JPS6099323A - Gas separation film - Google Patents

Gas separation film

Info

Publication number
JPS6099323A
JPS6099323A JP20577483A JP20577483A JPS6099323A JP S6099323 A JPS6099323 A JP S6099323A JP 20577483 A JP20577483 A JP 20577483A JP 20577483 A JP20577483 A JP 20577483A JP S6099323 A JPS6099323 A JP S6099323A
Authority
JP
Japan
Prior art keywords
plasma
perfluoro
film
porous
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20577483A
Other languages
Japanese (ja)
Other versions
JPH0236290B2 (en
Inventor
Masaaki Yamabe
山辺 正顕
Shunichi Samejima
鮫島 俊一
Toru Kawasaki
川崎 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20577483A priority Critical patent/JPH0236290B2/en
Publication of JPS6099323A publication Critical patent/JPS6099323A/en
Publication of JPH0236290B2 publication Critical patent/JPH0236290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve separation coefft. and rate of permeation of He and to make the performance stable and durable by plasma polymerizing perfluoro-3,6- dioxa(5-methyl)nonene-1 on a porous film. CONSTITUTION:Preferred porous film is one having 10-2,000Angstrom average pore size and 4X10<-4>-4X<-1>cm<3>/cm<2>.sec.cmHg and is made of polysulphone, polyamide, or polyacrylonitrile, etc. Perfluoro-3,6-dioxa(5-methyl)nonen-1 is plasma polymerized to form thin film on this porous supporting film. The plasma polymn. is performed in a bell jar type plasma polymn. apparatus at 0.01-5Torr and 1-1,000cm<3>/min flow rate, and 1-200W high frequency output. Preferred thickness of the plasma polymerized thin film is 0.01-5mu.

Description

【発明の詳細な説明】 本発明はガス分離膜、特に膜分離法により天然ガス中か
らヘリウムを選択性よく効率的に分離取得し得る分@膜
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas separation membrane, and particularly to a membrane that can efficiently separate and obtain helium from natural gas with good selectivity by a membrane separation method.

ヘリクムガスは例えば核融合反応、リニアモーター等の
超電導用の極低温媒体として有用であシ、今後かなシの
量の使用が見込まれる。
Helicum gas is useful as a cryogenic medium for superconducting devices such as nuclear fusion reactions and linear motors, and is expected to be used in large quantities in the future.

かかるヘリウムは天然ガスや空気中に含まれ、特に天然
ガス中にはかなカ多量に含まれている。
Such helium is contained in natural gas and air, and in particular, natural gas contains a fleeting amount of helium.

従来ヘリウム酸この様な天然ガスから深冷分畦恒關)手
段により分離取得されてきたが、これは+n+811備
的にかな)大規模となシ、操作的にも保守’;、ia−
的にもがなり煩雑なものであった。
Conventionally, helium acid has been separated and obtained from such natural gas by means of cryogenic separation ridges, but this is difficult to do on a large scale and operationally maintenance-free.
It was difficult and complicated.

更に、前記の如き超電導に用いたヘリウムガ″スの回収
に当っては従来それ桿有効な手段は提、5 、案されていなめ。
Furthermore, in the recovery of the helium gas used in superconductivity as described above, no effective means have been proposed so far.

’jイ也方、混合ガス中からヘリウムを得る方法として
膜分離法が提案されている。この方法#i直接ヘリウム
ガスが得られ、操作的に簡単で7bシ、又経済的にも有
利である。この様な分離膜として代表されるものにオル
ガノボリア0キサン系の膜が種々提案されている。この
膜は一般に敵素に対する透過速度や酸素分離係数(PO
,/PN、 )9については比較的満足し得るものの、
ヘリウムガスについては分離係数がlトさく、実用性に
ついてあまり期待し得るものでない。
On the other hand, a membrane separation method has been proposed as a method for obtaining helium from a mixed gas. This method #i directly obtains helium gas, is operationally simple, and is also economically advantageous. Various organoboria xane-based membranes have been proposed as typical examples of such separation membranes. This membrane generally has a permeation rate and an oxygen separation coefficient (PO
, /PN, )9 is relatively satisfactory, but
As for helium gas, the separation coefficient is low, so it is not very promising for practical use.

本発明者はかかる点に鑑み、分岐係数(PEe/PN、
)と5リウムの透過速度が高いレベルでバランスし、し
かもその性能が安定して持続し得る分離膜を得ることを
目的として種々研究、検討した結果、特定のパーフルオ
ロ化合物を膜素材として用いることにより前記目的を達
成し得ることを見出した。
In view of this point, the present inventor has determined that the branching coefficient (PEe/PN,
) and 5-lium permeation rate at a high level, and whose performance can be maintained stably and sustainably.As a result of various studies and examinations, we decided to use a specific perfluorinated compound as the membrane material. It has been found that the above object can be achieved.

かくして本発明は多孔質膜):rcパーフルオロf’A
!l、ドロージオキサ(5メチル)ノネン−1をブイ岬
、!−1rマ重合せしめて成るガス分離膜を提供する1
1f−2姫る・ 本発明に用いられる多孔質膜としては、その網(Pが平
均細孔径10〜2000X、空気の透−導度4 X 1
0−’♂/儒280C儒Hg を有するの1fij P
当である。
Thus, the present invention provides a porous membrane): rc perfluoro f'A
! l, drodioxa (5 methyl) nonene-1 at Cape Bui,! -Providing a gas separation membrane formed by polymerizing a 1r polymer 1
1f-2 Himeru・The porous membrane used in the present invention has a network (P is an average pore diameter of 10 to 2000X, and an air permeability of 4X1).
1fij P with 0-'♂/Fu280CFuHg
That's true.

これら物性が前記範囲を逸脱する場合には充−’−−級
洲ガス透過速度が得難く、又超薄膜を積層す、4 %h
、、IIA欠陥を生じ易くなる虞れがあるので好ましく
ない。
If these physical properties deviate from the above range, it will be difficult to obtain a high-grade gas permeation rate, and it will be difficult to obtain a high gas permeation rate of 4% h.
, , is undesirable because it may easily cause IIA defects.

かかる膜の材質としては、例えばポリスルホン、ポリア
ミド、ポリアクリロニトリル、ポリエチレン、ポリビニ
ルアルコール、ポリテトラフルオロエチレン等が挙げら
れる。
Examples of the material for such a membrane include polysulfone, polyamide, polyacrylonitrile, polyethylene, polyvinyl alcohol, and polytetrafluoroethylene.

そして本発明においては萌述の多孔質支持膜上にパーフ
ルオロ−46−ジオキサ(5メチル)ノネン−1(PH
VIと略称する)を薄膜状にプラズマ重合せしめる。
In the present invention, perfluoro-46-dioxa(5-methyl)nonene-1 (PH
(abbreviated as VI) is plasma polymerized into a thin film.

;’ラズーr重合に供せられるPHVHtv II# 
1lil id、例えば次に示す一連の反応でヘキサフ
ルオロプロペンより製造される。
;'PHVHtv II# subjected to lazu r polymerization
1liil id, for example, is produced from hexafluoropropene in the following reaction series.

(三量体) OF −OF −0−OF!−OF −0−03F。(trimer) OF -OF -0-OF! -OF -0-03F.

1Fm 又1、プラズマ重合手段としては、モノマー供給弁、電
極、アース電極、アース電極冷却部、高周波W源、ガラ
ス製ペルジャー、排気系より構成される。通常よく知ら
れているベルジャー型プラズマ重合装Re用いることが
出来る。
1Fm Also, 1. The plasma polymerization means is composed of a monomer supply valve, an electrode, a ground electrode, a ground electrode cooling section, a high frequency W source, a glass Pel jar, and an exhaust system. A well-known bell jar type plasma polymerization system Re can be used.

プラズマ重合φ件としてFi繭記ペルジャー型プラズマ
重合装置t用いれば圧力[L01〜5torr %PH
VBの流FIL 1〜10 C1Ocm”/ min 
、高周波出力1〜200W%−採用するのが適当でらる
。前記以外の歌合装#を用いても、これらの条件を最適
化してプラズマ重合を行うのはこの技術に習熟している
者にとって比較的容易でめる。
If plasma polymerization is used in a Pelger type plasma polymerization device, the pressure [L01~5 torr %PH
VB flow FIL 1~10 C1Ocm”/min
, it is appropriate to adopt a high frequency output of 1 to 200 W%. Even if a combination # other than those described above is used, it is relatively easy for a person familiar with this technique to optimize these conditions and perform plasma polymerization.

プラズマ重合によシ多孔質幌上に設けられるPHI!!
1111O厚さは[L01〜5.0μ、好まシくハα0
5〜1.0μ程度を採用するのカニ11r1当である。
PHI installed on a porous canopy by plasma polymerization! !
1111O thickness is [L01~5.0μ, preferably Haα0
It is per crab 11r that adopts about 5 to 1.0μ.

膜の厚さが繭紀範囲を逸脱する場合には塀に欠陥を生じ
易くなるか、又は充分なガス透過速11;”Nii峠得
難くなる等の虞れがあるので好ましくな・や゛ろl の、11ハ酸素や炭酸ガス等のガスに対する選択透過畦
も実用的であり、これらガスの濃縮或は分噸t、等にも
有用である。
If the thickness of the film deviates from the range, it is not preferable because there is a risk that defects may occur in the wall or it may be difficult to obtain a sufficient gas permeation rate. A selective permeation ridge for gases such as oxygen and carbon dioxide gas is also practical, and is also useful for concentrating or separating these gases.

茨に本発明を実施例により説明する。The present invention will be further explained by way of examples.

実施例 ベルジャー型プラズマ重合装aを用い、空気の透過速度
が4810−”3ゾロB” 880 (MI Hg s
 平均細孔径が5OK、直径80m+のポリス゛ルホン
多孔質膜ケアース電極上に固定した。
Example A bell jar type plasma polymerization apparatus a was used, and the air permeation rate was 4810-"3 zoro B" 880 (MI Hg s
It was fixed on a polysulfone porous membrane care electrode with an average pore diameter of 5 OK and a diameter of 80 m+.

真空ポンプによりペルジャー内を脱気L、4Jli気を
続けなからモノマー供給〕くルブを通してpnvJ!!
を40 tvn”7 minで供給した。ペルジャー内
の圧力は9.2.torr となった。電極1111に
1556Mn2,50Wの高周波出力を印加してpHv
xを多孔質膜上へ1.0分間プラズマ重合した。
The inside of the Pel jar is deaerated with a vacuum pump, and the monomer is supplied through the lube. !
was supplied at a rate of 40 tvn"7 min. The pressure inside the Pelger was 9.2 torr. A high frequency output of 1556Mn2, 50W was applied to the electrode 1111 to adjust the pHv.
x was plasma polymerized onto the porous membrane for 1.0 minutes.

得られたプラズマ重合膜の膜厚は0.22μであった。The thickness of the obtained plasma polymerized film was 0.22μ.

He 、 002 、 H2の各ガスの透過性能を測作
した結果を以下に示す。
The results of measuring the permeability of He, 002, and H2 gases are shown below.

He の透過速度 1.2X 10−” aaltyl
 seem HgHeの透過係数 2.8X10−’ ao2の透過速度 5.5X10−4 00、の透過係数 1.2X10’ N2 の透過速度 6.7X 10−’Nコ、の透過係
数 1.5X I Q−9He/N!の分離係数 ′1
8 00、/N2の分離係数 8.3
He permeation rate 1.2X 10-” aaltyl
seem HgHe permeability coefficient 2.8X10-' ao2 permeation rate 5.5X10-4 00, permeation coefficient 1.2X10' N2 permeation rate 6.7X 10-'N2 permeation coefficient 1.5X I Q- 9He/N! Separation factor ′1
8 00, /N2 separation factor 8.3

Claims (1)

【特許請求の範囲】 多孔質s上にパーフルオロ−3,6−シオキ11%’)
F (5メチル)ノネン−1t−プラズマ重合セユ・ 
多孔*模はポリスルホン、ポリアミド、ポリアクリロニ
トリル、ポリエチレン、ポリビニルアルコール、ポリテ
トラフルオロエチレンである請求の範囲(1)又は(2
)の分離膜。 4、 パーフルオロ−46−ジオキサ(5メチルフノネ
ン−1重合体の膜厚は0.01〜5.0μである請求の
範1ff1(1)の分41
[Claims] 11% perfluoro-3,6-thioxy on porous s)
F (5-methyl)nonene-1t-plasma polymerization
Claim (1) or (2) the porous pattern is polysulfone, polyamide, polyacrylonitrile, polyethylene, polyvinyl alcohol, polytetrafluoroethylene.
) separation membrane. 4. The film thickness of perfluoro-46-dioxa(5-methylfunonene-1 polymer is 0.01 to 5.0μ) Claim 1ff1(1) 41
JP20577483A 1983-11-04 1983-11-04 GASUBUNRIMAKU Expired - Lifetime JPH0236290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20577483A JPH0236290B2 (en) 1983-11-04 1983-11-04 GASUBUNRIMAKU

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20577483A JPH0236290B2 (en) 1983-11-04 1983-11-04 GASUBUNRIMAKU

Publications (2)

Publication Number Publication Date
JPS6099323A true JPS6099323A (en) 1985-06-03
JPH0236290B2 JPH0236290B2 (en) 1990-08-16

Family

ID=16512444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20577483A Expired - Lifetime JPH0236290B2 (en) 1983-11-04 1983-11-04 GASUBUNRIMAKU

Country Status (1)

Country Link
JP (1) JPH0236290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246743A (en) * 1991-11-26 1993-09-21 Ube Industries, Ltd. Method of enhancing gas separation performance of an aromatic polyimide membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246743A (en) * 1991-11-26 1993-09-21 Ube Industries, Ltd. Method of enhancing gas separation performance of an aromatic polyimide membrane

Also Published As

Publication number Publication date
JPH0236290B2 (en) 1990-08-16

Similar Documents

Publication Publication Date Title
US5288304A (en) Composite carbon fluid separation membranes
CA1326116C (en) Fluoro-oxidized polymeric membranes for gas separation and process for preparing them
EP3307422B1 (en) Amorphous fluorinated copolymer gas separation membranes
JP3685289B2 (en) Liquid degassing module
JPS6099323A (en) Gas separation film
US6726840B1 (en) Membranes of (per)fluorinated amorphous polymers
JPH0252527B2 (en)
JPH0423572B2 (en)
JPH0236291B2 (en) KITAIBUNRIMAKU
JPH0236292B2 (en) KITAIOBUNRISURUMAKU
JPH0423573B2 (en)
JPH0423570B2 (en)
JPH0236293B2 (en) GASUNOBUNRIMAKU
JP2805794B2 (en) Manufacturing method of gas separation membrane
Higuchi et al. Permselectivities through artificial membranes at a non‐steady state
Yamasaki et al. Effect of evaporation time on the pervaporation characteristics through homogeneous aromatic polyamide membranes. II. Pervaporation performances for ethanol/water mixture
JPS5959214A (en) Gas separating composite membrane
JPH057049B2 (en)
JP2000042342A (en) External pressure type composite hollow fiber membrane for gas separation and its production
JPH0456653B2 (en)
JPH01123618A (en) Composite gas separation membrane
JPH0559775B2 (en)
JPH055531B2 (en)
JPH04305234A (en) Production of gas permeable composite film
JPH06116436A (en) Method for treating porous polymer membrane