JP2009103589A - Thermal flowmeter - Google Patents
Thermal flowmeter Download PDFInfo
- Publication number
- JP2009103589A JP2009103589A JP2007275884A JP2007275884A JP2009103589A JP 2009103589 A JP2009103589 A JP 2009103589A JP 2007275884 A JP2007275884 A JP 2007275884A JP 2007275884 A JP2007275884 A JP 2007275884A JP 2009103589 A JP2009103589 A JP 2009103589A
- Authority
- JP
- Japan
- Prior art keywords
- temperature difference
- flow rate
- temperature
- heat transfer
- detection means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
本発明は、流路を流れる液体の温度を制御し温度制御部分の上流側及び下流側の流体の温度差に基づき流量を測定する熱式流量計に関し、特により広い測定レンジで流量の測定が可能な熱式流量計に関する。 The present invention relates to a thermal type flow meter that controls the temperature of a liquid flowing in a flow path and measures a flow rate based on a temperature difference between upstream and downstream fluids of a temperature control portion, and in particular, the flow rate can be measured in a wider measurement range. It relates to a possible thermal flow meter.
従来の流路を流れる液体の温度を制御し温度制御部分の上流側及び下流側の流体の温度差に基づき流量を測定する熱式流量計に関連する先行技術文献としては次のようなものがある。 Prior art documents related to a thermal flow meter that controls the temperature of the liquid flowing through the conventional flow path and measures the flow rate based on the temperature difference between the upstream and downstream fluids of the temperature control portion include the following. is there.
図5はこのような従来の熱式流量計の一例を示す構成ブロック図である。図5において、1は金属の細管等で構成される流路、2は流路1を流れる流体の温度を加熱して一定温度にするヒータ等の伝熱手段、3及び4はサーミスタや白金測温抵抗体等の温度検出手段、5は上流側及び下流側の流体の温度差に基づき流量を求めるCPU(Central Processing Unit)等の演算制御手段である。 FIG. 5 is a structural block diagram showing an example of such a conventional thermal flow meter. In FIG. 5, 1 is a flow path composed of a thin metal tube, 2 is a heat transfer means such as a heater that heats the temperature of the fluid flowing through the flow path 1 to a constant temperature, and 3 and 4 are thermistors and platinum measuring devices. Temperature detection means 5 such as a temperature resistor is an arithmetic control means such as a CPU (Central Processing Unit) for obtaining a flow rate based on the temperature difference between the upstream and downstream fluids.
図5中”FL01”に示すように被測定液体が流れる流路1の中央部分には伝熱手段2が設けられ、この流路1上であって伝熱手段2から等間隔の位置には温度検出手段3及び4が設けられる。 As shown by “FL01” in FIG. 5, a heat transfer means 2 is provided in the central portion of the flow path 1 through which the liquid to be measured flows, and is located on the flow path 1 at equal intervals from the heat transfer means 2. Temperature detection means 3 and 4 are provided.
また、温度検出手段3及び4の出力はそれぞれ演算制御手段5に接続され、演算制御手段5からの温度制御のための制御信号は伝熱手段2に接続される。 The outputs of the temperature detection means 3 and 4 are connected to the calculation control means 5, respectively, and a control signal for temperature control from the calculation control means 5 is connected to the heat transfer means 2.
ここで,図5に示す従来例の動作を図6を用いて説明する。図6は流路の位置に対する流路内の被測定液体の温度分布の一例を示す特性曲線図である。演算制御手段5は予め測定された被測定液体の温度に対して、被測定液体が数度程度高い一定温度になるように伝熱手段2を制御する。 Here, the operation of the conventional example shown in FIG. 5 will be described with reference to FIG. FIG. 6 is a characteristic curve diagram showing an example of the temperature distribution of the liquid to be measured in the flow path with respect to the position of the flow path. The arithmetic control unit 5 controls the heat transfer unit 2 so that the liquid to be measured has a constant temperature that is about several degrees higher than the temperature of the liquid to be measured that has been measured in advance.
このような状態で、流量がゼロの場合には図6中”CH11”に示すように図6中”HT11”に示す伝熱手段2の設置位置を中心にして対称な温度分布を有する。このため、図6中”TS11”及び”TS12”に示す温度検出手段3及び4の設置位置における温度は等しくなる。言い換えれば、温度差はゼロになる。 In such a state, when the flow rate is zero, as indicated by “CH11” in FIG. 6, the temperature distribution has a symmetric temperature distribution centered on the installation position of the heat transfer means 2 indicated by “HT11” in FIG. For this reason, the temperature in the installation position of the temperature detection means 3 and 4 shown by "TS11" and "TS12" in FIG. 6 becomes equal. In other words, the temperature difference is zero.
一方、流路1の流体が流れると図6中”CH12”に示すように温度分布のピークが下流側にシフトする。このため、図6中”TS11”及び”TS12”に示す温度検出手段3及び4の設置位置における温度はそれぞれ異なることになり、図6中”DT11”に示すような温度差が生じることになる。 On the other hand, when the fluid in the flow path 1 flows, the peak of the temperature distribution shifts to the downstream side as indicated by “CH12” in FIG. Therefore, the temperatures at the installation positions of the temperature detecting means 3 and 4 indicated by “TS11” and “TS12” in FIG. 6 are different from each other, and a temperature difference as indicated by “DT11” in FIG. 6 is generated. .
このような温度差は被測定液体の流量に依存した信号となるので、このような温度差に基づき演算制御手段5で流路1を流れる被測定液体の流量を求めることができる。 Since such a temperature difference becomes a signal depending on the flow rate of the liquid to be measured, the flow rate of the liquid to be measured flowing through the flow path 1 can be obtained by the arithmetic control unit 5 based on such a temperature difference.
この結果、流路1を流れる被測定液体の温度を伝熱手段2で制御し2つの温度検出手段3及び4によって伝熱手段2の上流側及び下流側の流体の温度を測定し、演算制御手段5で当該温度の温度差に基づき流量を求めることにより、被測定液体の流量を測定することが可能になる。 As a result, the temperature of the liquid to be measured flowing through the flow path 1 is controlled by the heat transfer means 2, the temperature of the fluid upstream and downstream of the heat transfer means 2 is measured by the two temperature detection means 3 and 4, and the arithmetic control is performed. By obtaining the flow rate based on the temperature difference of the temperature by means 5, it becomes possible to measure the flow rate of the liquid to be measured.
但し、図5に示す従来例では、流路1として金属の細管等を用いるために金属を腐食するような液体の流量を測定することはできないといった問題点があった。 However, the conventional example shown in FIG. 5 has a problem that the flow rate of the liquid corroding the metal cannot be measured because a metal thin tube or the like is used as the flow path 1.
このため、前述した”特許文献2”においては耐腐食性に優れたガラス基板に流路を形成した熱式流量計(質量流量センサ)が記載されている。 For this reason, the above-mentioned “Patent Document 2” describes a thermal flow meter (mass flow sensor) in which a flow path is formed on a glass substrate having excellent corrosion resistance.
図7及び図8は”特許文献2”に記載された従来の熱式流量計の他の一例を示す斜視図及び断面図である。図7及び図8において6はガラス基板、7及び9はシリコン基板、8は伝熱手段、10はガラス基板6に形成された流路である。 7 and 8 are a perspective view and a cross-sectional view showing another example of the conventional thermal flow meter described in "Patent Document 2". 7 and 8, 6 is a glass substrate, 7 and 9 are silicon substrates, 8 is a heat transfer means, and 10 is a flow path formed in the glass substrate 6.
ガラス基板6の中央部分には超音波加工、レーザ加工、サンドブラスト加工、ウエットエッチング等によって長孔である流路10が形成される。また、ガラス基板6の上面にはシリコン基板7が陽極接合により貼り合わされる。 A flow path 10 having a long hole is formed in the central portion of the glass substrate 6 by ultrasonic processing, laser processing, sand blast processing, wet etching, or the like. A silicon substrate 7 is bonded to the upper surface of the glass substrate 6 by anodic bonding.
また、ガラス基板6の下面にはシリコン基板9が陽極接合により貼り合わされ、ガラス基板6に形成された流路10の両端部分に隣接するシリコン基板9には図7中”HL21”及び”HL22”に示すような孔が形成され、それぞれ被測定液体の流入孔若しくは排出孔として機能する。 Further, a silicon substrate 9 is bonded to the lower surface of the glass substrate 6 by anodic bonding, and “HL21” and “HL22” in FIG. 7 are attached to the silicon substrate 9 adjacent to both end portions of the flow path 10 formed in the glass substrate 6. Are formed, which function as inflow holes or discharge holes for the liquid to be measured, respectively.
さらに、シリコン基板7上には白金やニッケル等の抵抗温度係数の大きい金属から構成されるヒータ等の伝熱手段8(温度検出手段を兼ねる)が形成され、シリコン基板7及びガラス基板6上には配線が適宜形成される。 Further, a heat transfer means 8 (also serving as a temperature detection means) such as a heater made of a metal having a large resistance temperature coefficient such as platinum or nickel is formed on the silicon substrate 7, and is formed on the silicon substrate 7 and the glass substrate 6. The wiring is appropriately formed.
ここで、図7及び図8に示す従来例では、ガラス基板6に流路10を形成する構成ではあるものの、流路10の上面及び下面にはシリコン基板7及び9が用いられているので、やはり、耐腐食性に問題がある。 Here, in the conventional example shown in FIGS. 7 and 8, although the flow path 10 is formed on the glass substrate 6, the silicon substrates 7 and 9 are used on the upper and lower surfaces of the flow path 10. Again, there is a problem with corrosion resistance.
一方、図7及び図8に示す従来例においてシリコン基板7及び9をガラス基板に置換することにより、接液部分が全てガラスとなり耐腐食性が向上するものの、ガラスは熱伝導率が小さいので、流路を流れる液体の流量が大きい場合には、伝熱手段8直下の液体が十分に温まらない。 On the other hand, by replacing the silicon substrates 7 and 9 with a glass substrate in the conventional example shown in FIGS. 7 and 8, all the wetted parts become glass and the corrosion resistance is improved, but the glass has a low thermal conductivity. When the flow rate of the liquid flowing through the flow path is large, the liquid immediately below the heat transfer means 8 is not sufficiently warmed.
このため、伝熱手段8直下の温度が十分に温まっていない場合には、流量の増加に伴なって上流側と下流側との温度差が小さくなるように変化する。 For this reason, when the temperature immediately below the heat transfer means 8 is not sufficiently warmed, the temperature difference between the upstream side and the downstream side changes as the flow rate increases.
一方、流量が小さく、伝熱手段8直下の温度が十分に温まっている場合には、流量の増加に伴なって上流側と下流側との温度差が大きくなるように変化する。 On the other hand, when the flow rate is small and the temperature just below the heat transfer means 8 is sufficiently warm, the temperature difference between the upstream side and the downstream side increases as the flow rate increases.
すなわち、図9は上流側と下流側との温度差と、流量との関係を示す特性曲線図であり、図9中”TD31”に示すように上流側と下流側との温度差は、ピークを有する特性となり、測定可能な流量範囲が極めて狭くなってしまうといった問題点があった。 That is, FIG. 9 is a characteristic curve diagram showing the relationship between the temperature difference between the upstream side and the downstream side and the flow rate. As shown in “TD31” in FIG. 9, the temperature difference between the upstream side and the downstream side is a peak. There was a problem that the measurable flow rate range becomes extremely narrow.
例えば、図7及び図8に示す従来例においてシリコン基板7及び9をガラス基板に置換することにより、耐腐食性が向上するものの、図9中”AR31”に示すような流量が小さく、伝熱手段8直下の温度が十分に温まっている状況下でのみしか流量の測定ができなくなってしまうといった問題点があった。 For example, although the corrosion resistance is improved by replacing the silicon substrates 7 and 9 with glass substrates in the conventional example shown in FIGS. 7 and 8, the flow rate as shown by “AR31” in FIG. There is a problem that the flow rate can be measured only under the condition that the temperature immediately below the means 8 is sufficiently warm.
このような問題点を解決するために本願出願人の出願に係る”特許文献5”が考案された。図10は”特許文献5”に記載された熱式流量計の他の一例を示す構成ブロック図、図11は熱式流量計の他の一例のセンサ部分の具体例を示す平面図及び断面図である。 In order to solve such problems, “Patent Document 5” related to the application of the present applicant has been devised. 10 is a configuration block diagram showing another example of the thermal flow meter described in “Patent Document 5”, and FIG. 11 is a plan view and a cross-sectional view showing a specific example of the sensor portion of another example of the thermal flow meter. It is.
図10及び図11において、11及び12はガラス基板、13はヒータ等の伝熱手段、14及び15はサーミスタや白金測温抵抗体等の温度検出手段、16は被測定液体が流れる流路、17は上流側及び下流側の流体の温度差に基づき流量を求めるCPU等の演算制御手段である。 10 and 11, 11 and 12 are glass substrates, 13 is a heat transfer means such as a heater, 14 and 15 are temperature detection means such as a thermistor and a platinum resistance temperature detector, 16 is a flow path through which the liquid to be measured flows, Reference numeral 17 denotes arithmetic control means such as a CPU for obtaining a flow rate based on the temperature difference between the upstream and downstream fluids.
図10中”FL41”に示すように被測定液体が流れる流路16の中央部分には伝熱手段13が設けられ、この流路16上であって伝熱手段13から等間隔の位置には温度検出手段14及び15が設けられる。 As shown by “FL41” in FIG. 10, a heat transfer means 13 is provided in the central portion of the flow path 16 through which the liquid to be measured flows, and is located on the flow path 16 at equal intervals from the heat transfer means 13. Temperature detection means 14 and 15 are provided.
また、図10中”TU41”及び”TD41”に示すように温度検出手段14及び15の出力はそれぞれ演算制御手段17に接続され、図10中”CT41”に示すように演算制御手段17からの温度制御のための制御信号は伝熱手段13に接続される。 Further, as indicated by “TU41” and “TD41” in FIG. 10, the outputs of the temperature detecting means 14 and 15 are respectively connected to the arithmetic control means 17 and from the arithmetic control means 17 as indicated by “CT41” in FIG. A control signal for temperature control is connected to the heat transfer means 13.
さらに、図11を用いて熱式流量計の他の一例のセンサ部分の具体例をより詳細に説明する。 Furthermore, the specific example of the sensor part of another example of a thermal type flow meter is demonstrated in detail using FIG.
超音波加工、レーザ加工、サンドブラスト加工、ウエットエッチング等によってガラス基板12の短手方向の中央部分であってガラス基板12の長手方向に沿うように長方形の溝が形成される。また、当該長方形の溝が形成された側のガラス基板12にはガラス基板11が接着や熱圧着等により貼り合わされ、接液部分が全てガラスで構成された流路16が形成される。
A rectangular groove is formed along the longitudinal direction of the
また、流路16に接しない側のガラス基板11上であって流路16の中央部分上に位置する部分にはヒータ等の伝熱手段13が蒸着やスパッタリング等によって形成され、流路16の上に位置し流路16に接しない側のガラス基板11上であって伝熱手段13から等間隔の位置には温度検出手段14及び15が蒸着やスパッタリング等によって形成される。 Further, a heat transfer means 13 such as a heater is formed on the glass substrate 11 on the side not in contact with the flow path 16 and on the central portion of the flow path 16 by vapor deposition, sputtering, or the like. Temperature detecting means 14 and 15 are formed by vapor deposition, sputtering or the like on the glass substrate 11 on the upper side and not in contact with the flow path 16 and at equal intervals from the heat transfer means 13.
すなわち、伝熱手段13、温度検出手段14及び15は流路16に接しない側のガラス基板11に形成されるので非接液の状態にある。 That is, since the heat transfer means 13 and the temperature detection means 14 and 15 are formed on the glass substrate 11 on the side not in contact with the flow path 16, they are in a non-wetted state.
ここで、図10及び図11に示す熱式流量計の他の一例の動作を図12を用いて説明する。図12は流量に対する上流側と下流側との温度差、温度和及び温度差を温度和で除算した値の関係をそれぞれ示す特性曲線図である。但し、図5に示す従来例と同様の動作に関しては説明を適宜省略する。 Here, the operation of another example of the thermal flow meter shown in FIGS. 10 and 11 will be described with reference to FIG. FIG. 12 is a characteristic curve diagram showing the relationship between the temperature difference between the upstream side and the downstream side with respect to the flow rate, the temperature sum, and the value obtained by dividing the temperature difference by the temperature sum. However, description of operations similar to those of the conventional example shown in FIG.
演算制御手段17は予め測定された被測定液体の温度に対して、被測定液体が数度程度高い一定温度になるように伝熱手段13を制御する。 The arithmetic control means 17 controls the heat transfer means 13 so that the liquid under measurement has a constant temperature that is several degrees higher than the temperature of the liquid under measurement measured in advance.
このような状態で、上流側の温度検出手段14及び下流側の温度検出手段15で検出される温度の温度差は被測定液体の流量に依存した信号となるので、このような温度差に基づき演算制御手段17で流路16を流れる被測定液体の流量を求めることができる。 In such a state, the temperature difference between the temperatures detected by the upstream temperature detection means 14 and the downstream temperature detection means 15 becomes a signal that depends on the flow rate of the liquid to be measured. The flow rate of the liquid to be measured flowing through the flow path 16 can be obtained by the arithmetic control means 17.
但し、前述の従来例の説明のように、流路の接液部分が全てガラスとした場合には、ガラスの小さな熱伝導率のために、例えば、温度差は図12中”TD51”に示すようにピークを有する特性となり、測定可能な流量範囲が極めて狭くなってしまうといった問題点があった。 However, as described in the above-described conventional example, when the liquid contact portion of the flow path is all made of glass, for example, the temperature difference is indicated by “TD51” in FIG. 12 because of the small thermal conductivity of the glass. Thus, there is a problem that the characteristic has a peak and the measurable flow rate range becomes extremely narrow.
このため、演算制御手段17は上流側の温度検出手段14及び下流側の温度検出手段15で検出される温度の温度差を求めると共に上流側の温度検出手段14及び下流側の温度検出手段15で検出される温度の温度和を求めて温度差を温度和で除算することにより、温度差を規格化する。 For this reason, the arithmetic control means 17 obtains the temperature difference between the temperatures detected by the upstream temperature detection means 14 and the downstream temperature detection means 15 and at the upstream temperature detection means 14 and the downstream temperature detection means 15. The temperature difference is normalized by finding the temperature sum of the detected temperatures and dividing the temperature difference by the temperature sum.
例えば、上流側の温度検出手段14及び下流側の温度検出手段15で検出される温度の温度和は、図12中”TA51”に示すような特性曲線となり、このような特性曲線の温度和で図12中”TD51”に示す温度差を除算することにより、図12中”NT51”に示すような規格化された温度差の特性曲線が得られる。 For example, the temperature sum of the temperatures detected by the upstream temperature detecting means 14 and the downstream temperature detecting means 15 is a characteristic curve as shown by “TA51” in FIG. By dividing the temperature difference indicated by “TD51” in FIG. 12, a normalized temperature difference characteristic curve indicated by “NT51” in FIG. 12 is obtained.
図12中”NT51”に示すような規格化された温度差は、広い流量範囲において単調増加を示しているので、広い流量範囲を測定することが可能であることがわかる。 Since the normalized temperature difference as indicated by “NT51” in FIG. 12 shows a monotonic increase in a wide flow range, it can be seen that a wide flow range can be measured.
この結果、接液部分が全てガラスで構成された流路16を流れる被測定液体の温度を伝熱手段13で制御し2つの温度検出手段14及び15によって伝熱手段13の上流側及び下流側の流体の温度を測定し、演算制御手段17で当該温度の温度差を温度和で除算した規格化された温度差を求め、当該規格化された温度差に基づき流量を求めることにより、耐腐食性が高く被測定液体の広い流量範囲を測定することが可能になる。 As a result, the temperature of the liquid to be measured flowing through the channel 16 whose liquid contact part is entirely made of glass is controlled by the heat transfer means 13, and the upstream side and the downstream side of the heat transfer means 13 by the two temperature detection means 14 and 15. The temperature of the fluid is measured, the temperature difference of the temperature is calculated by the arithmetic control means 17 to obtain a normalized temperature difference, and the flow rate is obtained on the basis of the normalized temperature difference. This makes it possible to measure a wide flow rate range of the liquid to be measured.
しかし、図10及び図11に示す熱式流量計の他の一例では、流路(細管)を流れる被測定流体の流量が大きくなるにつれて、流量変化に対する温度分布変化量が小さくなり、温度差(流量信号)が飽和してしまう。このため、規格化された温度差に基づき流量を求める場合であっても、測定レンジが狭くなってしまうと言った問題点があった。
従って本発明が解決しようとする課題は、より広い測定レンジで流量の測定が可能な熱式流量計を実現することにある。
However, in another example of the thermal flow meter shown in FIG. 10 and FIG. 11, as the flow rate of the fluid to be measured flowing through the flow path (thin tube) increases, the temperature distribution change amount with respect to the flow rate change decreases, and the temperature difference ( Flow rate signal) is saturated. For this reason, even when the flow rate is obtained based on the standardized temperature difference, there is a problem that the measurement range becomes narrow.
Therefore, the problem to be solved by the present invention is to realize a thermal flow meter capable of measuring a flow rate in a wider measurement range.
このような課題を達成するために、本発明のうち請求項1記載の発明は、
流路を流れる液体の温度を制御し温度制御部分の上流側及び下流側の流体の温度差に基づき流量を測定する熱式流量計において、
接液部分が全てガラスで構成された流路と、この流路に設けられた伝熱手段と、前記流路上であって前記伝熱手段から等間隔の位置に設けられた第1の温度差検出手段と、前記流路上であって前記第1の温度差検出手段の外側であり、且つ、前記伝熱手段から等間隔の位置に設けられた第2の温度差検出手段と、前記流路を流れる液体の温度を前記伝熱手段で制御すると共に測定する流量に応じて前記第1若しくは前記第2の温度差検出手段を選択して検出された温度差に基づき流量を求める演算制御手段とを備えたことにより、より広い測定レンジでの流量の測定が可能になる。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
In the thermal flow meter that controls the temperature of the liquid flowing through the flow path and measures the flow rate based on the temperature difference between the upstream and downstream fluids of the temperature control part,
A flow path in which all the liquid contact parts are made of glass, heat transfer means provided in the flow path, and a first temperature difference provided on the flow path at equal intervals from the heat transfer means Detection means; second temperature difference detection means provided on the flow path and outside the first temperature difference detection means and at equal intervals from the heat transfer means; and the flow path Calculation control means for controlling the temperature of the liquid flowing through the heat transfer means and calculating the flow rate based on the detected temperature difference by selecting the first or second temperature difference detection means according to the flow rate to be measured. By providing, it becomes possible to measure the flow rate in a wider measurement range.
請求項2記載の発明は、
請求項1記載の発明である熱式流量計において、
前記演算制御手段が、
測定する流量が低流量領域であると判断した場合に、前記伝熱手段に最も近い前記第1の温度差検出手段で検出された温度差に基づき流量を求め、測定する流量が高流量領域であると判断した場合に、前記伝熱手段に最も遠い前記第2の温度差検出手段で検出された温度差に基づき流量を求めることにより、より広い測定レンジでの流量の測定が可能になる。
The invention according to claim 2
In the thermal type flow meter which is the invention according to claim 1,
The arithmetic control means is
When it is determined that the flow rate to be measured is in the low flow rate region, the flow rate is obtained based on the temperature difference detected by the first temperature difference detection unit closest to the heat transfer unit, and the flow rate to be measured is in the high flow rate region. When it is determined that there is, the flow rate can be measured in a wider measurement range by obtaining the flow rate based on the temperature difference detected by the second temperature difference detection unit farthest from the heat transfer unit.
請求項3記載の発明は、
請求項1記載の発明である熱式流量計において、
前記第1の温度差検出手段の流量に対する温度差の特性曲線と、前記第2の温度差検出手段の流量に対する温度差の特性曲線とが重なり合うように前記第1の温度差検出手段と前記第2の温度差検出手段との間隔を調整したことにより、より広い測定レンジでの流量の測定が可能になる。
The invention described in claim 3
In the thermal type flow meter which is the invention according to claim 1,
The temperature difference characteristic curve with respect to the flow rate of the first temperature difference detection means and the temperature difference characteristic curve with respect to the flow rate of the second temperature difference detection means overlap with each other. By adjusting the interval between the two temperature difference detection means, the flow rate can be measured in a wider measurement range.
本発明によれば次のような効果がある。
請求項1,2及び請求項3の発明によれば、流路上であって伝熱手段から等間隔の位置に第1の温度差検出手段を設け、流路上であって第1の温度差検出手段の外側であり、且つ、伝熱手段から等間隔の位置に第2の温度差検出手段を設けると共に、測定する流量に応じて、温度差検出手段(温度検出手段の組み合わせ)を適宜選択することにより、より広い測定レンジでの流量の測定が可能になる。
The present invention has the following effects.
According to the first, second, and third aspects of the invention, the first temperature difference detecting means is provided on the flow path at equal intervals from the heat transfer means, and the first temperature difference detection is provided on the flow path. The second temperature difference detection means is provided outside the means and at equal intervals from the heat transfer means, and the temperature difference detection means (combination of temperature detection means) is appropriately selected according to the flow rate to be measured. This makes it possible to measure the flow rate in a wider measurement range.
以下本発明を図面を用いて詳細に説明する。図1は本発明に係る熱式流量計の一実施例を示す構成ブロック図、図2は本発明に係る熱式流量計の一実施例のセンサ部分の具体例を示す平面図及び断面図である。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration block diagram showing an embodiment of a thermal flow meter according to the present invention, and FIG. 2 is a plan view and a cross-sectional view showing a specific example of a sensor portion of an embodiment of the thermal flow meter according to the present invention. is there.
図1において、18はガラス基板、19はガラス基板18に形成された流路、20は流路19を流れる流体の温度を加熱して一定温度にするヒータ等の伝熱手段、21,22,23,24,25及び26はサーミスタや白金測温抵抗体等の温度検出手段、27は上流側及び下流側の流体の温度差に基づき流量を求めるCPU等の演算制御手段である。また、18,19,20,21,22,23,24,25及び26は流量計チップ50を構成している In FIG. 1, 18 is a glass substrate, 19 is a flow path formed in the glass substrate 18, 20 is a heat transfer means such as a heater that heats the temperature of the fluid flowing through the flow path 19 to a constant temperature, 21, 22, Reference numerals 23, 24, 25 and 26 denote temperature detection means such as a thermistor and a platinum resistance temperature detector, and 27 denotes arithmetic control means such as a CPU for obtaining a flow rate based on the temperature difference between the upstream and downstream fluids. In addition, 18, 19, 20, 21, 22, 23, 24, 25 and 26 constitute a flow meter chip 50.
また、温度検出手段23及び温度検出手段24は第1の温度差検出手段、温度検出手段22及び温度検出手段25は第2の温度差検出手段、温度検出手段21及び温度検出手段26は第3の温度差検出手段をそれぞれ構成している。 The temperature detection means 23 and the temperature detection means 24 are the first temperature difference detection means, the temperature detection means 22 and the temperature detection means 25 are the second temperature difference detection means, and the temperature detection means 21 and the temperature detection means 26 are the third. These temperature difference detecting means are respectively configured.
図1中”IN61”に示す流入孔から被測定流体が注入され、図1中”OT61”に示す流出孔から被測定流体が放出される。このため、流路19では図1中”FL61”に示す方向に被測定流体が流れることになる。 The fluid to be measured is injected from the inflow hole indicated by “IN61” in FIG. 1, and the fluid to be measured is discharged from the outflow hole indicated by “OT61” in FIG. Therefore, the fluid to be measured flows in the flow path 19 in the direction indicated by “FL61” in FIG.
図1中”FL61”に示すように被測定液体が流れる流路19の中央部分には伝熱手段20が設けられ、この流路19上であって伝熱手段20から等間隔の位置には温度検出手段23及び24(第1の温度差検出手段)が設けられる。 As shown by “FL61” in FIG. 1, a heat transfer means 20 is provided in the central portion of the flow path 19 through which the liquid to be measured flows, and is located on the flow path 19 at equal intervals from the heat transfer means 20. Temperature detection means 23 and 24 (first temperature difference detection means) are provided.
同様に、流路19上であって温度検出手段23及び24の外側(伝熱手段20が設けあれていない側)であり、且つ、伝熱手段20から等間隔の位置には温度検出手段22及び25(第2の温度差検出手段)が設けられる。 Similarly, on the flow path 19, outside the temperature detection means 23 and 24 (the side where the heat transfer means 20 is not provided), and at a position equidistant from the heat transfer means 20, the temperature detection means 22. And 25 (second temperature difference detecting means) are provided.
さらに、流路19上であって温度検出手段22及び25の外側(伝熱手段20が設けあれていない側)であり、且つ、伝熱手段20から等間隔の位置には温度検出手段21及び26(第3の温度差検出手段)が設けられる。 Further, on the flow path 19, outside the temperature detection means 22 and 25 (the side where the heat transfer means 20 is not provided), and at a position equidistant from the heat transfer means 20, the temperature detection means 21 and 26 (third temperature difference detecting means) is provided.
また、温度検出手段21,22,23,24,25及び26の出力はそれぞれ演算制御手段27に接続され、演算制御手段27からの温度制御のための駆動信号は伝熱手段20に接続される。 The outputs of the temperature detection means 21, 22, 23, 24, 25 and 26 are connected to the calculation control means 27, respectively, and the drive signal for temperature control from the calculation control means 27 is connected to the heat transfer means 20. .
さらに、図2を用いて本発明に係る熱式流量計の一実施例の流量計チップ50の具体例をより詳細に説明する。図2において28はガラス基板であり、18,19,20,21,22,23,24,25及び26は図1と同一符号を付してある。 Furthermore, the specific example of the flowmeter chip | tip 50 of one Example of the thermal type flow meter which concerns on this invention is demonstrated in detail using FIG. In FIG. 2, 28 is a glass substrate, and 18, 19, 20, 21, 22, 23, 24, 25 and 26 are assigned the same reference numerals as in FIG.
超音波加工、レーザ加工、サンドブラスト加工、ウエットエッチング等によってガラス基板18の短手方向の中央部分であってガラス基板18の長手方向に沿うように長方形の溝が形成される。また、当該長方形の溝が形成された側のガラス基板18にはガラス基板28が接着や熱圧着等により貼り合わされ、接液部分が全てガラスで構成された流路19が形成される。 A rectangular groove is formed along the longitudinal direction of the glass substrate 18 at the central portion in the short direction of the glass substrate 18 by ultrasonic processing, laser processing, sandblasting, wet etching, or the like. In addition, a glass substrate 28 is bonded to the glass substrate 18 on the side where the rectangular groove is formed by adhesion, thermocompression bonding, or the like, and a flow path 19 in which the liquid contact portion is entirely made of glass is formed.
また、流路19に接しない側のガラス基板28上であって流路19の中央部分上に位置する部分にはヒータ等の伝熱手段20が蒸着やスパッタリング等によって形成され、流路19の上に位置し流路19に接しない側のガラス基板28上であって伝熱手段20から等間隔の位置には温度検出手段23及び24が蒸着やスパッタリング等によって形成される。 Further, a heat transfer means 20 such as a heater is formed on the glass substrate 28 on the side not in contact with the flow path 19 and on the central portion of the flow path 19 by vapor deposition, sputtering, etc. Temperature detecting means 23 and 24 are formed on the glass substrate 28 located on the upper side and not in contact with the flow path 19 at equal intervals from the heat transfer means 20 by vapor deposition or sputtering.
同様に、流路19の上に位置し流路19に接しない側のガラス基板28上であって温度検出手段23及び24の外側(伝熱手段20が設けあれていない側)であり、且つ、伝熱手段20から等間隔の位置には温度検出手段22及び25が蒸着やスパッタリング等によって形成される。 Similarly, on the glass substrate 28 located on the side of the flow path 19 that is not in contact with the flow path 19 and outside the temperature detection means 23 and 24 (the side where the heat transfer means 20 is not provided), and The temperature detecting means 22 and 25 are formed at equal intervals from the heat transfer means 20 by vapor deposition or sputtering.
さらに、流路19の上に位置し流路19に接しない側のガラス基板28上であって温度検出手段22及び25の外側(伝熱手段20が設けられていない側)であり、且つ、伝熱手段20から等間隔の位置には温度検出手段21及び26が蒸着やスパッタリング等によって形成される。 Further, on the glass substrate 28 located on the side of the flow path 19 that does not contact the flow path 19 and outside the temperature detection means 22 and 25 (the side where the heat transfer means 20 is not provided), and Temperature detection means 21 and 26 are formed at positions equidistant from the heat transfer means 20 by vapor deposition or sputtering.
すなわち、伝熱手段20、温度検出手段21,22,23,24,25及び26は流路19に接しない側のガラス基板28に形成されるので非接液の状態にある。 That is, the heat transfer means 20 and the temperature detection means 21, 22, 23, 24, 25 and 26 are formed on the glass substrate 28 on the side not in contact with the flow path 19, so that they are in a non-contact state.
ここで、図1に示す実施例の動作を図3及び図4を用いて説明する。図3は演算制御手段27の動作を説明するフロー図、図4は上流側と下流側との温度差と、流量との関係を示す特性曲線図である。 The operation of the embodiment shown in FIG. 1 will be described with reference to FIGS. FIG. 3 is a flowchart for explaining the operation of the arithmetic control means 27, and FIG. 4 is a characteristic curve diagram showing the relationship between the temperature difference between the upstream side and the downstream side and the flow rate.
流路を流れる液体の温度を制御し温度制御部分の上流側及び下流側の流体の温度差に基づき流量を測定する熱式流量計の流量測定範囲は、伝熱手段と上流側及び下流側の温度検出手段(温度差検出手段)との距離関係に依存する。 The flow measurement range of the thermal flow meter that controls the temperature of the liquid flowing through the flow path and measures the flow rate based on the temperature difference between the upstream and downstream fluids of the temperature control part is the heat transfer means and the upstream and downstream sides. It depends on the distance relationship with the temperature detection means (temperature difference detection means).
例えば、伝熱手段20と温度差検出手段の距離が遠い程、より高流量領域まで飽和せずに感度を有するものの、低流量領域では感度が足りなくなる。一方、伝熱手段20と温度差検出手段の距離が近い場合、低流量領域において感度を有するものの、流量が大きくなると温度差(流量信号)が飽和してしまう。 For example, the longer the distance between the heat transfer means 20 and the temperature difference detection means, the higher the flow rate region is and the sensitivity is not saturated, but the sensitivity is insufficient in the low flow rate region. On the other hand, when the distance between the heat transfer means 20 and the temperature difference detection means is short, sensitivity is obtained in the low flow rate region, but when the flow rate increases, the temperature difference (flow rate signal) is saturated.
このため、演算制御手段27が測定する流量に応じて、温度検出手段の組み合わせ(温度差検出手段)を適宜選択することにより、より広い測定レンジでの流量の測定を可能にする。 For this reason, it is possible to measure the flow rate in a wider measurement range by appropriately selecting a combination of temperature detection units (temperature difference detection unit) according to the flow rate measured by the arithmetic control unit 27.
すなわち、先ず第1に、演算制御手段27は、予め測定された被測定液体の温度に対して、被測定液体が数度程度高い一定温度になるように伝熱手段20を制御する。 That is, firstly, the calculation control means 27 controls the heat transfer means 20 so that the liquid to be measured has a constant temperature that is several degrees higher than the previously measured temperature of the liquid to be measured.
このような状態で、図3中”S001”において演算制御手段27は、測定する流量が、図4中”RG71”に示すような低流量領域であるか否かを判断する。 In this state, in “S001” in FIG. 3, the arithmetic control means 27 determines whether or not the flow rate to be measured is a low flow rate region as indicated by “RG71” in FIG.
もし、図3中”S001”において低流量領域であると判断した場合には、図3中”S002”において演算制御手段27は、伝熱手段20に最も近い温度差検出手段である温度検出手段23と温度検出手段24との間の温度差を求め、当該温度差に基づき流路19を流れる被測定液体の流量を求める。 If it is determined in “S001” in FIG. 3 that the region is a low flow rate region, the calculation control means 27 is the temperature detection means that is the closest to the heat transfer means 20 in “S002” in FIG. The temperature difference between the temperature detection means 24 and the temperature detection means 24 is obtained, and the flow rate of the liquid to be measured flowing through the flow path 19 is obtained based on the temperature difference.
例えば、測定する流量が図4中”RG71”に示す低流量領域である場合、図4中”CH71”に示すような伝熱手段20に最も近い温度差検出手段である温度検出手段23と温度検出手段24との間の温度差の特性を用いて流路19を流れる被測定液体の流量を求める。 For example, when the flow rate to be measured is in the low flow rate region indicated by “RG71” in FIG. 4, the temperature detection unit 23 and the temperature difference detection unit closest to the heat transfer unit 20 as indicated by “CH71” in FIG. The flow rate of the liquid to be measured flowing through the flow path 19 is obtained using the characteristic of the temperature difference with the detection means 24.
もし、図3中”S001”において低流量領域ではないと判断された場合、図3中”S003”において演算制御手段27は、測定する流量が、図4中”RG72”に示すような中流量領域であるか否かを判断する。 If it is determined in “S001” in FIG. 3 that it is not in the low flow rate region, the calculation control means 27 in “S003” in FIG. 3 determines the medium flow rate as indicated by “RG72” in FIG. It is determined whether it is an area.
もし、図3中”S003”において中流量領域であると判断した場合には、図3中”S004”において演算制御手段27は、伝熱手段20から中間位置の(2番目に近い)温度差検出手段である温度検出手段22と温度検出手段25との間の温度差を求め、当該温度差に基づき流路19を流れる被測定液体の流量を求める。 If “S003” in FIG. 3 determines that the flow rate is in the middle flow rate range, the calculation control means 27 determines the temperature difference from the heat transfer means 20 to the intermediate position (closest to the second) in “S004” in FIG. A temperature difference between the temperature detection means 22 and the temperature detection means 25 as detection means is obtained, and the flow rate of the liquid to be measured flowing through the flow path 19 is obtained based on the temperature difference.
例えば、測定する流量が図4中”RG72”に示す中流量領域である場合、図4中”CH72”に示すような伝熱手段20から中間位置の(2番目に近い)温度差検出手段である温度検出手段22と温度検出手段25との間の温度差の特性を用いて流路19を流れる被測定液体の流量を求める。 For example, when the flow rate to be measured is in the middle flow rate region indicated by “RG72” in FIG. 4, the temperature difference detection means at the intermediate position (closest to the second) from the heat transfer means 20 as indicated by “CH72” in FIG. The flow rate of the liquid to be measured flowing through the flow path 19 is obtained using the characteristic of the temperature difference between a certain temperature detection means 22 and the temperature detection means 25.
もし、図3中”S003”において中流量領域ではないと判断された場合、演算制御手段27は、測定する流量が、図4中”RG73”に示すような高流量領域であると判断して、図3中”S005”において演算制御手段27は、伝熱手段20から最も遠い(3番目に近い)温度差検出手段である温度検出手段21と温度検出手段26との間の温度差を求め、当該温度差に基づき流路19を流れる被測定液体の流量を求める。 If it is determined in “S003” in FIG. 3 that it is not in the middle flow rate region, the arithmetic control means 27 determines that the flow rate to be measured is in a high flow rate region as indicated by “RG73” in FIG. 3, in “S005”, the calculation control means 27 obtains a temperature difference between the temperature detection means 21 and the temperature detection means 26 which is the temperature difference detection means farthest from the heat transfer means 20 (closest to the third). Based on the temperature difference, the flow rate of the liquid to be measured flowing through the flow path 19 is obtained.
例えば、測定する流量が図4中”RG73”に示す高流量領域である場合、図4中”CH73”に示すような伝熱手段20に最も遠い(3番目に近い)温度差検出手段である温度検出手段21と温度検出手段26との間の温度差の特性を用いて流路19を流れる被測定液体の流量を求める。 For example, when the flow rate to be measured is in the high flow rate region indicated by “RG73” in FIG. 4, it is the temperature difference detecting means farthest (closest to the third) from the heat transfer means 20 as indicated by “CH73” in FIG. The flow rate of the liquid to be measured flowing through the flow path 19 is obtained using the characteristic of the temperature difference between the temperature detection means 21 and the temperature detection means 26.
この結果、流路上であって伝熱手段から等間隔の位置に第1の温度差検出手段を設け、流路上であって第1の温度差検出手段の外側であり、且つ、伝熱手段から等間隔の位置に第2、第3の温度差検出手段を順次設けると共に、測定する流量に応じて、温度差検出手段(温度検出手段の組み合わせ)を適宜選択することにより、より広い測定レンジでの流量の測定が可能になる。 As a result, the first temperature difference detection means is provided on the flow path at equal intervals from the heat transfer means, on the flow path and outside the first temperature difference detection means, and from the heat transfer means. The second and third temperature difference detection means are sequentially provided at equally spaced positions, and the temperature difference detection means (combination of temperature detection means) is appropriately selected according to the flow rate to be measured, thereby providing a wider measurement range. It is possible to measure the flow rate.
なお、図1に示す実施例では説明の簡単のために、3つの温度差検出手段(温度検出手段の組み合わせ)を有する熱式流量計を例示しているが、勿論、温度差検出手段の数は複数(2以上)であれば構わない。 In the embodiment shown in FIG. 1, a thermal flow meter having three temperature difference detection means (combination of temperature detection means) is illustrated for simplicity of explanation, but of course, the number of temperature difference detection means May be plural (two or more).
また、図4に示す上流側と下流側との温度差と、流量との関係を示す特性曲線図では、隣接する温度差検出手段(温度検出手段の組み合わせ)の流量に対する温度差の特性曲線がオーバーラップ(重なり合っている)しており、この方が好ましいが、流量に対する温度差の特性曲線がオーバーラップしていなくても勿論構わない。 Further, in the characteristic curve diagram showing the relationship between the temperature difference between the upstream side and the downstream side shown in FIG. 4 and the flow rate, the characteristic curve of the temperature difference with respect to the flow rate of the adjacent temperature difference detection means (combination of temperature detection means) is shown. Although it is preferable that this overlaps (overlapping), the characteristic curve of the temperature difference with respect to the flow rate may of course not overlap.
また、隣接する温度差検出手段(温度検出手段の組み合わせ)の温度差の特性曲線をオーバーラップ(重なり合っている)させるためには、隣接する温度差検出手段(温度検出手段の組み合わせ)同士の間隔を適宜調整することにより実現できる。 In order to overlap the temperature difference characteristic curves of adjacent temperature difference detection means (combination of temperature detection means), the interval between adjacent temperature difference detection means (combination of temperature detection means) is different. Can be realized by appropriately adjusting.
また、一つの熱式流量計で広い測定範囲を網羅できるので、流量変化の大きなアプリケーションにおいて、複数の熱式流量計を用意する必要性はなく、コストや設置スペースの削減が可能になる。 In addition, since one thermal flow meter can cover a wide measurement range, there is no need to prepare a plurality of thermal flow meters in an application with a large flow rate change, and the cost and installation space can be reduced.
また、メーカ側にとっても、複数の測定範囲に対応した熱式流量計をラインアップする必要性がなく、1種類の熱式流量計を製造して、演算制御手段のプログラムを書き換えることにより複数の測定範囲に対応することができるので、製造コストの削減が可能になる。 In addition, there is no need for the manufacturer to line up a thermal flow meter corresponding to a plurality of measurement ranges, and by manufacturing one type of thermal flow meter and rewriting the program of the calculation control means, a plurality of thermal flow meters can be rewritten. Since the measurement range can be accommodated, the manufacturing cost can be reduced.
また、温度差検出手段(温度検出手段の組み合わせ)の選択はハードウェア的ではなく、ソフトウェア的に行なわれるため、可動部がなく、耐久性が高くなる。 Further, since the selection of the temperature difference detection means (combination of temperature detection means) is not performed by hardware but by software, there is no movable part and durability is increased.
また、図1に示す実施例において、被測定流体の流れる方向が逆方向になっても同様の測定が可能である。 Further, in the embodiment shown in FIG. 1, the same measurement is possible even if the direction of the fluid to be measured flows in the opposite direction.
1,10,16,19 流路
2,8,13,20 伝熱手段
3,4,14,15,21,22,23,24,25,26 温度検出手段
5,17,27 演算制御手段
6,11,12,18,28 ガラス基板
7,9 シリコン基板
50 流量計チップ
1, 10, 16, 19 Flow path 2, 8, 13, 20 Heat transfer means 3, 4, 14, 15, 21, 22, 23, 24, 25, 26 Temperature detection means 5, 17, 27 Operation control means 6 11, 12, 18, 28 Glass substrate 7, 9 Silicon substrate 50 Flow meter chip
Claims (3)
接液部分が全てガラスで構成された流路と、
この流路に設けられた伝熱手段と、
前記流路上であって前記伝熱手段から等間隔の位置に設けられた第1の温度差検出手段と、
前記流路上であって前記第1の温度差検出手段の外側であり、且つ、前記伝熱手段から等間隔の位置に設けられた第2の温度差検出手段と、
前記流路を流れる液体の温度を前記伝熱手段で制御すると共に測定する流量に応じて前記第1若しくは前記第2の温度差検出手段を選択して検出された温度差に基づき流量を求める演算制御手段と
を備えたことを特徴とする熱式流量計。 In the thermal flow meter that controls the temperature of the liquid flowing through the flow path and measures the flow rate based on the temperature difference between the upstream and downstream fluids of the temperature control part,
A channel in which the wetted parts are all made of glass,
A heat transfer means provided in the flow path;
First temperature difference detection means provided on the flow path and at equal intervals from the heat transfer means;
Second temperature difference detection means provided on the flow path and outside the first temperature difference detection means and at equal intervals from the heat transfer means;
Calculation for obtaining the flow rate based on the detected temperature difference by controlling the temperature of the liquid flowing through the flow path by the heat transfer means and selecting the first or second temperature difference detection means according to the flow rate to be measured. A thermal flow meter comprising a control means.
測定する流量が低流量領域であると判断した場合に、前記伝熱手段に最も近い前記第1の温度差検出手段で検出された温度差に基づき流量を求め、
測定する流量が高流量領域であると判断した場合に、前記伝熱手段に最も遠い前記第2の温度差検出手段で検出された温度差に基づき流量を求めることを特徴とする
請求項1記載の熱式流量計。 The arithmetic control means is
When it is determined that the flow rate to be measured is a low flow rate region, the flow rate is obtained based on the temperature difference detected by the first temperature difference detection means closest to the heat transfer means,
The flow rate is obtained based on a temperature difference detected by the second temperature difference detection means farthest from the heat transfer means when it is determined that the flow rate to be measured is a high flow rate region. Thermal flow meter.
請求項1記載の熱式流量計。 The temperature difference characteristic curve with respect to the flow rate of the first temperature difference detection means and the temperature difference characteristic curve with respect to the flow rate of the second temperature difference detection means overlap with each other. 2. The thermal flow meter according to claim 1, wherein an interval between the two temperature difference detecting means is adjusted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007275884A JP2009103589A (en) | 2007-10-24 | 2007-10-24 | Thermal flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007275884A JP2009103589A (en) | 2007-10-24 | 2007-10-24 | Thermal flowmeter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009103589A true JP2009103589A (en) | 2009-05-14 |
Family
ID=40705394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007275884A Withdrawn JP2009103589A (en) | 2007-10-24 | 2007-10-24 | Thermal flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009103589A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016507064A (en) * | 2013-02-08 | 2016-03-07 | プロフタガレン アクチエボラグProvtagaren Ab | Improved differential thermal mass flow meter assembly and method of measuring mass flow using the mass flow meter assembly |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006010322A (en) * | 2004-06-22 | 2006-01-12 | Yokogawa Electric Corp | Thermal flowmeter |
WO2007110934A1 (en) * | 2006-03-28 | 2007-10-04 | Shimadzu Corporation | Thermal mass flow rate meter |
-
2007
- 2007-10-24 JP JP2007275884A patent/JP2009103589A/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006010322A (en) * | 2004-06-22 | 2006-01-12 | Yokogawa Electric Corp | Thermal flowmeter |
WO2007110934A1 (en) * | 2006-03-28 | 2007-10-04 | Shimadzu Corporation | Thermal mass flow rate meter |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016507064A (en) * | 2013-02-08 | 2016-03-07 | プロフタガレン アクチエボラグProvtagaren Ab | Improved differential thermal mass flow meter assembly and method of measuring mass flow using the mass flow meter assembly |
US10598529B2 (en) | 2013-02-08 | 2020-03-24 | Provtagaren Ab | Enhanced differential thermal mass flow meter assembly and methods for measuring a mass flow using said mass flow meter assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101680788B (en) | Heat flowmeter | |
KR101456469B1 (en) | Micro flow sensor | |
JP4854238B2 (en) | Flow sensor | |
US6945106B2 (en) | Mass flowmeter | |
JP2009115504A (en) | Thermal flowmeter | |
DK2869039T3 (en) | Flow sensor for determining a flow parameter and method for determining same | |
US20200271495A1 (en) | Thermal flowmeter | |
US20150300856A1 (en) | Thermal, Flow Measuring Device | |
JP5135137B2 (en) | Flow meter and flow control device | |
KR102159087B1 (en) | Flow rate measuring apparatus and method for measuring flow rate using the same | |
JP2006010322A (en) | Thermal flowmeter | |
US8583385B2 (en) | Thermal, flow measuring device | |
JPH07218308A (en) | Flow-rate measuring device | |
JP5354438B2 (en) | Thermal flow meter | |
WO2007063111A3 (en) | Device for determining and/or monitoring the mass flow of a fluid medium | |
JP2009103589A (en) | Thermal flowmeter | |
JP5575359B2 (en) | Thermal flow meter | |
JP4793621B2 (en) | Thermal flow meter | |
JP2011209038A (en) | Flow sensor | |
JP2009109285A (en) | Thermal flowmeter | |
JP2007303899A (en) | Thermal flowmeter | |
JP4811636B2 (en) | Thermal flow meter | |
JP4081639B2 (en) | Thermal mass flow meter for liquids | |
JP5119208B2 (en) | Differential pressure flow meter | |
US6250150B1 (en) | Sensor employing heating element with low density at the center and high density at the end thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20120713 |