JPH0318457B2 - - Google Patents

Info

Publication number
JPH0318457B2
JPH0318457B2 JP59031897A JP3189784A JPH0318457B2 JP H0318457 B2 JPH0318457 B2 JP H0318457B2 JP 59031897 A JP59031897 A JP 59031897A JP 3189784 A JP3189784 A JP 3189784A JP H0318457 B2 JPH0318457 B2 JP H0318457B2
Authority
JP
Japan
Prior art keywords
blood flow
correlation detection
sin
correlation
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59031897A
Other languages
Japanese (ja)
Other versions
JPS60176633A (en
Inventor
Shinichi Amamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59031897A priority Critical patent/JPS60176633A/en
Publication of JPS60176633A publication Critical patent/JPS60176633A/en
Publication of JPH0318457B2 publication Critical patent/JPH0318457B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、相関検出型の超音波血流計に係り、
特にその相関に用いるデータの作成方式に関する
もので、血管壁等から固定の反射波を正確に除去
できるようにしたものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a correlation detection type ultrasonic blood flow meter,
In particular, it relates to a method for creating data used for correlation, and is designed to accurately remove fixed reflected waves from blood vessel walls and the like.

〔技術の背景〕[Technology background]

従来のパルス法によるドプラ型超音波血流計で
は、被測定物からの反射波の位相情報のみを使用
している。位相情報は±πの範囲でしか比例的で
ないからパルス送信の繰り返し時間内で被測定物
の移動を検出しうる距離は±λ/4(λは超音波
の波長であり、±λ/4は±πに相当)以内に限
られ、被測定物がそれ以上移動するとデータ解析
ができず、誤つた解析結果を出力してしまう欠点
がある。
A conventional Doppler-type ultrasonic blood flow meter using the pulse method uses only phase information of reflected waves from the object to be measured. Since phase information is proportional only within the range of ±π, the distance at which the movement of the object to be measured can be detected within the repetition time of pulse transmission is ±λ/4 (λ is the wavelength of the ultrasonic wave, and ±λ/4 is (equivalent to ±π), and if the object to be measured moves further than that, data analysis cannot be performed and erroneous analysis results may be output.

そこで、超音波パルス送信の繰り返し時間内に
被測定物が±λ/4以上移動してもその流速を検
出できるように、反射波の振幅情報を活用する相
関検出型のものが開発されている。
Therefore, a correlation detection type that utilizes amplitude information of reflected waves has been developed so that the flow velocity can be detected even if the object to be measured moves by more than ±λ/4 within the repetition time of ultrasonic pulse transmission. .

第1図はその相関検出型血流計の1例の概要ブ
ロツク図である。同図において1は超音波送信器
で、その出力電気パルス(送信信号)TSはトラ
ンスデユーサ2によつて超音波パルスに変換され
る。該超音波パルスの被測定物(図示せず)によ
る反射波は同一の(又は異なる)トランスデユー
サ2で受信され、受信器3で増幅、直交検波等さ
れる。受信器3の出力信号RSは相関検出型デー
タ発生部4に導かれ、ここで発生したデータは相
関データ解析部5において流速に変換され、更に
表示部6へ出力される。なお、7は各部を制御す
るコントローラであり、特に相関検出型データ発
生部4へは送信タイミングに同期したサンプリン
グポジシヨン信号Sが供給される。
FIG. 1 is a schematic block diagram of one example of the correlation detection type blood flow meter. In the figure, reference numeral 1 denotes an ultrasonic transmitter, and its output electric pulse (transmission signal) TS is converted into an ultrasonic pulse by a transducer 2. A reflected wave of the ultrasonic pulse from an object to be measured (not shown) is received by the same (or different) transducer 2, and is amplified, orthogonally detected, etc. by the receiver 3. The output signal RS of the receiver 3 is guided to a correlation detection type data generation section 4, and the data generated here is converted into a flow velocity in a correlation data analysis section 5 and further outputted to a display section 6. Note that 7 is a controller that controls each section, and in particular, a sampling position signal S synchronized with the transmission timing is supplied to the correlation detection type data generation section 4.

第2図は相関検出型データ発生部4の具体例
で、第3図は各部信号波形図である。受信器3に
おいて増幅された受信信号RSは振幅検出器41
により全波整流された後高周波をカツトされる。
第3図の波形、、は、それぞれその振幅検
出器41の入力及び中間処理及び出力を示すもの
である。
FIG. 2 shows a specific example of the correlation detection type data generating section 4, and FIG. 3 shows signal waveform diagrams of each section. The received signal RS amplified in the receiver 3 is sent to the amplitude detector 41
After full-wave rectification, high frequencies are cut off.
The waveforms in FIG. 3 indicate the input, intermediate processing, and output of the amplitude detector 41, respectively.

次にその信号を、サンプルホールド回路42,
43により、第3図の波形、に示すΔTだけ
ずれた2つのパルスによりサンプルする。
Next, the signal is transferred to the sample and hold circuit 42,
43, samples are taken using two pulses shifted by ΔT shown in the waveform of FIG.

本動作を超音波の送受信ごとに行う事によつて
第3図の波形、に示すデータを得る事ができ
る。このデータをY1(n)Y2(n)とすると、相
互相関検出器45により、次式で示すようにこの
データの相互相関Z(τ)が求められる。
By performing this operation every time an ultrasonic wave is transmitted and received, data shown in the waveform of FIG. 3 can be obtained. Assuming that this data is Y 1 (n) Y 2 (n), the cross-correlation detector 45 calculates the cross-correlation Z(τ) of this data as shown in the following equation.

Z(τ)=o=Nn=0 Y1(n)Y2(n+τ) 第3図の波形に示すように、ピークポジシヨ
ン検出器46によつて検出されるZ(τ)の最大
値を示すτmaxは、ΔTに対応する距離を移動す
るのに要した時間を示すものである。よつてこれ
より、被測定物の速度を知る事ができる。
Z(τ)= o=Nn=0 Y 1 (n) Y 2 (n+τ) As shown in the waveform of FIG. 3, the maximum of Z(τ) detected by the peak position detector 46 The value τmax indicates the time required to travel the distance corresponding to ΔT. Therefore, from this, the speed of the object to be measured can be known.

ところで、一般に受信波には血管壁等からの固
定の反射波が含まれるために、上述した相互相関
型血流計は、従来の反射波の位相情報にくらべて
精度が劣るという欠点がある。第4図において、
RS0は固定の反射波を示し、RS1は血液からの反
射波を示す。これらのRS0とRS1とを合成したも
のが実際の受信波である。
Incidentally, since received waves generally include fixed reflected waves from blood vessel walls, etc., the above-mentioned cross-correlation type blood flow meter has a drawback in that its accuracy is inferior to conventional phase information of reflected waves. In Figure 4,
RS0 indicates a fixed reflected wave, and RS1 indicates a reflected wave from blood. The actual received wave is a combination of these RS0 and RS1.

血液からの反射波RS1は、血流の速度に応じて
点線波形で示すように実線波形から移動する。し
たがつて、ある時刻t=t0の位置における受信波
の振幅を移動長の大きさに対応づけて示すと、第
4図最下段Ut0の実線波形のようになり、振幅に
脈動を生じてしまう。なお、点線波形は固定の反
射波がない場合のものである。
The reflected wave RS1 from the blood moves from the solid line waveform as shown by the dotted line waveform according to the speed of blood flow. Therefore, if the amplitude of the received wave at a certain time t = t 0 is shown in correspondence with the size of the travel length, it will look like the solid line waveform shown in the bottom row of Figure 4 Ut 0 , which causes pulsations in the amplitude. It ends up. Note that the dotted line waveform is the one when there is no fixed reflected wave.

このように、血管壁等からの固定の反射波があ
る場合には、RS1の点線波形のような血液のみか
らの純粋なデータを得ることができないため、精
度が低下するという問題があつた。
In this way, when there is a fixed reflected wave from a blood vessel wall or the like, pure data from only blood, such as the dotted waveform of RS1, cannot be obtained, resulting in a problem of decreased accuracy.

〔発明の目的および構成〕[Object and structure of the invention]

本発明の目的は、相関検出型血流計において、
血管壁等に基づく固定の反射波の影響を受けない
相関データを得ることにあり、そのための構成と
して相関検出型超音波血流計において、超音波の
反射波信号をそれぞれ正弦波および余弦波の参照
波を用いて検波する直交検波器と、該直交検波器
の正弦波側および余弦波側の直交検波出力信号を
それぞれサンプルホールドする2つのサンプルホ
ールド回路と、該2つのサンプルホールド回路の
それぞれに接続された高域フイルタと、該2つの
高域フイルタの出力信号の2乗和を求める回路と
をそなえ、該2乗和信号に基づいて相関検出によ
る血流測定を行うことを特徴とするものである。
The object of the present invention is to provide a correlation detection type blood flow meter,
The objective is to obtain correlation data that is not affected by fixed reflected waves from blood vessel walls, etc., and for this purpose, a correlation detection type ultrasonic blood flow meter is configured to convert ultrasound reflected wave signals into sine waves and cosine waves, respectively. a quadrature detector that performs detection using a reference wave, two sample-hold circuits that sample and hold quadrature detection output signals on the sine wave side and cosine wave side of the quadrature detector, respectively, and each of the two sample-hold circuits. A device characterized by comprising a connected high-pass filter and a circuit for calculating the sum of squares of the output signals of the two high-pass filters, and performs blood flow measurement by correlation detection based on the sum of squares signal. It is.

〔発明の実施例〕[Embodiments of the invention]

以下に、本発明の詳細を実施例にしたがつて説
明する。
The details of the present invention will be explained below with reference to Examples.

第5図は、本発明の1実施例装置の構成図であ
る。本実施例装置は、第1図に示した相関検出方
式と、従来の位相検出方式の2つの血流測定回路
を並列に設け、血流速が小さい場合には相関検出
方式の測定回路を使用し、血流速が大きい場合に
は相関検出方式の測定回路を使用することによ
り、それぞれの特徴を活かして、広範囲の装速を
高精度で測定可能にしている。そして特に本発明
により、相関検出方式の測定回路の入力段には、
血管壁等から固定の反射波に由来する信号成分を
除去する前処理部が設けられている。
FIG. 5 is a configuration diagram of an apparatus according to an embodiment of the present invention. This example device is equipped with two blood flow measurement circuits, one using the correlation detection method shown in Figure 1 and the other using the conventional phase detection method, in parallel, and when the blood flow velocity is low, the measurement circuit using the correlation detection method is used. However, when the blood flow velocity is high, by using a measurement circuit using a correlation detection method, it is possible to measure a wide range of velocities with high precision by taking advantage of the characteristics of each. In particular, according to the present invention, the input stage of the measurement circuit of the correlation detection method includes:
A preprocessing section is provided to remove signal components originating from fixed reflected waves from blood vessel walls and the like.

第5図において、1は送信器、2はトランスデ
ユーサ、3は受信器、4は相関検出型データ発生
部、5は相関データ解析部、6は表示部、7はコ
ントローラ、8は前処理部、9は相関検出型デー
タ発生部、10は位相データ解析部を示す。図
中、1乃至7で示される構成要素は、第1図の同
一番号要素に対応しており、第5図でも同様な動
作機能を果たすため説明を省略する。
In FIG. 5, 1 is a transmitter, 2 is a transducer, 3 is a receiver, 4 is a correlation detection type data generation section, 5 is a correlation data analysis section, 6 is a display section, 7 is a controller, and 8 is a preprocessing section. 9 indicates a correlation detection type data generation section, and 10 indicates a phase data analysis section. Components indicated by 1 to 7 in the figure correspond to the same numbered elements in FIG. 1, and perform the same operational functions in FIG. 5, so a description thereof will be omitted.

位相検出型データ発生部9および位相データ解
析部10は前述した従来方式に基づく測定回路で
あり、0乃至πの範囲の位相情報で検出可能な大
きさの血流を測定する場合に使用される。
The phase detection type data generation section 9 and the phase data analysis section 10 are measurement circuits based on the conventional method described above, and are used when measuring blood flow of a size that can be detected with phase information in the range of 0 to π. .

第6図は、前処理部8の細部構成図である。図
中、81A,81Bは掛算器、82A,82Bは
低域フイルタ、83A,83Bはサンプルホール
ド回路、84A,84Bは高域フイルタ、85
A,85Bは自乗回路、86は加算器、87は入
力線、88は出力線、89および90は多重化さ
れたブロツク、91はデイレイ回路を示す。ここ
で、81A,81B,82A,82Bは直交検出
器を構成している。
FIG. 6 is a detailed configuration diagram of the preprocessing section 8. As shown in FIG. In the figure, 81A and 81B are multipliers, 82A and 82B are low-pass filters, 83A and 83B are sample and hold circuits, 84A and 84B are high-pass filters, and 85
A and 85B are square circuits, 86 is an adder, 87 is an input line, 88 is an output line, 89 and 90 are multiplexed blocks, and 91 is a delay circuit. Here, 81A, 81B, 82A, and 82B constitute orthogonal detectors.

いま第7図に示すように、血液壁からの固定位
相の反射波をA(t)sin(ωt+θ)とし、血液か
らのドプラ効果による位相変化を含む反射液をB
(t−an)sin(ωt+bn)とする。なお、nは送信
繰り返し番号、そしてb=ωaとする。
As shown in Fig. 7, the fixed phase reflected wave from the blood wall is defined as A(t)sin(ωt+θ), and the reflected liquid containing the phase change due to the Doppler effect from the blood is defined as B.
(t−an)sin(ωt+bn). Note that n is a transmission repetition number, and b=ωa.

ここで、上記2の波が重なつたとすると、入力
信号C(t)は、 C(t)=A(t)sin(ωt+θ)+B(t−an)sin
(ωt+bn) となり、単にこの信号を検波しただけではB(t
−an)のt=t0の点(第4図参照)をサンプルす
ることはできない。よつてここで掛算器81Aお
よび81BによりC(t)にsin、cos信号を掛算
し、D1(t)およびD2(t)をつくる。
Here, if the above two waves overlap, the input signal C(t) is as follows: C(t)=A(t)sin(ωt+θ)+B(t-an)sin
(ωt+bn), and simply detecting this signal results in B(t
-an) at t=t 0 (see Figure 4) cannot be sampled. Therefore, multipliers 81A and 81B multiply C(t) by the sin and cos signals to create D 1 (t) and D 2 (t).

D1(t)=C(t)・sin ωt=A(t)sin(ωt+θ
)・sin ωt+B(t−an)sin(ωt+bn)・sun ωt =A(t)(−1/2(cos(2ωt+θ)−cos θ)
)+B(t−an)(−1/2(cos(2ωt+bn)−cos b
n)) D2(t)=C(t)・cos ωt=A(t)sin(ωt+θ
)・cos ωt+B(t−an)sin(ωt+bn)・cos ωt =A(t)(1/2(sin(2ωt+θ)+sin θ))
+B(t−an)(1/2(sin(2ωt+bn)+sin bn)
) ここで低域フイルタ82A,82Bでωおよび
2ω成分を除去し、それ以下の低周波成分だけ通
過させると、 E1(t)=1/2A(t)・cosθ+1
/2B(t−an)cos bn E2(t)=1/2A(t)・sinθ+1
/2B(t−an)sin bn となる。ここでサンプルホールド回路83A,8
3Bにより各nに対してもt=t0でサンプルした
時系列データを高域フイルタ84A,84Bに通
すと、E1(t)、E2(t)の各第1項は消え、nが
増加している第2項のみが残る。
D 1 (t)=C(t)・sin ωt=A(t) sin(ωt+θ
)・sin ωt+B(t−an)sin(ωt+bn)・sun ωt=A(t)(−1/2(cos(2ωt+θ)−cos θ)
)+B(t-an)(-1/2(cos(2ωt+bn)-cos b
n)) D 2 (t)=C(t)・cos ωt=A(t) sin(ωt+θ
)・cos ωt+B(t-an)sin(ωt+bn)・cos ωt=A(t)(1/2(sin(2ωt+θ)+sin θ))
+B(t-an)(1/2(sin(2ωt+bn)+sin bn)
) Here, ω and
By removing the 2ω component and passing only the lower frequency components, E 1 (t) = 1/2A (t)・cosθ+1
/2B(t-an)cos bn E 2 (t)=1/2A(t)・sinθ+1
/2B(t-an)sin bn. Here, sample hold circuits 83A, 8
3B, when the time series data sampled at t=t 0 for each n is passed through the high-pass filters 84A and 84B, the first terms of E 1 (t) and E 2 (t) disappear, and n becomes Only the second term, which is increasing, remains.

F1(n)=1/2B(t0−an)cos bn F2(n)=1/2B(t0−an)sin bn これを自乗回路85A,85Bでそれぞれ自乗
し、加算器86で加算して2乗和を求めると G(n)=1/4B2(t0−an) となり、所望のB(t0−an)のみを含む値を求め
る事ができる。
F 1 (n) = 1/2B (t 0 -an) cos bn F 2 (n) = 1/2B (t 0 -an) sin bn This is squared by the square circuits 85A and 85B, respectively, and the adder 86 When the sum of squares is obtained by adding them, G(n)=1/4B 2 (t 0 −an), and a value containing only the desired B(t 0 −an) can be obtained.

上記のG(n)の値は、第5図の相関検出型デ
ータ発生部4に送られ、第2図で説明されている
ようにして相関が求められ、相関データ解析部5
で血流速が計算される。
The above value of G(n) is sent to the correlation detection type data generation section 4 in FIG. 5, where the correlation is determined as explained in FIG.
The blood flow velocity is calculated.

ブロツク89および90は、t=t0のサンプリ
ング処理時間を半分に短縮するために2重化した
もので、入力信号E1(t)、E2(t)を共通入力と
し、サンプリング位置は、ブロツク90に対する
サンプリング信号をデイレイ回路91により一定
時間遅延させることにより、ブロツク89との間
にずれを与えている。多重化は必要に応じて行わ
れる。
Blocks 89 and 90 are duplicated to reduce the sampling processing time at t=t 0 by half, and the input signals E 1 (t) and E 2 (t) are used as common inputs, and the sampling positions are as follows. By delaying the sampling signal for block 90 by a certain period of time by a delay circuit 91, a deviation from block 89 is provided. Multiplexing is performed as needed.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば血管壁からの固
定反射波の影響を除くことができるため、相関検
出方式による血流速の測定精度を格段に向上させ
ることができる。
As described above, according to the present invention, the influence of fixed reflected waves from the blood vessel wall can be removed, so that the accuracy of blood flow velocity measurement using the correlation detection method can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は相関検出型血流計の概要構成図、第2
図はその相関検出型データ発生部の詳細図、第3
図は第2図における各部の信号波形図、第4図は
固定波の影響の説明図、第5図は本発明の1実施
例の全体構成図、第6図はその前処理部の詳細
図、第7図は動作を説明するための信号波形図で
ある。 図中、1は送信器、2はトランスデユーサ、3
は受信器、4は相関検出型データ発生部、6は表
示部、8は前処理部、81A,81Bは掛算器、
82A,82Bは低域フイルタ、83A,83B
はサンプルホールド回路、84A,84Bは高域
フイルタ、85A,85Bは自乗回路、86は加
算器を示す。
Figure 1 is a schematic diagram of the correlation detection type blood flow meter, Figure 2
The figure is a detailed diagram of the correlation detection type data generation section.
The figure is a signal waveform diagram of each part in Figure 2, Figure 4 is an explanatory diagram of the influence of fixed waves, Figure 5 is an overall configuration diagram of one embodiment of the present invention, and Figure 6 is a detailed diagram of its preprocessing section. , FIG. 7 is a signal waveform diagram for explaining the operation. In the figure, 1 is a transmitter, 2 is a transducer, 3
is a receiver, 4 is a correlation detection type data generation section, 6 is a display section, 8 is a preprocessing section, 81A and 81B are multipliers,
82A, 82B are low-pass filters, 83A, 83B
84A and 84B are high-pass filters, 85A and 85B are square circuits, and 86 is an adder.

Claims (1)

【特許請求の範囲】[Claims] 1 相関検出型超音波血流計において、超音波の
反射波信号をそれぞれ正弦波および余弦波の参照
波を用いて検波する直交検波器と、該直交検波器
の正弦波側および余弦波側の直交検波出力信号を
それぞれサンプルホールドする2つのサンプルホ
ールド回路と、該2つのサンプルホールド回路の
それぞれに接続された高域フイルタと、該2つの
高域フイルタの出力信号の2乗和を求める回路と
をそなえ、該2乗和信号に基づいて相関検出によ
る血流測定を行うことを特徴とする相関検出型超
音波血流計。
1. In a correlation detection type ultrasonic blood flow meter, a quadrature detector detects reflected ultrasound signals using sine wave and cosine wave reference waves, respectively, and a sine wave side and a cosine wave side of the quadrature detector. two sample-and-hold circuits that respectively sample and hold quadrature detection output signals; a high-pass filter connected to each of the two sample-and-hold circuits; and a circuit that calculates the sum of squares of the output signals of the two high-pass filters. 1. A correlation detection type ultrasonic blood flow meter, characterized in that the blood flow measurement is performed by correlation detection based on the sum of squares signal.
JP59031897A 1984-02-22 1984-02-22 Correlation type ultrasonic blood flow meter Granted JPS60176633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59031897A JPS60176633A (en) 1984-02-22 1984-02-22 Correlation type ultrasonic blood flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031897A JPS60176633A (en) 1984-02-22 1984-02-22 Correlation type ultrasonic blood flow meter

Publications (2)

Publication Number Publication Date
JPS60176633A JPS60176633A (en) 1985-09-10
JPH0318457B2 true JPH0318457B2 (en) 1991-03-12

Family

ID=12343802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031897A Granted JPS60176633A (en) 1984-02-22 1984-02-22 Correlation type ultrasonic blood flow meter

Country Status (1)

Country Link
JP (1) JPS60176633A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064072B2 (en) * 1988-10-28 1994-01-19 横河メディカルシステム株式会社 Ultrasonic blood flow imaging device
JP2009109285A (en) * 2007-10-29 2009-05-21 Yokogawa Electric Corp Thermal flowmeter

Also Published As

Publication number Publication date
JPS60176633A (en) 1985-09-10

Similar Documents

Publication Publication Date Title
Gueuning et al. Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods
US5177691A (en) Measuring velocity of a target by Doppler shift, using improvements in calculating discrete Fourier transform
US4809703A (en) Ultrasonic doppler blood flow meter
US4693319A (en) Correlation detection type ultrasound blood flowmeter
DE3676337D1 (en) DIGITAL CIRCUIT FOR A FLOW METER AND METHOD FOR FLOW MEASUREMENT.
GB1451286A (en) Method and apparatus for the measurement of fluid-flow velocity
US5183047A (en) Doppler flow velocity meter
EP3164680B1 (en) Method of measuring time of flight of an ultrasound pulse
US5113867A (en) Fluid flow characterizing
US4084148A (en) Object recognition system
EP0345960B1 (en) An ultrasonic doppler blood flow velocity detection apparatus
US4671294A (en) Pulsed doppler flow mapping apparatus
JP2640657B2 (en) Ultrasonic Doppler meter
US5602343A (en) Method of, and apparatus for, measuring the velocity of a fluid
JPH0318457B2 (en)
EP0807825B1 (en) Ultrasonic continuous wave doppler blood flow-meter
JPS6241644A (en) Ultrasonic pulse doppler blood flowmeter
EP0474867B1 (en) Method of processing doppler signal
EP0794411A2 (en) Flow measurement
JPH02203849A (en) Pulse doppler measuring device
JP2714067B2 (en) Pulse Doppler measurement device
JPH0257674B2 (en)
JP2714042B2 (en) Pulse Doppler measurement device
SU1265478A1 (en) Correlation flowmeter
SU987393A1 (en) Ultrasonic flow speed meter