JP2009109285A - Thermal flowmeter - Google Patents

Thermal flowmeter Download PDF

Info

Publication number
JP2009109285A
JP2009109285A JP2007280547A JP2007280547A JP2009109285A JP 2009109285 A JP2009109285 A JP 2009109285A JP 2007280547 A JP2007280547 A JP 2007280547A JP 2007280547 A JP2007280547 A JP 2007280547A JP 2009109285 A JP2009109285 A JP 2009109285A
Authority
JP
Japan
Prior art keywords
temperature
temperature detection
downstream
flow rate
drive signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007280547A
Other languages
Japanese (ja)
Inventor
Hitoaki Tanaka
仁章 田中
Minako Terao
美菜子 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007280547A priority Critical patent/JP2009109285A/en
Publication of JP2009109285A publication Critical patent/JP2009109285A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal flowmeter whose S/N ratio can be raised in regions where the flow rate of a flowing fluid becomes high and the flow rate of the flowing fluid becomes low. <P>SOLUTION: The thermal flowmeter for controlling the temperature of a liquid flowing in a flow channel, and measuring its flow rate on the basis of the difference between the temperature of the fluid on the upstream side of the temperature controlling portion and that on the downstream side, is provided with the flow channel whose liquid touching portions are entirely constituted of glass, a heat transmission means provided in this flow channel, an upstream-side and a downstream-side temperature detecting means provided on the flow channel at positions being at equal intervals from the heat transmission means, and a drive calculation mean which drives the heat transmission means with a periodic driving signal, performs synchronous detection of detected temperature signals of the upstream-side and downstream-side temperature detecting means on the basis of the driving signal, calculates the upstream-side temperature and the downstream-side temperature, and finds the flow rate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流路を流れる液体の温度を制御し温度制御部分の上流側及び下流側の流体の温度差に基づき流量を測定する熱式流量計等に関し、特にS/N比を向上させることが可能な熱式流量計に関する。   The present invention relates to a thermal flow meter that controls the temperature of a liquid flowing through a flow path and measures a flow rate based on a temperature difference between upstream and downstream fluids of a temperature control portion, and particularly to improve the S / N ratio. It relates to a thermal flow meter capable of

従来の流路を流れる液体の温度を制御し温度制御部分の上流側及び下流側の流体の温度差に基づき流量を測定する熱式流量計に関連する先行技術文献としては次のようなものがある。   Prior art documents related to a thermal flow meter that controls the temperature of the liquid flowing through the conventional flow path and measures the flow rate based on the temperature difference between the upstream and downstream fluids of the temperature control portion include the following. is there.

特開平05−079875号公報Japanese Patent Laid-Open No. 05-077975 特開平07−159215号公報Japanese Patent Laid-Open No. 07-159215 特開平10−082678号公報JP-A-10-082678 特開2002−168668号公報JP 2002-168668 A 特開2006−010322号公報JP 2006-010322 A 特開2006−226796号公報JP 2006-226996 A

図6はこのような従来の熱式流量計の一例を示す構成ブロック図である。図6において1は金属の細管等で構成される流路、2は流路1を流れる流体の温度を加熱して一定温度にするヒータ等の伝熱手段、3及び4はサーミスタや白金測温抵抗体等の温度検出手段、5は上流側及び下流側の流体の温度差に基づき流量を求めるCPU(Central Processing Unit)等の演算制御手段である。   FIG. 6 is a block diagram showing an example of such a conventional thermal flow meter. In FIG. 6, 1 is a flow path composed of a thin metal tube, 2 is a heat transfer means such as a heater that heats the temperature of the fluid flowing through the flow path 1 to a constant temperature, and 3 and 4 are thermistors and platinum temperature measuring devices. Temperature detection means 5 such as a resistor is an arithmetic control means such as a CPU (Central Processing Unit) for obtaining a flow rate based on the temperature difference between the upstream and downstream fluids.

図6中”FL01”に示すように被測定液体が流れる流路1の中央部分には伝熱手段2が設けられ、この流路1上であって伝熱手段2から等間隔の位置には温度検出手段3及び4が設けられる。   As shown by “FL01” in FIG. 6, a heat transfer means 2 is provided in the central portion of the flow path 1 through which the liquid to be measured flows, and is located on the flow path 1 at equal intervals from the heat transfer means 2. Temperature detection means 3 and 4 are provided.

また、温度検出手段3及び4の出力はそれぞれ演算制御手段5に接続され、演算制御手段5からの温度制御のための制御信号は伝熱手段2に接続される。   The outputs of the temperature detection means 3 and 4 are connected to the calculation control means 5, respectively, and a control signal for temperature control from the calculation control means 5 is connected to the heat transfer means 2.

ここで,図6に示す従来例の動作を図7を用いて説明する。図7は流路の位置に対する流路内の被測定液体の温度分布の一例を示す特性曲線図である。演算制御手段5は予め測定された被測定液体の温度に対して、被測定液体が数度程度高い一定温度になるように伝熱手段2を制御する。   Here, the operation of the conventional example shown in FIG. 6 will be described with reference to FIG. FIG. 7 is a characteristic curve diagram showing an example of the temperature distribution of the liquid to be measured in the flow path with respect to the position of the flow path. The arithmetic control unit 5 controls the heat transfer unit 2 so that the liquid to be measured has a constant temperature that is about several degrees higher than the temperature of the liquid to be measured that has been measured in advance.

このような状態で、流量がゼロの場合には図7中”CH11”に示すように図7中”HT11”に示す伝熱手段2の設置位置を中心にして対称な温度分布を有する。このため、図7中”TS11”及び”TS12”に示す温度検出手段3及び4の設置位置における温度は等しくなる。言い換えれば、温度差はゼロになる。   In such a state, when the flow rate is zero, as shown by “CH11” in FIG. 7, the temperature distribution is symmetrical about the installation position of the heat transfer means 2 indicated by “HT11” in FIG. For this reason, the temperatures at the installation positions of the temperature detecting means 3 and 4 indicated by “TS11” and “TS12” in FIG. 7 are equal. In other words, the temperature difference is zero.

一方、流路1の流体が流れると図7中”CH12”に示すように温度分布のピークが下流側にシフトする。このため、図7中”TS11”及び”TS12”に示す温度検出手段3及び4の設置位置における温度はそれぞれ異なることになり、図7中”DT11”に示すような温度差が生じることになる。   On the other hand, when the fluid in the flow path 1 flows, the peak of the temperature distribution shifts to the downstream side as shown by “CH12” in FIG. For this reason, the temperatures at the installation positions of the temperature detecting means 3 and 4 indicated by “TS11” and “TS12” in FIG. 7 are different, and a temperature difference as indicated by “DT11” in FIG. 7 is generated. .

このような温度差は被測定液体の流量に依存した信号となるので、このような温度差に基づき演算制御手段5で流路1を流れる被測定液体の流量を求めることができる。   Since such a temperature difference becomes a signal depending on the flow rate of the liquid to be measured, the flow rate of the liquid to be measured flowing through the flow path 1 can be obtained by the arithmetic control unit 5 based on such a temperature difference.

この結果、流路1を流れる被測定液体の温度を伝熱手段2で制御し2つの温度検出手段3及び4によって伝熱手段2の上流側及び下流側の流体の温度を測定し、演算制御手段5で当該温度の温度差に基づき流量を求めることにより、被測定液体の流量を測定することが可能になる。   As a result, the temperature of the liquid to be measured flowing through the flow path 1 is controlled by the heat transfer means 2, the temperature of the fluid upstream and downstream of the heat transfer means 2 is measured by the two temperature detection means 3 and 4, and the arithmetic control is performed. By obtaining the flow rate based on the temperature difference of the temperature by means 5, it becomes possible to measure the flow rate of the liquid to be measured.

但し、図6に示す従来例では、流路1として金属の細管等を用いるために金属を腐食するような液体の流量を測定することはできないといった問題点があった。   However, the conventional example shown in FIG. 6 has a problem that the flow rate of the liquid corroding the metal cannot be measured because a metal thin tube or the like is used as the flow path 1.

このため、前述した”特許文献2”においては耐腐食性に優れたガラス基板に流路を形成した熱式流量計(質量流量センサ)が記載されている。   For this reason, the above-mentioned “Patent Document 2” describes a thermal flow meter (mass flow sensor) in which a flow path is formed on a glass substrate having excellent corrosion resistance.

図8及び図9は”特許文献2”に記載された従来の熱式流量計の他の一例を示す斜視図及び断面図である。図8及び図9において6はガラス基板、7及び9はシリコン基板、8は伝熱手段、10はガラス基板6に形成された流路である。   8 and 9 are a perspective view and a sectional view showing another example of the conventional thermal flow meter described in “Patent Document 2”. 8 and 9, 6 is a glass substrate, 7 and 9 are silicon substrates, 8 is a heat transfer means, and 10 is a flow path formed in the glass substrate 6.

ガラス基板6の中央部分には超音波加工、レーザ加工、サンドブラスト加工、ウエットエッチング等によって長孔である流路10が形成される。また、ガラス基板6の上面にはシリコン基板7が陽極接合により貼り合わされる。   A flow path 10 having a long hole is formed in the central portion of the glass substrate 6 by ultrasonic processing, laser processing, sand blast processing, wet etching, or the like. A silicon substrate 7 is bonded to the upper surface of the glass substrate 6 by anodic bonding.

また、ガラス基板6の下面にはシリコン基板9が陽極接合により貼り合わされ、ガラス基板6に形成された流路10の両端部分に隣接するシリコン基板9には図8中”HL21”及び”HL22”に示すような孔が形成され、それぞれ被測定液体の流入孔若しくは排出孔として機能する。   Further, a silicon substrate 9 is bonded to the lower surface of the glass substrate 6 by anodic bonding, and “HL21” and “HL22” in FIG. 8 are attached to the silicon substrate 9 adjacent to both ends of the flow path 10 formed in the glass substrate 6. Are formed, which function as inflow holes or discharge holes for the liquid to be measured, respectively.

さらに、シリコン基板7上には白金やニッケル等の抵抗温度係数の大きい金属から構成されるヒータ等の伝熱手段8(温度検出手段を兼ねる)が形成され、シリコン基板7及びガラス基板6上には配線が適宜形成される。   Further, a heat transfer means 8 (also serving as a temperature detection means) such as a heater made of a metal having a large resistance temperature coefficient such as platinum or nickel is formed on the silicon substrate 7, and is formed on the silicon substrate 7 and the glass substrate 6. The wiring is appropriately formed.

ここで、図8及び図9に示す従来例では、ガラス基板6に流路10を形成する構成ではあるものの、流路10の上面及び下面にはシリコン基板7及び9が用いられているので、やはり、耐腐食性に問題がある。   Here, in the conventional example shown in FIGS. 8 and 9, although the flow path 10 is formed on the glass substrate 6, the silicon substrates 7 and 9 are used on the upper and lower surfaces of the flow path 10. Again, there is a problem with corrosion resistance.

一方、図8及び図9に示す従来例においてシリコン基板7及び9をガラス基板に置換することにより、接液部分が全てガラスとなり耐腐食性が向上するものの、ガラスは熱伝導率が小さいので、流路を流れる液体の流量が大きい場合には、伝熱手段8直下の液体が十分に温まらない。   On the other hand, by replacing the silicon substrates 7 and 9 with the glass substrate in the conventional example shown in FIGS. 8 and 9, all the wetted parts become glass and the corrosion resistance is improved, but the glass has a low thermal conductivity. When the flow rate of the liquid flowing through the flow path is large, the liquid immediately below the heat transfer means 8 is not sufficiently warmed.

このため、伝熱手段8直下の温度が十分に温まっていない場合には、流量の増加に伴なって上流側と下流側との温度差が小さくなるように変化する。   For this reason, when the temperature immediately below the heat transfer means 8 is not sufficiently warmed, the temperature difference between the upstream side and the downstream side changes as the flow rate increases.

一方、流量が小さく、伝熱手段8直下の温度が十分に温まっている場合には、流量の増加に伴なって上流側と下流側との温度差が大きくなるように変化する。   On the other hand, when the flow rate is small and the temperature just below the heat transfer means 8 is sufficiently warm, the temperature difference between the upstream side and the downstream side increases as the flow rate increases.

すなわち、図10は上流側と下流側との温度差と、流量との関係を示す特性曲線図であり、図10中”TD31”に示すように上流側と下流側との温度差は、ピークを有する特性となり、測定可能な流量範囲が極めて狭くなってしまうといった問題点があった。   That is, FIG. 10 is a characteristic curve diagram showing the relationship between the temperature difference between the upstream side and the downstream side and the flow rate. As shown in “TD31” in FIG. 10, the temperature difference between the upstream side and the downstream side is a peak. There was a problem that the measurable flow rate range becomes extremely narrow.

例えば、図8及び図9に示す従来例においてシリコン基板7及び9をガラス基板に置換することにより、耐腐食性が向上するものの、図10中”AR31”に示すような流量が小さく、伝熱手段8直下の温度が十分に温まっている状況下でのみしか流量の測定ができなくなってしまうといった問題点があった。   For example, although the corrosion resistance is improved by replacing the silicon substrates 7 and 9 with the glass substrate in the conventional example shown in FIGS. 8 and 9, the flow rate as shown by “AR31” in FIG. There is a problem that the flow rate can be measured only under the condition that the temperature immediately below the means 8 is sufficiently warm.

このような問題点を解決するために本願出願人の出願に係る”特許文献5”が考案された。図11は”特許文献5”に記載された熱式流量計の他の一例を示す構成ブロック図、図12は熱式流量計の他の一例のセンサ部分の具体例を示す平面図及び断面図である。   In order to solve such problems, “Patent Document 5” related to the application of the present applicant has been devised. 11 is a configuration block diagram showing another example of the thermal type flow meter described in “Patent Document 5”, and FIG. 12 is a plan view and a sectional view showing a specific example of the sensor part of another example of the thermal type flow meter. It is.

図11及び図12において11及び12はガラス基板、13はヒータ等の伝熱手段、14及び15はサーミスタや白金測温抵抗体等の温度検出手段、16は被測定液体が流れる流路、17は上流側及び下流側の流体の温度差に基づき流量を求めるCPU等の演算制御手段である。   11 and 12, 11 and 12 are glass substrates, 13 is a heat transfer means such as a heater, 14 and 15 are temperature detection means such as a thermistor and a platinum resistance temperature detector, 16 is a flow path through which the liquid to be measured flows, 17 Is a calculation control means such as a CPU for obtaining a flow rate based on the temperature difference between the upstream and downstream fluids.

図11中”FL41”に示すように被測定液体が流れる流路16の中央部分には伝熱手段13が設けられ、この流路16上であって伝熱手段13から等間隔の位置には温度検出手段14及び15が設けられる。   As shown by “FL41” in FIG. 11, a heat transfer means 13 is provided in the central portion of the flow path 16 through which the liquid to be measured flows, and is located on the flow path 16 at equal intervals from the heat transfer means 13. Temperature detection means 14 and 15 are provided.

また、図11中”TU41”及び”TD41”に示すように温度検出手段14及び15の出力はそれぞれ演算制御手段17に接続され、図11中”CT41”に示すように演算制御手段17からの温度制御のための制御信号は伝熱手段13に接続される。   Further, as indicated by “TU41” and “TD41” in FIG. 11, the outputs of the temperature detecting means 14 and 15 are respectively connected to the arithmetic control means 17, and from the arithmetic control means 17 as indicated by “CT41” in FIG. A control signal for temperature control is connected to the heat transfer means 13.

さらに、図12を用いて熱式流量計の他の一例のセンサ部分の具体例をより詳細に説明する。   Furthermore, the specific example of the sensor part of another example of a thermal type flow meter is demonstrated in detail using FIG.

超音波加工、レーザ加工、サンドブラスト加工、ウエットエッチング等によってガラス基板12の短手方向の中央部分であってガラス基板12の長手方向に沿うように長方形の溝が形成される。また、当該長方形の溝が形成された側のガラス基板12にはガラス基板11が接着や熱圧着等により貼り合わされ、接液部分が全てガラスで構成された流路16が形成される。   A rectangular groove is formed along the longitudinal direction of the glass substrate 12 at the central portion in the short direction of the glass substrate 12 by ultrasonic processing, laser processing, sandblasting, wet etching, or the like. In addition, the glass substrate 11 is bonded to the glass substrate 12 on the side where the rectangular groove is formed by bonding, thermocompression bonding, or the like, and a flow path 16 is formed in which the liquid contact portion is entirely made of glass.

また、流路16に接しない側のガラス基板11上であって流路16の中央部分上に位置する部分にはヒータ等の伝熱手段13が蒸着やスパッタリング等によって形成され、流路16の上に位置し流路16に接しない側のガラス基板11上であって伝熱手段13から等間隔の位置には温度検出手段14及び15が蒸着やスパッタリング等によって形成される。   Further, a heat transfer means 13 such as a heater is formed on the glass substrate 11 on the side not in contact with the flow path 16 and on the central portion of the flow path 16 by vapor deposition, sputtering, or the like. Temperature detecting means 14 and 15 are formed by vapor deposition, sputtering or the like on the glass substrate 11 on the upper side and not in contact with the flow path 16 and at equal intervals from the heat transfer means 13.

すなわち、伝熱手段13、温度検出手段14及び15は流路16に接しない側のガラス基板11に形成されるので非接液の状態にある。   That is, since the heat transfer means 13 and the temperature detection means 14 and 15 are formed on the glass substrate 11 on the side not in contact with the flow path 16, they are in a non-wetted state.

ここで、図11及び図12に示す熱式流量計の他の一例の動作を図13を用いて説明する。図13は流量に対する上流側と下流側との温度差、温度和及び温度差を温度和で除算した値の関係をそれぞれ示す特性曲線図である。但し、図6に示す従来例と同様の動作に関しては説明を適宜省略する。   Here, the operation of another example of the thermal flow meter shown in FIGS. 11 and 12 will be described with reference to FIG. FIG. 13 is a characteristic curve diagram showing the relationship between the temperature difference between the upstream side and the downstream side with respect to the flow rate, the temperature sum, and the value obtained by dividing the temperature difference by the temperature sum. However, description of operations similar to those of the conventional example shown in FIG.

演算制御手段17は予め測定された被測定液体の温度に対して、被測定液体が数度程度高い一定温度になるように伝熱手段13を制御する。   The arithmetic control means 17 controls the heat transfer means 13 so that the liquid under measurement has a constant temperature that is several degrees higher than the temperature of the liquid under measurement measured in advance.

このような状態で、上流側の温度検出手段14及び下流側の温度検出手段15で検出される温度の温度差は被測定液体の流量に依存した信号となるので、このような温度差に基づき演算制御手段17で流路16を流れる被測定液体の流量を求めることができる。   In such a state, the temperature difference between the temperatures detected by the upstream temperature detection means 14 and the downstream temperature detection means 15 becomes a signal that depends on the flow rate of the liquid to be measured. The flow rate of the liquid to be measured flowing through the flow path 16 can be obtained by the arithmetic control means 17.

但し、前述の従来例の説明のように、流路の接液部分が全てガラスとした場合には、ガラスの小さな熱伝導率のために、例えば、温度差は図13中”TD51”に示すようにピークを有する特性となり、測定可能な流量範囲が極めて狭くなってしまうといった問題点があった。   However, as described in the above-described conventional example, when the liquid contact portion of the flow path is all made of glass, for example, the temperature difference is indicated by “TD51” in FIG. 13 because of the small thermal conductivity of the glass. Thus, there is a problem that the characteristic has a peak and the measurable flow rate range becomes extremely narrow.

このため、演算制御手段17は上流側の温度検出手段14及び下流側の温度検出手段15で検出される温度の温度差を求めると共に上流側の温度検出手段14及び下流側の温度検出手段15で検出される温度の温度和を求めて温度差を温度和で除算することにより、温度差を規格化する。   For this reason, the arithmetic control means 17 obtains the temperature difference between the temperatures detected by the upstream temperature detection means 14 and the downstream temperature detection means 15 and at the upstream temperature detection means 14 and the downstream temperature detection means 15. The temperature difference is normalized by finding the temperature sum of the detected temperatures and dividing the temperature difference by the temperature sum.

例えば、上流側の温度検出手段14及び下流側の温度検出手段15で検出される温度の温度和は、図13中”TA51”に示すような特性曲線となり、このような特性曲線の温度和で図13中”TD51”に示す温度差を除算することにより、図13中”NT51”に示すような規格化された温度差の特性曲線が得られる。   For example, the temperature sum of the temperatures detected by the upstream temperature detecting means 14 and the downstream temperature detecting means 15 is a characteristic curve as shown by “TA51” in FIG. By dividing the temperature difference indicated by “TD51” in FIG. 13, a normalized temperature difference characteristic curve as indicated by “NT51” in FIG. 13 is obtained.

図13中”NT51”に示すような規格化された温度差は、広い流量範囲において単調増加を示しているので、広い流量範囲を測定することが可能であることがわかる。   Since the normalized temperature difference as indicated by “NT51” in FIG. 13 shows a monotonic increase in a wide flow range, it can be seen that a wide flow range can be measured.

この結果、接液部分が全てガラスで構成された流路16を流れる被測定液体の温度を伝熱手段13で制御し2つの温度検出手段14及び15によって伝熱手段13の上流側及び下流側の流体の温度を測定し、演算制御手段17で当該温度の温度差を温度和で除算した規格化された温度差を求め、当該規格化された温度差に基づき流量を求めることにより、耐腐食性が高く被測定液体の広い流量範囲を測定することが可能になる。   As a result, the temperature of the liquid to be measured flowing through the channel 16 whose liquid contact part is entirely made of glass is controlled by the heat transfer means 13, and the upstream side and the downstream side of the heat transfer means 13 by the two temperature detection means 14 and 15. The temperature of the fluid is measured, the temperature difference of the temperature is calculated by the arithmetic control means 17 to obtain a normalized temperature difference, and the flow rate is obtained on the basis of the normalized temperature difference. This makes it possible to measure a wide flow rate range of the liquid to be measured.

しかし、図11及び図12に示す熱式流量計の他の一例では、流路をガラスで作成し、伝熱手段13や温度検出手段14及び15を流路外に設置した場合、熱式流量計に流れる流体の流量が大きくなると温度和信号が小さくなり、熱式流量計に流れる流体の流量が小さくなると温度差信号が小さくなり、規格化された温度差信号のS/N比が流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域で悪化し、誤差やバラツキが大きくなってしまうと言った問題点があった。
従って本発明が解決しようとする課題は、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域においてS/N比を向上させることが可能な熱式流量計を実現することにある。
However, in another example of the thermal flow meter shown in FIGS. 11 and 12, when the flow path is made of glass and the heat transfer means 13 and the temperature detection means 14 and 15 are installed outside the flow path, the thermal flow rate is measured. When the flow rate of the fluid flowing through the meter increases, the temperature sum signal decreases, and when the flow rate of the fluid flowing through the thermal flow meter decreases, the temperature difference signal decreases, and the fluid in which the standardized S / N ratio of the temperature difference signal flows. However, there is a problem that the error and the variation increase in the region where the flow rate of the fluid increases and the region where the flow rate of the flowing fluid decreases.
Therefore, the problem to be solved by the present invention is to realize a thermal flow meter capable of improving the S / N ratio in a region where the flow rate of flowing fluid is large and a region where the flow rate of flowing fluid is small. .

このような課題を達成するために、本発明のうち請求項1記載の発明は、
流路を流れる液体の温度を制御し温度制御部分の上流側及び下流側の流体の温度差に基づき流量を測定する熱式流量計において、
接液部分が全てガラスで構成された流路と、この流路に設けられた伝熱手段と、前記流路上であって前記伝熱手段から等間隔の位置に設けられた上流側及び下流側の温度検出手段と、前記伝熱手段を周期的な駆動信号で駆動すると共に上流側及び下流側の前記温度検出手段の温度検出信号を駆動信号に基づき同期検波して上流側及び下流側の温度を演算して流量を求める駆動演算手段とを備えたことにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
In the thermal flow meter that controls the temperature of the liquid flowing through the flow path and measures the flow rate based on the temperature difference between the upstream and downstream fluids of the temperature control part,
A flow path in which the liquid contact part is entirely made of glass, a heat transfer means provided in the flow path, and an upstream side and a downstream side provided on the flow path at equal intervals from the heat transfer means Temperature detection means, and the heat transfer means are driven by a periodic drive signal, and the temperature detection signals of the upstream and downstream temperature detection means are synchronously detected based on the drive signal to detect the upstream and downstream temperatures. By providing the drive calculation means for calculating the flow rate by calculating the flow rate, the S / N ratio of the thermal flow meter can be improved in a region where the flow rate of the flowing fluid is large and a region where the flow rate of the flowing fluid is small. .

請求項2記載の発明は、
請求項1記載の発明である熱式流量計において、
前記駆動演算手段が、
前記温度検出手段の温度検出信号を0度移相及び90度移相の駆動信号に基づき同期検波して二乗和の平方根を演算して上流側若しくは下流側の温度を求めることにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。
The invention according to claim 2
In the thermal type flow meter which is the invention according to claim 1,
The drive calculation means is
The temperature detection signal of the temperature detecting means is synchronously detected based on the 0 degree phase shift signal and the 90 degree phase shift drive signal, and the square root of the sum of squares is calculated to obtain the temperature on the upstream side or the downstream side. The S / N ratio of the thermal type flow meter can be improved in a region where the flow rate is large and a region where the flow rate of the flowing fluid is small.

請求項3記載の発明は、
流路を流れる液体の温度を制御し温度制御部分の下流側での温度検出の時刻差に基づき流量を測定する熱式流量計において、
接液部分が全てガラスで構成された流路と、この流路に設けられた伝熱手段と、前記流路上であって前記伝熱手段から等間隔の位置に設けられた上流側及び下流側の温度検出手段と、前記伝熱手段を周期的な駆動信号で駆動すると共に下流側の前記温度検出手段の温度検出信号を駆動信号に基づき同期検波して下流側の前記温度検出手段における駆動信号に対する位相遅れを演算して流量を求める駆動演算手段とを備えたことにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。
The invention described in claim 3
In the thermal flow meter that controls the temperature of the liquid flowing through the flow path and measures the flow rate based on the time difference of temperature detection on the downstream side of the temperature control part,
A flow path in which the liquid contact part is entirely made of glass, a heat transfer means provided in the flow path, and an upstream side and a downstream side provided on the flow path at equal intervals from the heat transfer means The temperature detection means and the heat transfer means are driven by a periodic drive signal, and the temperature detection signal of the downstream temperature detection means is synchronously detected based on the drive signal to drive the downstream temperature detection means. Drive calculating means for calculating the phase lag with respect to the flow rate to obtain the flow rate improves the S / N ratio of the thermal flow meter in the region where the flow rate of the flowing fluid is large and the region where the flow rate of the flowing fluid is small. be able to.

請求項4記載の発明は、
流路を流れる液体の温度を制御し温度制御部分の下流側での温度検出の時刻差に基づき流量を測定する熱式流量計において、
接液部分が全てガラスで構成された流路と、この流路に設けられた伝熱手段と、前記流路上であって前記伝熱手段から等間隔の位置に設けられた上流側及び下流側の温度検出手段と、前記下流側の温度検出手段の外側に設けられた温度検出手段と、前記伝熱手段を周期的な駆動信号で駆動すると共に下流側の2つの前記温度検出手段の温度検出信号を駆動信号に基づき同期検波して下流側の2つの前記温度検出手段間の位相遅れの差分を演算して流量を求める駆動演算手段とを備えたことにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。
The invention according to claim 4
In the thermal flow meter that controls the temperature of the liquid flowing through the flow path and measures the flow rate based on the time difference of temperature detection on the downstream side of the temperature control part,
A flow path in which the liquid contact part is entirely made of glass, a heat transfer means provided in the flow path, and an upstream side and a downstream side provided on the flow path at equal intervals from the heat transfer means Temperature detecting means, a temperature detecting means provided outside the downstream temperature detecting means, and driving the heat transfer means with a periodic drive signal and detecting the temperature of the two downstream temperature detecting means A region in which the flow rate of the flowing fluid is increased by providing drive calculation means for synchronously detecting the signal based on the drive signal and calculating the difference in phase lag between the two temperature detection means on the downstream side to obtain the flow rate The S / N ratio of the thermal flow meter can be improved in a region where the flow rate of the flowing fluid is small.

請求項5記載の発明は、
請求項3若しくは請求項4記載の発明である熱式流量計において、
前記駆動演算手段が、
前記温度検出手段の温度検出信号を0度移相及び90度移相の駆動信号に基づき同期検波して同期検波信号の比の逆正接を演算して駆動信号に対する位相遅れ、若しくは、位相遅れの差分を求めることにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。
The invention according to claim 5
In the thermal type flow meter which is invention of Claim 3 or Claim 4,
The drive calculation means is
The temperature detection signal of the temperature detection means is synchronously detected based on the drive signal of 0 degree phase shift and 90 degree phase shift, and the arc tangent of the ratio of the synchronous detection signal is calculated to calculate the phase lag with respect to the drive signal, or the phase lag By obtaining the difference, the S / N ratio of the thermal flow meter can be improved in the region where the flow rate of the flowing fluid is large and the region where the flow rate of the flowing fluid is small.

請求項6記載の発明は、
請求項1乃至請求項5のいずれかに記載の発明である熱式流量計において、
前記駆動演算手段が、
周期的な駆動信号を前記伝熱手段に供給する駆動波形発生手段と、前記駆動信号を0度移相及び90度移相させる2つのバッファアンプと、前記温度検出手段からの温度検出信号と0度移相及び90度移相の駆動信号とをそれぞれ乗算させる2つのミキサと、これら2つのミキサの出力が入力される2つのローパスフィルタ手段と、これら2つのローパスフィルタ手段の出力に基づき上流側、下流側の温度、若しくは、駆動信号に対する位相遅れを演算する演算制御手段とから構成されたことにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。
The invention described in claim 6
In the thermal type flow meter which is the invention according to any one of claims 1 to 5,
The drive calculation means is
Drive waveform generating means for supplying a periodic drive signal to the heat transfer means, two buffer amplifiers for shifting the drive signal by 0 degrees and 90 degrees, a temperature detection signal from the temperature detection means, and 0 Two mixers for multiplying the drive signals of the phase shift and the phase shift of 90 degrees, two low-pass filter means to which the outputs of these two mixers are input, and the upstream side based on the outputs of these two low-pass filter means And a calculation control means for calculating the phase lag with respect to the downstream temperature or the drive signal, so that the thermal flow meter can be used in a region where the flow rate of the flowing fluid is large and a region where the flow rate of the flowing fluid is small. The S / N ratio can be improved.

請求項7記載の発明は、
請求項1乃至請求項6のいずれかに記載の発明である熱式流量計において、
前記駆動演算手段が、
温度検出信号を駆動信号に基づき同期検波して上流側及び下流側の温度並びに駆動信号に対する位相遅れを同時に求めることにより、流量測定範囲を広げることができ、また、流量に加えて流体の熱的物性値の測定を行なうことができる。
The invention described in claim 7
In the thermal type flow meter which is the invention according to any one of claims 1 to 6,
The drive calculation means is
By synchronously detecting the temperature detection signal based on the drive signal and simultaneously obtaining the upstream and downstream temperatures and the phase lag with respect to the drive signal, the flow rate measurement range can be expanded, and in addition to the flow rate, the fluid thermal Physical property values can be measured.

請求項8記載の発明は、
請求項7記載の発明である熱式流量計において、
前記駆動演算手段が、
上流側及び下流側の温度、若しくは、位相遅れを用いて流量測定を行なうと共に位相遅れ、若しくは、上流側及び下流側の温度を用いて流量の校正処理を行うことにより、流量測定を行ないながら校正処理を行うことが可能になる。
The invention described in claim 8
In the thermal type flow meter which is the invention according to claim 7,
The drive calculation means is
Calibrate while measuring the flow rate by measuring the flow rate using the upstream and downstream temperature or phase lag and performing the flow rate calibration process using the phase lag or upstream and downstream temperature. Processing can be performed.

本発明によれば次のような効果がある。
請求項1,2及び請求項6の発明によれば、伝熱手段を正弦波等の周期的な駆動信号で駆動すると共に温度検出手段の温度検出信号を駆動信号(0度移相及び90度移相)に基づき同期検波して二乗和の平方根を演算して、上流側及び下流側の温度検出手段の温度を求めることにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。
The present invention has the following effects.
According to the first, second and sixth aspects of the invention, the heat transfer means is driven by a periodic drive signal such as a sine wave, and the temperature detection signal of the temperature detection means is driven by a drive signal (0 degree phase shift and 90 degrees). Based on the phase shift), the square root of the sum of squares is calculated, and the temperatures of the upstream and downstream temperature detecting means are obtained, whereby the flow rate of the flowing fluid is increased and the flow rate of the flowing fluid is decreased. The S / N ratio of the thermal flow meter can be improved in the region.

また、請求項3,4,5及び請求項6の発明によれば、伝熱手段を正弦波等の周期的な駆動信号で駆動すると共に下流側の温度検出手段の温度検出信号を駆動信号(0度移相及び90度移相)に基づき同期検波して比の逆正接を演算して、駆動信号に対する位相遅れ(流速)、若しくは、位相遅れの差分を求めると共に、位相遅れ、若しくは、各温度検出手段における位相遅れの差分に基づき流量を測定することにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。   According to the third, fourth, fifth and sixth aspects of the invention, the heat transfer means is driven by a periodic drive signal such as a sine wave, and the temperature detection signal of the downstream temperature detection means is driven by the drive signal ( (Synchronous detection based on 0 degree phase shift and 90 degree phase shift) to calculate the arc tangent of the ratio to obtain the phase lag (flow velocity) or phase lag difference with respect to the drive signal, and the phase lag or each By measuring the flow rate based on the phase lag difference in the temperature detection means, the S / N ratio of the thermal flow meter can be improved in the region where the flow rate of the flowing fluid is large and the region where the flow rate of the flowing fluid is small. .

また、請求項7の発明によれば、温度検出信号を駆動信号に基づき同期検波して上流側及び下流側の温度並びに駆動信号に対する位相遅れを同時に求めることにより、流量測定範囲を広げることができ、流量に加えて流体の熱的物性値の測定を行なうことができる。   According to the invention of claim 7, the flow rate measurement range can be expanded by synchronously detecting the temperature detection signal based on the drive signal and simultaneously obtaining the upstream and downstream temperatures and the phase delay with respect to the drive signal. In addition to the flow rate, the thermal property value of the fluid can be measured.

また、請求項8の発明によれば、上流側及び下流側の温度、若しくは、位相遅れを用いて流量測定を行なうと共に位相遅れ、若しくは、上流側及び下流側の温度を用いて流量の校正処理を行うことにより、流量測定を行ないながら校正処理を行うことが可能になる。   According to the eighth aspect of the present invention, the flow rate is measured using the upstream and downstream temperatures or the phase delay, and the flow rate is corrected using the phase delay or the upstream and downstream temperatures. By performing this, it becomes possible to perform the calibration process while measuring the flow rate.

以下本発明を図面を用いて詳細に説明する。図1は本発明に係る熱式流量計の一実施例を示す構成ブロック図、図2は本発明に係る熱式流量計の一実施例のセンサ部分の具体例を示す平面図及び断面図である。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration block diagram showing an embodiment of a thermal flow meter according to the present invention, and FIG. 2 is a plan view and a cross-sectional view showing a specific example of a sensor portion of an embodiment of the thermal flow meter according to the present invention. is there.

図1及び図2において、18はガラス基板、19はガラス基板18に形成された流路、20は流路19を流れる流体の温度を加熱して一定温度にするヒータ等の伝熱手段、21及び22はサーミスタや白金測温抵抗体等の温度検出手段、23は伝熱手段を駆動すると共に上流側及び下流側の流体の温度差に基づき流量を求める駆動演算手段である。また、18,19,20,21及び22は流量計チップ50を構成している   1 and 2, 18 is a glass substrate, 19 is a flow path formed in the glass substrate 18, 20 is a heat transfer means such as a heater that heats the temperature of the fluid flowing through the flow path 19 to a constant temperature, 21 Reference numerals 22 and 22 denote temperature detection means such as a thermistor and a platinum resistance temperature detector, and 23 denotes a drive calculation means for driving the heat transfer means and obtaining the flow rate based on the temperature difference between the upstream and downstream fluids. Further, 18, 19, 20, 21, and 22 constitute a flow meter chip 50.

図1中”IN51”に示す流入孔から被測定流体が注入され、図1中”OT51”に示す流出孔から被測定流体が放出される。このため、流路19では図1中”FL51”に示す方向に被測定流体が流れることになる。   The fluid to be measured is injected from the inflow hole indicated by “IN51” in FIG. 1, and the fluid to be measured is discharged from the outflow hole indicated by “OT51” in FIG. Therefore, the fluid to be measured flows in the flow path 19 in the direction indicated by “FL51” in FIG.

図1中”FL51”に示すように被測定液体が流れる流路19の中央部分には伝熱手段20が設けられ、この流路19上であって伝熱手段20から等間隔の位置には温度検出手段21及び22が設けられる。   As shown by “FL51” in FIG. 1, a heat transfer means 20 is provided in the central portion of the flow path 19 through which the liquid to be measured flows, and is located on the flow path 19 at equal intervals from the heat transfer means 20. Temperature detection means 21 and 22 are provided.

また、温度検出手段21及び22の出力はそれぞれ駆動演算手段23に接続され、駆動演算手段23からの温度制御のための駆動信号は伝熱手段20に接続される。   The outputs of the temperature detection means 21 and 22 are connected to the drive calculation means 23, and the drive signal for temperature control from the drive calculation means 23 is connected to the heat transfer means 20.

さらに、図2を用いて本発明に係る熱式流量計の一実施例の流量計チップ50の具体例をより詳細に説明する。図2において24はガラス基板であり、18,19,20,21及び22は図1と同一符号を付してある。   Furthermore, the specific example of the flowmeter chip | tip 50 of one Example of the thermal type flow meter which concerns on this invention is demonstrated in detail using FIG. In FIG. 2, 24 is a glass substrate, and 18, 19, 20, 21 and 22 are assigned the same reference numerals as in FIG.

超音波加工、レーザ加工、サンドブラスト加工、ウエットエッチング等によってガラス基板18の短手方向の中央部分であってガラス基板18の長手方向に沿うように長方形の溝が形成される。また、当該長方形の溝が形成された側のガラス基板18にはガラス基板24が接着や熱圧着等により貼り合わされ、接液部分が全てガラスで構成された流路19が形成される。   A rectangular groove is formed along the longitudinal direction of the glass substrate 18 at the central portion in the short direction of the glass substrate 18 by ultrasonic processing, laser processing, sandblasting, wet etching, or the like. In addition, the glass substrate 24 is bonded to the glass substrate 18 on the side where the rectangular groove is formed, by bonding, thermocompression bonding, or the like, and the flow path 19 in which the liquid contact portion is entirely made of glass is formed.

また、流路19に接しない側のガラス基板24上であって流路19の中央部分上に位置する部分にはヒータ等の伝熱手段20が蒸着やスパッタリング等によって形成され、流路19の上に位置し流路19に接しない側のガラス基板24上であって伝熱手段20から等間隔の位置には温度検出手段21及び22が蒸着やスパッタリング等によって形成される。   A heat transfer means 20 such as a heater is formed on the glass substrate 24 on the side not in contact with the flow path 19 and on the central portion of the flow path 19 by vapor deposition or sputtering. Temperature detecting means 21 and 22 are formed by vapor deposition, sputtering, or the like on the glass substrate 24 located on the upper side and not in contact with the flow path 19 and at equal intervals from the heat transfer means 20.

すなわち、伝熱手段20、温度検出手段21及び22は流路19に接しない側のガラス基板24に形成されるので非接液の状態にある。   That is, since the heat transfer means 20 and the temperature detection means 21 and 22 are formed on the glass substrate 24 on the side not in contact with the flow path 19, they are in a non-wetted state.

また、図3は駆動演算手段の具体例を示す構成ブロック図であり、図3において、25は正弦波等の周期的な駆動信号を発生させる駆動波形発生手段、26は駆動信号の位相を90度移相させるバッファアンプ、27は駆動信号の位相を0度移相させるバッファアンプ、28及び29はミキサ、30及び31はローパスフィルタ手段、32はCPU等の演算制御手段、33は伝熱手段、34は上流側若しくは下流側どちらか一方の温度検出手段である。   FIG. 3 is a block diagram showing a specific example of the drive calculation means. In FIG. 3, reference numeral 25 denotes drive waveform generation means for generating a periodic drive signal such as a sine wave, and 26 denotes the phase of the drive signal. The buffer amplifier 27 shifts the phase of the drive signal, 27 is a buffer amplifier that shifts the phase of the drive signal by 0 degree, 28 and 29 are mixers, 30 and 31 are low-pass filter means, 32 is arithmetic control means such as a CPU, and 33 is heat transfer means. 34 are temperature detection means on either the upstream side or the downstream side.

また、25,26,27,28,29,30,31及び32は駆動演算手段22を構成している。   Reference numerals 25, 26, 27, 28, 29, 30, 31, and 32 constitute the drive calculation means 22.

駆動波形発生手段25の一端はバッファアンプ26及び27の入力端子と、伝熱手段33の一端にそれぞれ接続される。また、バッファンプ26の出力はミキサ28の一方の入力端子に接続され、バッファアンプ27の出力はミキサ29の一方の入力端子に接続される   One end of the drive waveform generating means 25 is connected to the input terminals of the buffer amplifiers 26 and 27 and one end of the heat transfer means 33, respectively. The output of the buffer amplifier 26 is connected to one input terminal of the mixer 28, and the output of the buffer amplifier 27 is connected to one input terminal of the mixer 29.

温度検出手段34の一端はミキサ28及び29の他方の入力端子にそれぞれ接続され、ミキサ28及び29の出力はローパスフィルタ手段30及び31を介して演算制御手段32の2つの入力端子にそれぞれ接続される。最後に、駆動波形発生手段25の他端、伝熱手段33の他端及び温度検出手段34の他端はそれぞれ接地される。   One end of the temperature detecting means 34 is connected to the other input terminals of the mixers 28 and 29, respectively, and the outputs of the mixers 28 and 29 are connected to the two input terminals of the arithmetic control means 32 via the low-pass filter means 30 and 31, respectively. The Finally, the other end of the drive waveform generating means 25, the other end of the heat transfer means 33, and the other end of the temperature detecting means 34 are grounded.

ここで、図1に示す実施例の動作を説明する。但し、図6に示す従来例と同様の動作説明に関しては適宜説明を省略する。   Here, the operation of the embodiment shown in FIG. 1 will be described. However, the description of the operation similar to that of the conventional example shown in FIG.

駆動演算手段22は正弦波等の周期的な駆動信号を伝熱手段20に印加する。具体的には、駆動波形発生手段25の出力である正弦波等の周期的な駆動信号を伝熱手段33に印加する。このため、伝熱手段20は流路19を流れる流体の温度を周期的に加熱することになる。   The drive calculation means 22 applies a periodic drive signal such as a sine wave to the heat transfer means 20. Specifically, a periodic drive signal such as a sine wave that is the output of the drive waveform generating means 25 is applied to the heat transfer means 33. For this reason, the heat transfer means 20 periodically heats the temperature of the fluid flowing through the flow path 19.

一方、温度検出手段21及び22の温度検出信号は駆動演算手段23に供給され、伝熱手段20を駆動する駆動信号に基づき同期検波される。   On the other hand, the temperature detection signals of the temperature detection means 21 and 22 are supplied to the drive calculation means 23 and synchronously detected based on the drive signal for driving the heat transfer means 20.

具体的には、温度検出手段34(温度検出手段21、或いは、温度検出手段22)からの温度検出信号は、ミキサ28で駆動信号の位相を90度移相させた信号と乗算されローパスフィルタ手段30で高周波成分を除去され、駆動信号(90度移相)に基づき同期検波される。   Specifically, the temperature detection signal from the temperature detection means 34 (temperature detection means 21 or temperature detection means 22) is multiplied by a signal obtained by shifting the phase of the drive signal by 90 degrees by the mixer 28, and the low-pass filter means. The high frequency component is removed at 30 and synchronous detection is performed based on the drive signal (90-degree phase shift).

同様に、温度検出手段34(温度検出手段21、或いは、温度検出手段22)からの温度検出信号は、ミキサ29で駆動信号の位相を0度移相させた信号と乗算されローパスフィルタ手段31で高周波成分を除去され、駆動信号(0度移相)に基づき同期検波される。   Similarly, the temperature detection signal from the temperature detection means 34 (temperature detection means 21 or temperature detection means 22) is multiplied by a signal obtained by shifting the phase of the drive signal by 0 degrees by the mixer 29, and then the low-pass filter means 31. The high frequency component is removed, and synchronous detection is performed based on the drive signal (0 degree phase shift).

そして、演算制御手段32は、このように得られた2つの同期検波信号の二乗和の平方根を演算することにより、温度検出手段34(温度検出手段21、或いは、温度検出手段22)における温度を求める。   Then, the calculation control means 32 calculates the temperature in the temperature detection means 34 (temperature detection means 21 or temperature detection means 22) by calculating the square root of the square sum of the two synchronous detection signals obtained in this way. Ask.

但し、図3においては、説明の簡単のため、上流側若しくは下流側どちらか一方の温度検出手段が例示されているが、実際の駆動演算手段22では、上流側及び下流側双方の温度検出手段21及び22の温度検出信号を駆動信号(0度移相及び90度移相)に基づき同期検波して、温度検出手段21及び22における温度をそれぞれ求めることになる。   However, in FIG. 3, for the sake of simplicity of explanation, either the upstream or downstream temperature detection means is illustrated, but in the actual drive calculation means 22, both upstream and downstream temperature detection means. The temperature detection signals 21 and 22 are synchronously detected based on the drive signals (0 degree phase shift and 90 degree phase shift), and the temperatures in the temperature detection means 21 and 22 are obtained, respectively.

最後に、演算制御手段32が温度検出手段21及び22における温度差に基づき流量を求めることにより、被測定液体の流量を測定する。   Finally, the calculation control unit 32 obtains the flow rate based on the temperature difference between the temperature detection units 21 and 22, thereby measuring the flow rate of the liquid to be measured.

図6等に示す従来例では伝熱手段を直流的に制御していたのに比較して、伝熱手段を周期的に駆動して、当該駆動信号で温度検出信号を同期検波することにより、ノイズ成分の除去が可能になり、S/N比を向上させることが可能になる。   In the conventional example shown in FIG. 6 and the like, the heat transfer means is controlled in a direct current manner. By periodically driving the heat transfer means and synchronously detecting the temperature detection signal with the drive signal, Noise components can be removed, and the S / N ratio can be improved.

この結果、伝熱手段を正弦波等の周期的な駆動信号で駆動すると共に温度検出手段の温度検出信号を駆動信号(0度移相及び90度移相)に基づき同期検波して二乗和の平方根を演算して、上流側及び下流側の温度検出手段の温度を求めることにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。   As a result, the heat transfer means is driven by a periodic drive signal such as a sine wave, and the temperature detection signal of the temperature detection means is synchronously detected based on the drive signal (0 degree phase shift and 90 degree phase shift) to calculate the sum of squares. By calculating the square root and obtaining the temperatures of the temperature detection means on the upstream side and downstream side, the S / N ratio of the thermal flow meter is calculated in the region where the flow rate of the flowing fluid is large and the region where the flow rate of the flowing fluid is small. Can be improved.

また、従来例と同様に、温度差を温度和で除算した規格化された温度差を求め、当該規格化された温度差に基づき流量を求めることにより、さらに高精度で広帯域な流量測定が可能になる。   In addition, as in the conventional example, a standardized temperature difference obtained by dividing the temperature difference by the temperature sum is obtained, and the flow rate is obtained based on the standardized temperature difference, thereby enabling more accurate and broadband flow rate measurement. become.

なお、図1等に示す実施例では、温度検出信号を駆動信号(0度移相及び90度移相)に基づき同期検波して二乗和の平方根を演算して温度を求めているが、2つの同期検波信号の比から位相遅れを測定して、TOF(Time of Flight:以下、単にTOF法と呼ぶ。)法により流量を測定しても構わない。   In the embodiment shown in FIG. 1 and the like, the temperature is obtained by synchronously detecting the temperature detection signal based on the driving signal (0 degree phase shift and 90 degree phase shift) and calculating the square root of the sum of squares. The phase lag may be measured from the ratio of the two synchronous detection signals, and the flow rate may be measured by the TOF (Time of Flight) method.

例えば、下流側の温度検出手段34からの温度検出信号は、ミキサ28で駆動信号の位相を90度移相させた信号と乗算されローパスフィルタ手段30で高周波成分を除去され、駆動信号(90度移相)に基づき同期検波される。   For example, the temperature detection signal from the temperature detection means 34 on the downstream side is multiplied by a signal obtained by shifting the phase of the drive signal by 90 degrees by the mixer 28, the high frequency component is removed by the low-pass filter means 30, and the drive signal (90 degrees) Synchronous detection based on phase shift).

同様に、下流側の温度検出手段34からの温度検出信号は、ミキサ29で駆動信号の位相を0度移相させた信号と乗算されローパスフィルタ手段31で高周波成分を除去され、駆動信号(0度移相)に基づき同期検波される。   Similarly, the temperature detection signal from the temperature detection means 34 on the downstream side is multiplied by a signal obtained by shifting the phase of the drive signal by 0 degrees by the mixer 29, the high frequency component is removed by the low pass filter means 31, and the drive signal (0 Synchronous detection based on phase shift).

そして、演算制御手段32は、このように得られた2つの同期検波信号の比の逆正接(アークタンジェント)を演算することにより、駆動信号に対する位相遅れが求められ、この位相遅れは熱が流体によって運ばれる時間に相当、言い換えれば、流速に相当するのでTOF法により流量を得ることができる。   Then, the calculation control means 32 calculates the arc tangent (arc tangent) of the ratio of the two synchronous detection signals obtained in this way, thereby obtaining a phase delay with respect to the drive signal. It corresponds to the time carried by the above, in other words, it corresponds to the flow velocity, so that the flow rate can be obtained by the TOF method.

例えば、図4はTOF法を説明する説明図であり、図4中”HT61”は伝熱手段、図4中”TS61”及び”TS62”は下流側に設けられた温度検出手段である。図4中”FL61”に示すように被測定液体が流路を流れた場合、時刻”T0”で伝熱手段により加熱された温度は、流路を伝播して時刻”T1”で図4中”TS61”に示す温度検出手段で検出されることになる。   For example, FIG. 4 is an explanatory diagram for explaining the TOF method. In FIG. 4, “HT61” is a heat transfer means, and in FIG. 4, “TS61” and “TS62” are temperature detection means provided on the downstream side. When the liquid to be measured flows through the flow path as indicated by “FL61” in FIG. 4, the temperature heated by the heat transfer means at time “T0” propagates through the flow path at time “T1” in FIG. It is detected by the temperature detecting means indicated by “TS61”.

ここで、”L1=T1−T0”は被測定流体の流速(位相遅れ)であるで、当該流速が分かれば、既知である流路の断面積から流量を測定することができる。   Here, “L1 = T1−T0” is the flow velocity (phase delay) of the fluid to be measured. If the flow velocity is known, the flow rate can be measured from the known cross-sectional area of the flow path.

この結果、伝熱手段を正弦波等の周期的な駆動信号で駆動すると共に下流側の温度検出手段の温度検出信号を駆動信号(0度移相及び90度移相)に基づき同期検波して比の逆正接(アークタンジェント)を演算して、駆動信号に対する位相遅れ(流速)を求めることにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。   As a result, the heat transfer means is driven by a periodic drive signal such as a sine wave, and the temperature detection signal of the downstream temperature detection means is synchronously detected based on the drive signal (0 degree phase shift and 90 degree phase shift). By calculating the arc tangent of the ratio and calculating the phase lag (flow velocity) with respect to the drive signal, the S of the thermal type flow meter is used in a region where the flow rate of the flowing fluid is large and a region where the flow rate of the flowing fluid is small. / N ratio can be improved.

また、従来のTOF法のように複数の温度検出手段を設けて、2つの温度検出手段における位相遅れの差分に基づき流量を測定しても構わない。   Further, a plurality of temperature detection means may be provided as in the conventional TOF method, and the flow rate may be measured based on the difference in phase delay between the two temperature detection means.

図5は本発明に係る熱式流量計の他の実施例を示す構成ブロック図である。図5において、35はガラス基板、36はガラス基板35に形成された流路、37は流路36を流れる流体の温度を加熱して一定温度にするヒータ等の伝熱手段、38,39,40,41,42及び43はサーミスタや白金測温抵抗体等の温度検出手段、44は伝熱手段を駆動すると共に2つの温度検出手段における位相遅れの差分に基づき流量を求める駆動演算手段である。また、35,36,37,38,39,40,41,42,43及び44は流量計チップ51を構成している   FIG. 5 is a block diagram showing the configuration of another embodiment of the thermal type flow meter according to the present invention. In FIG. 5, 35 is a glass substrate, 36 is a flow path formed in the glass substrate 35, 37 is a heat transfer means such as a heater for heating the temperature of the fluid flowing through the flow path 36 to a constant temperature, 38, 39, Reference numerals 40, 41, 42, and 43 denote temperature detection means such as a thermistor and a platinum resistance temperature detector, and 44 denotes a drive calculation means that drives the heat transfer means and obtains a flow rate based on the difference in phase delay between the two temperature detection means. . Further, 35, 36, 37, 38, 39, 40, 41, 42, 43 and 44 constitute a flow meter chip 51.

図5中”IN71”に示す流入孔から被測定流体が注入され、図5中”OT71”に示す流出孔から被測定流体が放出される。このため、流路36では図5中”FL71”に示す方向に被測定流体が流れることになる。   The fluid to be measured is injected from the inflow hole indicated by “IN71” in FIG. 5, and the fluid to be measured is discharged from the outflow hole indicated by “OT71” in FIG. Therefore, the fluid to be measured flows in the flow path 36 in the direction indicated by “FL71” in FIG.

図5中”FL71”に示すように被測定液体が流れる流路36の中央部分には伝熱手段37が設けられ、この流路36上であって伝熱手段37から等間隔の位置には温度検出手段40及び41が設けられる。   As shown by “FL71” in FIG. 5, a heat transfer means 37 is provided in the central portion of the flow path 36 through which the liquid to be measured flows, and is located on the flow path 36 at equal intervals from the heat transfer means 37. Temperature detection means 40 and 41 are provided.

同様に、流路36上であって温度検出手段40及び41の外側(伝熱手段37が設けあれていない側)には温度検出手段39及び42、温度検出手段38及び43が順次設けられる。   Similarly, temperature detection means 39 and 42 and temperature detection means 38 and 43 are sequentially provided on the flow path 36 and outside the temperature detection means 40 and 41 (the side where the heat transfer means 37 is not provided).

また、温度検出手段38,39,40,41,42及び43の出力はそれぞれ駆動演算手段44に接続され、駆動演算手段44からの温度制御のための駆動信号は伝熱手段37に接続される。   Further, the outputs of the temperature detection means 38, 39, 40, 41, 42 and 43 are connected to the drive calculation means 44, respectively, and the drive signal for temperature control from the drive calculation means 44 is connected to the heat transfer means 37. .

ここで、図1に示す実施例の動作を説明する。但し、駆動演算手段の構成は図3と同様であり、図1に示す実施例と同様の動作説明に関しては適宜説明を省略する。   Here, the operation of the embodiment shown in FIG. 1 will be described. However, the configuration of the drive calculation means is the same as in FIG. 3, and the description of the operation similar to that of the embodiment shown in FIG.

駆動演算手段44は、伝熱手段37は正弦波等の周期的な駆動信号で駆動し、下流側の各温度検出手段41〜43の温度検出信号は駆動信号(0度移相及び90度移相)に基づき同期検波され、同期検波信号の比の逆正接(アークタンジェント)を演算することにより、下流側の各温度検出手段41〜43における駆動信号に対する位相遅れが求める。   In the drive calculation means 44, the heat transfer means 37 is driven by a periodic drive signal such as a sine wave, and the temperature detection signals of the downstream temperature detection means 41 to 43 are drive signals (0 degree phase shift and 90 degree shift). The phase lag with respect to the drive signal in each of the temperature detecting means 41 to 43 on the downstream side is obtained by calculating the arctangent of the ratio of the synchronous detection signals.

そして、駆動演算手段44は、下流側の各温度検出手段41〜43間の位相遅れの差分に基づき流量を測定する。   And the drive calculating means 44 measures a flow volume based on the difference of the phase delay between each temperature detection means 41-43 of downstream.

例えば、図4中”FL61”に示すように被測定液体が流路を流れた場合、時刻”T0”で伝熱手段により加熱された温度は、流路を伝播して時刻”T1”で図4中”TS61”に示す温度検出手段で検出され、さらに、時刻”T2”で図4中”TS62”に示す温度検出手段で検出されることになる。   For example, when the liquid to be measured flows through the flow path as indicated by “FL61” in FIG. 4, the temperature heated by the heat transfer means at time “T0” propagates through the flow path and is shown at time “T1”. 4 is detected by the temperature detecting means indicated by “TS61” in FIG. 4 and further detected by the temperature detecting means indicated by “TS62” in FIG. 4 at time “T2”.

ここで、”L2=T2−T1”は被測定流体の流速(位相遅れ)であるで、当該流速が分かれば、既知である流路の断面積から流量を測定することができる。   Here, “L2 = T2−T1” is the flow velocity (phase delay) of the fluid to be measured. If the flow velocity is known, the flow rate can be measured from the known cross-sectional area of the flow path.

この結果、伝熱手段を正弦波等の周期的な駆動信号で駆動すると共に下流側の温度検出手段の温度検出信号を駆動信号(0度移相及び90度移相)に基づき同期検波して比の逆正接(アークタンジェント)を演算して、駆動信号に対する位相遅れ(流速)を求めると共に、各温度検出手段における位相遅れの差分に基づき流量を測定することにより、流れる流体の流量が大きくなる領域と流れる流体の流量が小さくなる領域において熱式流量計のS/N比を向上させることができる。   As a result, the heat transfer means is driven by a periodic drive signal such as a sine wave, and the temperature detection signal of the downstream temperature detection means is synchronously detected based on the drive signal (0 degree phase shift and 90 degree phase shift). By calculating the arc tangent of the ratio to obtain the phase lag (flow velocity) with respect to the drive signal and measuring the flow rate based on the phase lag difference in each temperature detection means, the flow rate of the flowing fluid increases. The S / N ratio of the thermal flow meter can be improved in a region where the flow rate of the flowing fluid is small.

また、温度(同期検波信号の二乗和の平方根)、及び、位相遅れ(同期検波信号の比の逆正接)は同時に求めることができるので、両者を併用することにより、流量測定範囲を広げることが可能になる。   In addition, temperature (square root of sum of squares of synchronous detection signal) and phase lag (inverse tangent of ratio of synchronous detection signal) can be obtained at the same time, so the flow rate measurement range can be expanded by using both together. It becomes possible.

例えば、温度差に基づく方法と、TOF法との測定可能な流量範囲がずれている場合、一方の方法で流量測定が可能で、他方の方法では流量測定ができないことが生じる。このため、両者の方法を組み合わせることにより、流量測定範囲を広げることが可能になる。   For example, when the measurable flow rate range between the method based on the temperature difference and the TOF method is different, the flow rate can be measured by one method, and the flow rate cannot be measured by the other method. For this reason, it becomes possible to extend the flow rate measurement range by combining both methods.

また、温度(同期検波信号の二乗和の平方根)、及び、位相遅れ(同期検波信号の比の逆正接)は同時に求めることができるので、両者を併用することにより、流体の熱的特性値(熱伝導率等)の測定を行なうことが可能になる。   Moreover, since the temperature (square root of the sum of squares of the synchronous detection signal) and the phase delay (inverse tangent of the ratio of the synchronous detection signal) can be obtained at the same time, the thermal characteristic value of the fluid ( It is possible to measure thermal conductivity and the like.

すなわち、TOF法は流量にのみ依存した情報が得られるのに対して、温度差に基づく方法(以下、温度差法と呼ぶ。)では、流量と流体の熱的特性値(熱伝導率等)の双方に依存した情報が得られるので、流体の熱的特性値が未知の場合、TOF法で流量を測定しその測定結果と温度差法で得られた信号に基づき熱的特性値を計算することができる。   In other words, the TOF method can obtain information depending only on the flow rate, whereas the method based on the temperature difference (hereinafter referred to as the temperature difference method) has a flow characteristic and a thermal characteristic value (thermal conductivity, etc.) of the fluid. Therefore, if the thermal characteristic value of the fluid is unknown, the flow rate is measured by the TOF method, and the thermal characteristic value is calculated based on the measurement result and the signal obtained by the temperature difference method. be able to.

また、温度(同期検波信号の二乗和の平方根)、及び、位相遅れ(同期検波信号の比の逆正接)は同時に求めることができるので、両者を併用することにより、流量測定を行ないながら校正処理を行うことが可能になる。   In addition, temperature (square root of sum of squares of synchronous detection signal) and phase lag (inverse tangent of ratio of synchronous detection signal) can be obtained at the same time. It becomes possible to do.

例えば、温度(若しくは、位相遅れ)を用いて流量測定を行なうと共に位相遅れ(若しくは、温度)を用いて流量の校正処理を行う。   For example, flow rate measurement is performed using temperature (or phase delay) and flow rate calibration processing is performed using phase delay (or temperature).

本発明に係る熱式流量計の一実施例を示す構成ブロック図である。It is a block diagram showing the configuration of an embodiment of a thermal flow meter according to the present invention. 本発明に係る熱式流量計の一実施例のセンサ部分の具体例を示す平面図及び断面図である。It is the top view and sectional drawing which show the specific example of the sensor part of one Example of the thermal type flow meter which concerns on this invention. 駆動演算手段の具体例を示す構成ブロック図である。It is a block diagram showing a specific example of the drive calculation means. TOF法を説明する説明図である。It is explanatory drawing explaining TOF method. 本発明に係る熱式流量計の他の実施例を示す構成ブロック図である。It is a block diagram which shows the other Example of the thermal type flow meter which concerns on this invention. 従来の熱式流量計の一例を示す構成ブロック図である。It is a block diagram showing an example of a conventional thermal flow meter. 流路の位置に対する流路内の被測定液体の温度分布の一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the temperature distribution of the to-be-measured liquid in a flow path with respect to the position of a flow path. 従来の熱式流量計の他の一例を示す斜視図である。It is a perspective view which shows another example of the conventional thermal type flow meter. 従来の熱式流量計の他の一例を示す断面図である。It is sectional drawing which shows another example of the conventional thermal type flow meter. 上流側と下流側との温度差と、流量との関係を示す特性曲線図である。It is a characteristic curve figure which shows the relationship between the temperature difference of an upstream and a downstream, and flow volume. 熱式流量計の他の一例を示す構成ブロック図である。It is a block diagram which shows another example of a thermal type flow meter. 熱式流量計の他の一例のセンサ部分の具体例を示す平面図及び断面図である。It is the top view and sectional drawing which show the specific example of the sensor part of another example of a thermal type flow meter. 流量に対する上流側と下流側との温度差、温度和及び温度差を温度和で除算した値の関係をそれぞれ示す特性曲線図である。It is a characteristic curve figure which shows the relationship of the value which divided the temperature difference of the upstream and downstream with respect to flow volume, a temperature sum, and the temperature difference divided by the temperature sum.

符号の説明Explanation of symbols

1,10,16,19,36 流路
2,8,13,20,33,37 伝熱手段
3,4,14,15,21,22,34,38,39,40,41,42,43 温度検出手段
5,17,32 演算制御手段
6,11,12,18,24 ガラス基板
7,9,35 シリコン基板
23,44 駆動演算手段
25 駆動波形発生手段
26,27 バッファアンプ
28,29 ミキサ
30,31 ローパスフィルタ手段、
50,51 流量計チップ
1,10,16,19,36 Flow path 2,8,13,20,33,37 Heat transfer means 3,4,14,15,21,22,34,38,39,40,41,42,43 Temperature detection means 5, 17, 32 Operation control means 6, 11, 12, 18, 24 Glass substrate 7, 9, 35 Silicon substrate 23, 44 Drive operation means 25 Drive waveform generation means 26, 27 Buffer amplifier 28, 29 Mixer 30 31 Low pass filter means,
50,51 Flow meter chip

Claims (8)

流路を流れる液体の温度を制御し温度制御部分の上流側及び下流側の流体の温度差に基づき流量を測定する熱式流量計において、
接液部分が全てガラスで構成された流路と、
この流路に設けられた伝熱手段と、
前記流路上であって前記伝熱手段から等間隔の位置に設けられた上流側及び下流側の温度検出手段と、
前記伝熱手段を周期的な駆動信号で駆動すると共に上流側及び下流側の前記温度検出手段の温度検出信号を駆動信号に基づき同期検波して上流側及び下流側の温度を演算して流量を求める駆動演算手段と
を備えたことを特徴とする熱式流量計。
In the thermal flow meter that controls the temperature of the liquid flowing through the flow path and measures the flow rate based on the temperature difference between the upstream and downstream fluids of the temperature control part,
A channel in which the wetted parts are all made of glass,
A heat transfer means provided in the flow path;
Upstream and downstream temperature detection means provided on the flow path at equal intervals from the heat transfer means;
The heat transfer means is driven by a periodic drive signal, and the temperature detection signals of the upstream and downstream temperature detection means are synchronously detected based on the drive signal, and the upstream and downstream temperatures are calculated to calculate the flow rate. A thermal type flow meter comprising a drive calculation means to be obtained.
前記駆動演算手段が、
前記温度検出手段の温度検出信号を0度移相及び90度移相の駆動信号に基づき同期検波して二乗和の平方根を演算して上流側若しくは下流側の温度を求めることを特徴とする
請求項1記載の熱式流量計。
The drive calculation means is
The temperature detection signal of the temperature detection means is synchronously detected based on a drive signal having a phase shift of 0 degrees and a phase shift of 90 degrees, and the square root of the sum of squares is calculated to determine the upstream or downstream temperature. Item 2. The thermal flow meter according to Item 1.
流路を流れる液体の温度を制御し温度制御部分の下流側での温度検出の時刻差に基づき流量を測定する熱式流量計において、
接液部分が全てガラスで構成された流路と、
この流路に設けられた伝熱手段と、
前記流路上であって前記伝熱手段から等間隔の位置に設けられた上流側及び下流側の温度検出手段と、
前記伝熱手段を周期的な駆動信号で駆動すると共に下流側の前記温度検出手段の温度検出信号を駆動信号に基づき同期検波して下流側の前記温度検出手段における駆動信号に対する位相遅れを演算して流量を求める駆動演算手段と
を備えたことを特徴とする熱式流量計。
In the thermal flow meter that controls the temperature of the liquid flowing through the flow path and measures the flow rate based on the time difference of temperature detection on the downstream side of the temperature control part,
A channel in which the wetted parts are all made of glass,
A heat transfer means provided in the flow path;
Upstream and downstream temperature detection means provided on the flow path at equal intervals from the heat transfer means;
The heat transfer means is driven by a periodic drive signal, and the temperature detection signal of the temperature detection means on the downstream side is synchronously detected based on the drive signal to calculate a phase delay with respect to the drive signal in the temperature detection means on the downstream side. A thermal flow meter comprising a drive calculation means for obtaining a flow rate.
流路を流れる液体の温度を制御し温度制御部分の下流側での温度検出の時刻差に基づき流量を測定する熱式流量計において、
接液部分が全てガラスで構成された流路と、
この流路に設けられた伝熱手段と、
前記流路上であって前記伝熱手段から等間隔の位置に設けられた上流側及び下流側の温度検出手段と、
前記下流側の温度検出手段の外側に設けられた温度検出手段と、
前記伝熱手段を周期的な駆動信号で駆動すると共に下流側の2つの前記温度検出手段の温度検出信号を駆動信号に基づき同期検波して下流側の2つの前記温度検出手段間の位相遅れの差分を演算して流量を求める駆動演算手段と
を備えたことを特徴とする熱式流量計。
In the thermal flow meter that controls the temperature of the liquid flowing through the flow path and measures the flow rate based on the time difference of temperature detection on the downstream side of the temperature control part,
A channel in which the wetted parts are all made of glass,
A heat transfer means provided in the flow path;
Upstream and downstream temperature detection means provided on the flow path at equal intervals from the heat transfer means;
Temperature detection means provided outside the downstream temperature detection means;
The heat transfer means is driven by a periodic drive signal, and the temperature detection signals of the two temperature detection means on the downstream side are synchronously detected based on the drive signal, and the phase delay between the two temperature detection means on the downstream side is detected. A thermal flow meter comprising a drive calculation means for calculating a difference to obtain a flow rate.
前記駆動演算手段が、
前記温度検出手段の温度検出信号を0度移相及び90度移相の駆動信号に基づき同期検波して同期検波信号の比の逆正接を演算して駆動信号に対する位相遅れ、若しくは、位相遅れの差分を求めることを特徴とする
請求項3若しくは請求項4記載の熱式流量計。
The drive calculation means is
The temperature detection signal of the temperature detection means is synchronously detected based on the drive signal of 0 degree phase shift and 90 degree phase shift, and the arc tangent of the ratio of the synchronous detection signal is calculated to calculate the phase lag with respect to the drive signal, or the phase lag The thermal flow meter according to claim 3 or 4, wherein a difference is obtained.
前記駆動演算手段が、
周期的な駆動信号を前記伝熱手段に供給する駆動波形発生手段と、
前記駆動信号を0度移相及び90度移相させる2つのバッファアンプと、
前記温度検出手段からの温度検出信号と0度移相及び90度移相の駆動信号とをそれぞれ乗算させる2つのミキサと、
これら2つのミキサの出力が入力される2つのローパスフィルタ手段と、
これら2つのローパスフィルタ手段の出力に基づき上流側、下流側の温度、若しくは、駆動信号に対する位相遅れを演算する演算制御手段とから構成されたことを特徴とする
請求項1乃至請求項5のいずれかに記載の熱式流量計。
The drive calculation means is
Drive waveform generating means for supplying a periodic drive signal to the heat transfer means;
Two buffer amplifiers for shifting the drive signal by 0 degrees and 90 degrees;
Two mixers for multiplying the temperature detection signal from the temperature detection means by a drive signal of 0 degree phase shift and 90 degree phase shift, respectively;
Two low-pass filter means to which the outputs of these two mixers are input;
6. An arithmetic control means for calculating upstream and downstream temperatures or a phase delay with respect to a drive signal based on outputs of the two low-pass filter means. The thermal flow meter according to Crab.
前記駆動演算手段が、
温度検出信号を駆動信号に基づき同期検波して上流側及び下流側の温度並びに駆動信号に対する位相遅れを同時に求めることを特徴とする
請求項1乃至請求項6のいずれかに記載の熱式流量計。
The drive calculation means is
7. The thermal flow meter according to claim 1, wherein the temperature detection signal is synchronously detected based on the drive signal to simultaneously obtain the upstream and downstream temperatures and the phase delay with respect to the drive signal. .
前記駆動演算手段が、
上流側及び下流側の温度、若しくは、位相遅れを用いて流量測定を行なうと共に位相遅れ、若しくは、上流側及び下流側の温度を用いて流量の校正処理を行うことを特徴とする
請求項7記載の熱式流量計。
The drive calculation means is
8. The flow rate is measured using upstream and downstream temperatures or phase delay, and the flow rate is calibrated using phase delay or upstream and downstream temperatures. Thermal flow meter.
JP2007280547A 2007-10-29 2007-10-29 Thermal flowmeter Withdrawn JP2009109285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280547A JP2009109285A (en) 2007-10-29 2007-10-29 Thermal flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280547A JP2009109285A (en) 2007-10-29 2007-10-29 Thermal flowmeter

Publications (1)

Publication Number Publication Date
JP2009109285A true JP2009109285A (en) 2009-05-21

Family

ID=40777923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280547A Withdrawn JP2009109285A (en) 2007-10-29 2007-10-29 Thermal flowmeter

Country Status (1)

Country Link
JP (1) JP2009109285A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125853A1 (en) 2009-04-28 2010-11-04 日本電気株式会社 Wireless communication system, wireless base station, wireless communication method, and program
KR20180088136A (en) * 2017-01-26 2018-08-03 한국표준과학연구원 Thermal mass flow meter and Thermal mass flow measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176633A (en) * 1984-02-22 1985-09-10 富士通株式会社 Correlation type ultrasonic blood flow meter
JPS61262617A (en) * 1985-05-16 1986-11-20 Mitsubishi Electric Corp Flow amount sensor
JPH0222514A (en) * 1988-07-11 1990-01-25 Hitachi Metals Ltd Thermal flow sensor
JP2005010153A (en) * 2003-05-27 2005-01-13 Nikkiso Co Ltd Flow rate measuring method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176633A (en) * 1984-02-22 1985-09-10 富士通株式会社 Correlation type ultrasonic blood flow meter
JPS61262617A (en) * 1985-05-16 1986-11-20 Mitsubishi Electric Corp Flow amount sensor
JPH0222514A (en) * 1988-07-11 1990-01-25 Hitachi Metals Ltd Thermal flow sensor
JP2005010153A (en) * 2003-05-27 2005-01-13 Nikkiso Co Ltd Flow rate measuring method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125853A1 (en) 2009-04-28 2010-11-04 日本電気株式会社 Wireless communication system, wireless base station, wireless communication method, and program
KR20180088136A (en) * 2017-01-26 2018-08-03 한국표준과학연구원 Thermal mass flow meter and Thermal mass flow measurement system
KR101943635B1 (en) * 2017-01-26 2019-01-30 한국표준과학연구원 Thermal mass flow meter and Thermal mass flow measurement system

Similar Documents

Publication Publication Date Title
JP5556850B2 (en) Micro flow sensor
US8225652B2 (en) Thermal flow meter measuring flow rate based on temperature difference measurement and driving energy of the heater
EP1477781B1 (en) Mass flowmeter
US11543274B2 (en) Thermal flowmeter including a coupling element with an anisotropic thermal conductivity
JP2019035640A (en) Thermal flow meter
TW200401881A (en) Flow sensor
CN109387254A (en) Thermal flowmeter
JP2009115504A (en) Thermal flowmeter
JP2006010322A (en) Thermal flowmeter
JP2009109285A (en) Thermal flowmeter
JP5354438B2 (en) Thermal flow meter
JP2009276323A (en) Thermal flowmeter
JP5575359B2 (en) Thermal flow meter
JP5207210B2 (en) Thermal flow meter
US11988535B2 (en) Thermal flow sensor and method for operating same
JP4811636B2 (en) Thermal flow meter
JP4793621B2 (en) Thermal flow meter
JP2004184177A (en) Flowmeter
JP2009103589A (en) Thermal flowmeter
JP4081639B2 (en) Thermal mass flow meter for liquids
JP2007303899A (en) Thermal flowmeter
US20240219216A1 (en) Thermal sensor and method for operating the thermal sensor
JP3582718B2 (en) Thermal flow meter
JP2019164045A (en) Thermal flowmeter
JPH05107093A (en) Thermal flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120713