッチS1
が時刻tでオン(閉)すると、レンジ・ゲート回路43
Aは積分器として動作し、時刻t+ΔtでスイッチS1
及びスイッチS2がオフすると、出力は時刻t+Δtの
時の値を保つ。レンジ・ゲート回路43Bはレンジ・ゲ
ート回路43Aと同じ構成をしている。
The range gate circuit 43A is a type of sample and hold circuit, and has a configuration as shown in FIG. Second
In the figure, 52 is an operational amplifier, 53 is a resistor, 54 is a capacitor, and SL and 82 are switches. In FIG. 2, when switch S2 is turned on (closed) while switch S1 is off (open), the output drops to O level, and when switch S2 is turned off (open), switch S1
is turned on (closed) at time t, the range gate circuit 43
A operates as an integrator and switches S1 at time t+Δt.
When the switch S2 is turned off, the output maintains the value at time t+Δt. The range gate circuit 43B has the same configuration as the range gate circuit 43A.

いま、血管壁からの固定位相の反射波をA(t )si
n (ωt+θ)とし、血液からのドプラ効果による位
相変化を含む反射波をB(t−an)sin(ω+bn
)とする。なお、nは送信繰返し番号、b=−ωaであ
乞。
Now, the fixed phase reflected wave from the blood vessel wall is expressed as A(t)si
n (ωt+θ), and the reflected wave including the phase change due to the Doppler effect from blood is B(t-an)sin(ω+bn
). Note that n is the transmission repetition number and b = -ωa.

ここで、上記2つの波が重なったとすると、入力信号C
(t)は、 C(t)=A(t )sin (ωt+θ) +B(t
−an)sin(ω+bn)となり、単にこの信号を検
波しただけではB(t−an)の1=1.の点をサンプ
ルすることが出来ない。そこで、掛算器41八及び41
BによりC(t)にsin、cos信号を掛算し、D、
(t )及びり、 (t ”)を作る。
Here, if the above two waves overlap, then the input signal C
(t) is C(t)=A(t) sin (ωt+θ) +B(t
-an) sin(ω+bn), and simply detecting this signal would result in 1 of B(t-an)=1. It is not possible to sample points. Therefore, multipliers 418 and 41
Multiply C(t) by sin and cos signals by B, D,
Create (t) and (t”).

D/ (t)=C(t)sin ωt =A(t)sin (ωを十〇)・sinωt+B(t
−an)sin(ωt+bn)  −sin ωt=A
(t) (−1/2(cos(2ωを十〇)−cos 
 θ))+B(t−an) (−1/2(cos(2ω
t+bn) −cosbn) )D、(t)二C(t)
cos ωt =A(t)sin (ωt+θ)・cosωt+B(t
−an)sin(ωt+bn)  ・cos ωt=A
(t) (1/2(sin(2ωt+θ)+sin  
θ))B(t−an) (1/2(sin(2ωt+b
n)+5inbn))ここで低域フィルタ42A、 4
2Bでω及び2ω成分を除去し、それ以下の成分だけを
通過させると、E・(1)“1/2 A(t) °c・
・#+1/2 B(t−・・)・・・b・      
1、  E、(t)=1/2 A(t) ・sin θ
+1/2 B(t−an)sinbnとなる。ここで、
レンジ・ゲート回路43A 、 43Bにより各nに対
して1 = 1.  でサンプルした時系列データを高
域フィルタ44A、44Bに通すと、E7(t)、E、
(t)の各第1項は消え、nが増加している第2項のみ
が残る。
D/ (t) = C(t) sin ωt = A(t) sin (ω is 10)・sin ωt+B(t
-an) sin(ωt+bn) -sin ωt=A
(t) (-1/2(cos(2ω 10)-cos
θ))+B(t-an) (-1/2(cos(2ω
t+bn) -cosbn) )D, (t)2C(t)
cos ωt = A(t) sin (ωt+θ)・cos ωt+B(t
-an) sin(ωt+bn) ・cos ωt=A
(t) (1/2(sin(2ωt+θ)+sin
θ))B(t-an) (1/2(sin(2ωt+b
n)+5inbn)) where low pass filter 42A, 4
2B removes the ω and 2ω components and passes only the components below that, E・(1)“1/2 A(t) °c・
・#+1/2 B(t-...)...b・
1, E, (t) = 1/2 A(t) ・sin θ
+1/2 B(t-an) sinbn. here,
The range gate circuits 43A and 43B calculate 1=1 for each n. When the sampled time series data is passed through high-pass filters 44A and 44B, E7(t), E,
Each first term of (t) disappears, leaving only the second term with increasing n.

Ft (n)=1/2 B(t −an)cosbnF
、 (n)=1/2 B(t −an)sinbnこれ
を自乗回路45A、45Bでそれぞれ自乗し、加算器3
6で二乗和を求めると、 G(n)=1/4 B”(t −an)となり、所望の
B (to−an)のみを含む値を求めることが出来る
Ft (n)=1/2 B(t-an)cosbnF
, (n)=1/2 B(t -an)sinbn This is squared by the square circuits 45A and 45B, respectively, and the adder 3
6, the sum of squares is obtained as follows: G(n)=1/4 B''(t-an), and a value containing only the desired B (to-an) can be obtained.

第3図の第1振幅値サンプル・ホールド回路22及び第
2振幅値サンプル・ホールド回路23として、第1図の
部分41A、41B、42A、42Bよりなる直交検波
器及びブロック49より構成された振幅値サンプル・ホ
ー元ド回路を使用すると、第4図のサンプル・ボリュー
ムSV1.SV2の超音波ビーム方向の長さを実質的に
長くすることが出来、第4図のような血球の流れが存在
した時でも、2つのサンプル・ボリュームSVI、SV
2に共通に通過する血球数を従来方式より増加すること
が出来る。
As the first amplitude value sample/hold circuit 22 and the second amplitude value sample/hold circuit 23 in FIG. 3, an amplitude value constructed from a quadrature detector consisting of parts 41A, 41B, 42A, and 42B in FIG. 1 and a block 49 is used. Using the value sample hoarding circuit, the sample volume SV1. of FIG. The length of SV2 in the ultrasound beam direction can be substantially increased, and even when blood cell flow as shown in Fig. 4 is present, the two sample volumes SVI and SV can be
2. The number of blood cells that pass through the method can be increased compared to the conventional method.

第3図の従来例では、超音波ビーム方向の血流速度を測
定するために、超音波パルス・ドプラ流速計31を使用
しているが、超音波パルス・ドプラ    ′流速計3
1の代わりに相関検出型超音波血流計を使用することも
出来る。この場合には、第1図の直交検波器、ブロック
49と50及び第3図の相互相関ピーク時間差検出回路
24等でビーム方向の相関検出型超音波血流計を構成し
、直交検波器からの信号E+及びE2をブロック50に
入力し、ブロック49の出力及びブロック50の出力を
相互相関ピーク時間差検出回路24に入力すれば良い。
In the conventional example shown in Fig. 3, an ultrasonic pulse Doppler current meter 31 is used to measure the blood flow velocity in the direction of the ultrasound beam.
1, a correlation detection type ultrasonic blood flow meter can also be used. In this case, a correlation detection type ultrasonic blood flow meter in the beam direction is constructed by the orthogonal detector shown in FIG. 1, blocks 49 and 50, and the cross-correlation peak time difference detection circuit 24 shown in FIG. The signals E+ and E2 may be input to the block 50, and the output of the block 49 and the output of the block 50 may be input to the cross-correlation peak time difference detection circuit 24.

即ち、ビーム方向に沿って隔たった2点からの信号の相
関を取ってビーム方向の血流速度を得ればよい。ビーム
方向の相関検出型超音波血流計の場合は、レンジ・ゲー
ト回路のスイッチS1がオンしているの時間を短くする
。勿論、この代わりに通常のサンプル・ホールド回路を
使用することも出来る。
That is, the blood flow velocity in the beam direction can be obtained by correlating signals from two points separated along the beam direction. In the case of a correlation detection type ultrasonic blood flow meter in the beam direction, the time during which the switch S1 of the range gate circuit is on is shortened. Of course, a conventional sample and hold circuit can be used instead.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、血球
の流れの方向に影響されることなく常に正確な血流速度
検出を行うことが出来る相関検出型超音波血流計を得る
ことが出来る。
As is clear from the above description, according to the present invention, it is possible to obtain a correlation detection type ultrasonic blood flow meter that can always accurately detect blood flow velocity without being affected by the direction of blood cell flow. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の振幅値サンプル・ホールド回路の1例
を示す図、第2図はるレンジ・ゲート回路の構成例を示
す図、第3図は従来の超音波パルス流速計を示す図、第
4図は第3図の超音波パルス流速計において第1振幅値
サンプル・ホールド回路22及び第2振幅値サンプル・
ホールド回路23として単なるサンプル・ホールド回路
を使用したときの問題点を説明する図である。 11・・・コントロール回路、12・・・超音波ドライ
ブ回路、13・・・トランスデユーサ、14・・・スイ
ッチ、15・・・増幅器、16・・・17は遅延回路、
18と19・・・加算器、20と21・・・受信増幅器
、22・・・第1振幅値サンプル・ホールド回路、23
・・・第2振幅値サンプル・ホールド回路、24・・・
相互相関ピーク時間差検出回路、25・・・速度算出回
路、31・・・超音波パルス・ドプラ流速計、32・・
・ベクトル算出回路 41Aと41B・・・掛算器、4
2Aと42B・・・低域フィルタ、43Aと43B・・
・レンジ・ゲート回路、44Aと44B・・・高域フィ
ルタ、45Aと45B・・・自乗回路、46・・・加算
器、47・・・入力線、48・・・出力線、49と50
・・・多重化されたブロック、51・・・遅延回路 5
2・・・演算増幅器、53・・・抵抗、54・・・コン
デンサ、Slと82・・・スイッチ。
Fig. 1 is a diagram showing an example of the amplitude value sample/hold circuit of the present invention, Fig. 2 is a diagram showing an example of the configuration of a far range gate circuit, and Fig. 3 is a diagram showing a conventional ultrasonic pulse current meter. , FIG. 4 shows the first amplitude value sample/hold circuit 22 and the second amplitude value sample/hold circuit 22 in the ultrasonic pulse current meter shown in FIG.
FIG. 3 is a diagram illustrating a problem when a simple sample-and-hold circuit is used as the hold circuit 23. 11... Control circuit, 12... Ultrasonic drive circuit, 13... Transducer, 14... Switch, 15... Amplifier, 16... 17 is a delay circuit,
18 and 19...Adder, 20 and 21...Reception amplifier, 22...First amplitude value sample/hold circuit, 23
...Second amplitude value sample/hold circuit, 24...
Cross-correlation peak time difference detection circuit, 25... Speed calculation circuit, 31... Ultrasonic pulse Doppler current meter, 32...
・Vector calculation circuit 41A and 41B... Multiplier, 4
2A and 42B...Low pass filter, 43A and 43B...
・Range gate circuit, 44A and 44B...High-pass filter, 45A and 45B...Squaring circuit, 46...Adder, 47...Input line, 48...Output line, 49 and 50
...Multiplexed block, 51...Delay circuit 5
2...Operation amplifier, 53...Resistor, 54...Capacitor, Sl and 82...Switch.

Claims (1)

【特許請求の範囲】[Claims] 相関検出型超音波血流計において、超音波の反射波信号
をそれぞれ正弦波及び余弦波の参照波を用いて検波する
直交検波器と、該直交検波器の正弦波側及び余弦波側の
直交検波出力をそれぞれ入力とする2つのレンジ・ゲー
ト回路と、該2つのレンジ・ゲート回路の出力側にそれ
ぞれ接続された高域フィルタと、該2つの高域フィルタ
の出力信号の二乗和を求める回路と、2個の二乗和信号
の相互相関を算出する回路とを具備することを特徴とす
る相関検出型超音波血流計。
A correlation detection type ultrasonic blood flow meter includes a quadrature detector that detects reflected ultrasound signals using sine wave and cosine wave reference waves, respectively, and quadrature detectors on the sine wave side and cosine wave side of the orthogonal detector. Two range gate circuits each receiving a detection output, a high-pass filter connected to the output side of the two range gate circuits, and a circuit for calculating the sum of squares of the output signals of the two high-pass filters. and a circuit for calculating the cross-correlation of two sum-of-square signals.
JP59210800A 1984-10-08 1984-10-08 Correlation detection type ultrasonic blood stream meter Granted JPS61100236A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59210800A JPS61100236A (en) 1984-10-08 1984-10-08 Correlation detection type ultrasonic blood stream meter
US06/782,921 US4693319A (en) 1984-10-08 1985-10-02 Correlation detection type ultrasound blood flowmeter
DE8585112767T DE3585766D1 (en) 1984-10-08 1985-10-08 ULTRASONIC BLOOD FLOWMETER ACCORDING TO THE CORRELATION PRINCIPLE.
EP85112767A EP0177942B1 (en) 1984-10-08 1985-10-08 Correlation detection type ultrasound blood flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59210800A JPS61100236A (en) 1984-10-08 1984-10-08 Correlation detection type ultrasonic blood stream meter

Publications (2)

Publication Number Publication Date
JPS61100236A true JPS61100236A (en) 1986-05-19
JPH0318458B2 JPH0318458B2 (en) 1991-03-12

Family

ID=16595340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59210800A Granted JPS61100236A (en) 1984-10-08 1984-10-08 Correlation detection type ultrasonic blood stream meter

Country Status (4)

Country Link
US (1) US4693319A (en)
EP (1) EP0177942B1 (en)
JP (1) JPS61100236A (en)
DE (1) DE3585766D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017114A1 (en) * 1991-04-05 1992-10-15 Yokogawa Medical Systems, Ltd. Flow mapping device using cross correlation of doppler signal

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202920B1 (en) * 1985-05-20 1994-03-09 Matsushita Electric Industrial Co., Ltd. Ultrasonic doppler blood flowmeter
JPS62114539A (en) * 1985-11-14 1987-05-26 富士通株式会社 Flow display apparatus utilizing ultrasonic wave
JP2556701B2 (en) * 1987-05-18 1996-11-20 グラム株式会社 Ultrafiltration amount and dialysate concentration measuring device
US4979513A (en) * 1987-10-14 1990-12-25 Matsushita Electric Industrial Co., Ltd. Ultrasonic diagnostic apparatus
FR2637378B1 (en) * 1988-09-30 1991-03-15 Labo Electronique Physique DEVICE FOR MEASUREMENT BY ECHOGRAPHY OF THE TRANSVERSE SPEED OF MOVING ORGANS AND BLOOD FLOWS
US5103181A (en) * 1988-10-05 1992-04-07 Den Norske Oljeselskap A. S. Composition monitor and monitoring process using impedance measurements
US5109857A (en) * 1991-03-04 1992-05-05 Duke University Ultrasound time domain velocity detection method and apparatus
US5357964A (en) * 1993-02-08 1994-10-25 Spivey Brett A Doppler imaging device
JP3462584B2 (en) * 1994-02-14 2003-11-05 フクダ電子株式会社 Ultrasound diagnostic equipment
EP0909395B1 (en) * 1996-07-02 2002-02-27 B-K Medical A/S Apparatus for determining movements and velocities of moving objects
US6725076B1 (en) * 1999-05-10 2004-04-20 B-K Medical A/S Vector velocity estimation using directional beam forming and cross correlation
US6685645B1 (en) * 2001-10-20 2004-02-03 Zonare Medical Systems, Inc. Broad-beam imaging
US20020173721A1 (en) * 1999-08-20 2002-11-21 Novasonics, Inc. User interface for handheld imaging devices
US7105981B2 (en) * 2003-12-10 2006-09-12 Siemens Medical Solutions Usa, Inc. Medical imaging transmit spectral control using aperture functions
US7833163B2 (en) * 2003-12-10 2010-11-16 Siemens Medical Solutions Usa, Inc. Steering angle varied pattern for ultrasound imaging with a two-dimensional array
KR20130102913A (en) * 2012-03-08 2013-09-23 삼성메디슨 주식회사 Method and apparatus for obtaining tissue velocities and direction
US9494454B2 (en) * 2013-12-06 2016-11-15 Joseph Baumoel Phase controlled variable angle ultrasonic flow meter
US9752907B2 (en) 2015-04-14 2017-09-05 Joseph Baumoel Phase controlled variable angle ultrasonic flow meter
US10256538B2 (en) * 2015-08-25 2019-04-09 The Boeing Company Integrated true time delay for broad bandwidth time control systems and methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334622A (en) * 1964-12-15 1967-08-08 Branson Instr Method and apparatus for electroacoustic exploration
DE1798104C3 (en) * 1968-08-22 1973-10-31 Siemens Ag, 1000 Berlin U. 8000 Muenchen Device for measuring the speed of media flowing in lines
GB1359151A (en) * 1970-07-06 1974-07-10 Coulthard J Measurement of fluid flow rates
US4181134A (en) * 1977-09-21 1980-01-01 Mason Richard C Cardiotachometer
US4217909A (en) * 1978-08-23 1980-08-19 General Electric Company Directional detection of blood velocities in an ultrasound system
CA1135827A (en) * 1978-12-04 1982-11-16 Rainer Fehr Determination of flow velocities by measuring phase difference between the doppler signals
US4265126A (en) * 1979-06-15 1981-05-05 General Electric Company Measurement of true blood velocity by an ultrasound system
US4324258A (en) * 1980-06-24 1982-04-13 Werner Huebscher Ultrasonic doppler flowmeters
FR2506472B1 (en) * 1981-05-25 1985-06-21 Inst Nat Sante Rech Med REAL-TIME MEASUREMENT METHOD AND APPARATUS FOR VISUALIZATION OF FLOW SPEEDS IN A VESSEL SEGMENT
FI67627C (en) * 1981-10-19 1985-04-10 Eino Haerkoenen PROCEDURE FOR THE ORGANIZATION OF THE PROCESSING OF STRUCTURES AND THE EXTENSION OF GENERATION OF THE GENOM UTNYTTJANDET AV ULTRALJUD
JPS58188433A (en) * 1982-04-28 1983-11-02 アロカ株式会社 Ultrasonic diagnostic apparatus
NL8202079A (en) * 1982-05-19 1983-12-16 Ihc Holland Nv METHOD AND METHOD FOR MEASURING THE FLOW RATE OF A MEDIUM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017114A1 (en) * 1991-04-05 1992-10-15 Yokogawa Medical Systems, Ltd. Flow mapping device using cross correlation of doppler signal

Also Published As

Publication number Publication date
EP0177942A2 (en) 1986-04-16
US4693319A (en) 1987-09-15
EP0177942A3 (en) 1988-07-27
EP0177942B1 (en) 1992-04-01
DE3585766D1 (en) 1992-05-07
JPH0318458B2 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
JPS61100236A (en) Correlation detection type ultrasonic blood stream meter
JP3023569B2 (en) Method and apparatus for digitally measuring acoustic burst transit time in a fluid medium
US4011755A (en) Acoustic flowmeter
US3568661A (en) Frequency modulated ultrasound technique for measurement of fluid velocity
US3648225A (en) Digital sonar doppler navigator
GB1225032A (en) Ultrasonic acoustical analysis
US5602343A (en) Method of, and apparatus for, measuring the velocity of a fluid
EP0807825B1 (en) Ultrasonic continuous wave doppler blood flow-meter
JPH02126175A (en) Apparatus for measuring kinetic speed of moving organ and blood
US7340067B2 (en) Wave signal processing system and method
JPH0318457B2 (en)
Heydemann A fringe‐counting pulsed ultrasonic interferometer
JP2900631B2 (en) Sector scan indication circuit
JPS6055934A (en) Ultrasonic blood flow meter
EP0794411A2 (en) Flow measurement
SU1089509A1 (en) Device flo checking non-mixing liquids
JPH0421822B2 (en)
SU1040418A1 (en) Correlation-type speed meter
JPS6133532Y2 (en)
SU1157445A1 (en) Device for determining coordinates of acoustic emission source
SU1093897A1 (en) Ultrasonic flowmeter
JPH02205787A (en) Time lag detection apparatus
SU552559A1 (en) Device for measuring the flow rate of liquid and gas
JPS6033072A (en) Underwater acoustic position measuring device
JP2714067B2 (en) Pulse Doppler measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees