JP2000042342A - External pressure type composite hollow fiber membrane for gas separation and its production - Google Patents

External pressure type composite hollow fiber membrane for gas separation and its production

Info

Publication number
JP2000042342A
JP2000042342A JP10212356A JP21235698A JP2000042342A JP 2000042342 A JP2000042342 A JP 2000042342A JP 10212356 A JP10212356 A JP 10212356A JP 21235698 A JP21235698 A JP 21235698A JP 2000042342 A JP2000042342 A JP 2000042342A
Authority
JP
Japan
Prior art keywords
membrane
gas separation
porous
hollow fiber
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10212356A
Other languages
Japanese (ja)
Inventor
Osami Tozawa
修美 戸沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP10212356A priority Critical patent/JP2000042342A/en
Publication of JP2000042342A publication Critical patent/JP2000042342A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an external pressure type composite hollow fiber membrane for gas separation combining high gas permeability and high gas separating property, moreover, heat resistance and pressure resistance and to provide its production method. SOLUTION: The external pressure type composite hollow fiber membrane for gas separation is composed of a dense layer being an outer surface and a porous layer supporting integrally the dense layer, and the membrane has a porous unsymmetrical hollow supporting membrane having a fractional molecular weight within a range of 5000-100000 and strong supporting function and a nonporous thin film consisting of 6FDA based fluorine-containing polyimide resin and having gas separating function on the dense layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスの高透過性と
高分離性、更に、耐熱性及と耐圧性とを兼ね備えたガス
分離用複合中空糸膜及びその製造方法に関する。詳しく
は、プラットフオーマーオフガスからの水素の分離回
収、メタンを主成分とする代替天然ガス(SNG)中に
含まれる炭酸ガスの分離除去、ランドフィルガス(地中
埋蔵中の廃棄物から発生する有機ガス)に含まれる炭酸
ガスの分離除去等に好適に用いることができる外圧型ガ
ス分離用複合中空糸膜及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite hollow fiber membrane for gas separation having high gas permeability and high gas separation, heat resistance and pressure resistance, and a method for producing the same. More specifically, the separation and recovery of hydrogen from platform off-gas, the separation and removal of carbon dioxide contained in alternative natural gas (SNG) containing methane as a main component, and the use of landfill gas (generated from waste buried underground) The present invention relates to an external-pressure-type composite hollow fiber membrane for gas separation which can be suitably used for separation and removal of carbon dioxide contained in organic gas) and a method for producing the same.

【0002】[0002]

【従来の技術】初期のガス分離膜は、その表面の緻密層
がこれに連続する多孔質層に一体に支持されている単一
の素材からなる所謂非対称構造膜が主流であり、そのよ
うな非対称構造膜の代表例として、セルロース系樹脂や
ポリスルホン系樹脂からなるものが用いられていた。し
かし、このような初期の非対称構造膜は、その製膜時に
ピンホール等の膜欠陥が生じやすいという欠点と共に、
ガスの分離機能と強度的支持機能を単一の膜素材が受け
持っているので、利用し得るポリマーの素材が限定され
るという問題も有していた。そこで、ガス分離用膜の研
究開発は、その後、ガス分離機能と強度的支持機能を別
個の薄膜に分担して負担させる複合構造膜にその主流が
移り、これに伴って、ガス分離用膜素材として可能性を
有するポリマー重合体の種類が飛躍的に増大した。
2. Description of the Related Art In the early days of gas separation membranes, a so-called asymmetric structure membrane composed of a single material in which a dense layer on the surface is integrally supported by a porous layer continuous thereto is mainly used. As a typical example of the asymmetric structure film, a film made of a cellulose resin or a polysulfone resin has been used. However, such an initial asymmetric structure film has a drawback that film defects such as pinholes are likely to occur during the film formation,
Since a single membrane material is responsible for the gas separation function and the strength support function, there is also a problem that available polymer materials are limited. Therefore, the mainstream of research and development of gas separation membranes has since shifted to composite structure membranes, in which the gas separation function and the strength support function are shared and assigned to separate thin films, and the gas separation membrane material is accordingly The types of polymer polymers that have the potential as above have increased dramatically.

【0003】かくして、それ以来、ガス分離用複合膜に
関しては、多くの技術が開発されているが、ガス分離用
複合膜の開発の流れは2つに大別される。第1は、ガス
透過性とガス分離性とにすぐれたガス分離用膜素材の開
発であり、第2は、ガス透過速度を高めるための薄膜化
技術の開発である。この薄膜化技術の一方法として、従
来、多孔性非対称支持膜の緻密層の上にデイップコート
法にてガス分離性を有する薄膜を形成する方法が提案さ
れている。
Thus, since then, many technologies have been developed for composite membranes for gas separation, but the flow of development of composite membranes for gas separation is roughly divided into two. The first is the development of a gas separation membrane material having excellent gas permeability and gas separation properties, and the second is the development of a thinning technique for increasing the gas permeation rate. As one method of this thinning technique, a method of forming a thin film having gas separation properties by a dip coating method on a dense layer of a porous asymmetric supporting film has been conventionally proposed.

【0004】複合膜の設計においては、ガス透過速度を
最大限に引き出すために、支持膜のガス透過抵抗を分離
機能を有する薄膜のそれに比べて、可能な限りに無視で
きるようにするのが理想的である。しかし、そのような
多孔性非対称支持膜を用いた場合には、この支持膜の緻
密層の孔の中にガス分離用素材のポリマーが流入して膜
欠陥が生じやすく、素材本来のガス分離性能を発現する
ためには、薄膜を厚くせざるを得なくなり、結果的に、
実用的な膜透過速度を得ることができない。一方、膜欠
陥の発生を抑えるために、孔径のより小さい支持膜を用
いるときは、支持膜のガス透過抵抗が増加し、複合膜の
ガス透過速度が損なわれるという二律背反がある。
In the design of a composite membrane, it is ideal to make the gas permeation resistance of the support membrane negligible as much as possible compared to that of a thin film having a separation function in order to maximize the gas permeation rate. It is a target. However, when using such a porous asymmetric support membrane, the polymer of the material for gas separation flows into the pores of the dense layer of the support membrane and membrane defects are likely to occur, and the original gas separation performance of the material In order to express, the thin film has to be thickened, and as a result,
A practical membrane permeation rate cannot be obtained. On the other hand, when a support membrane having a smaller pore diameter is used to suppress the occurrence of membrane defects, there is a trade-off that the gas permeability resistance of the support membrane increases and the gas permeability rate of the composite membrane is impaired.

【0005】[0005]

【発明が解決しようとする課題】本発明者は、従来のガ
ス分離用複合中空糸膜及びその製造方法における上述し
た問題を解決するために鋭意研究した結果、表面の緻密
層とこれを一体に支持する多孔質層とからなり、限られ
た範囲の分画分子量を有し、強度的支持機能を有する多
孔性非対称中空支持膜の上記緻密層上に6FDA系含フ
ッ素ポリイミド樹脂からなるガス分離機能を有する非多
孔質薄膜を製膜することによって、ガスの高透過性と高
分離性、更に、耐熱性及と耐圧性とを兼ね備えた外圧型
ガス分離用複合中空糸膜を得ることができ、しかも、こ
のような複合中空糸膜によれば、炭酸ガスとメタンの分
離や、水素の分離回収等を効率よく行なうことができる
ことを見出して、本発明に至ったものである。
SUMMARY OF THE INVENTION The present inventors have conducted intensive studies to solve the above-mentioned problems in the conventional composite hollow fiber membrane for gas separation and the method for producing the same, and as a result, integrated the dense layer on the surface with the dense layer. A gas separation function comprising a 6FDA-based fluorine-containing polyimide resin on the dense layer of a porous asymmetric hollow support membrane having a limited molecular weight cut-off in a limited range and having a strong support function. By forming a non-porous thin film having the above, it is possible to obtain a composite hollow fiber membrane for external pressure gas separation having both high gas permeability and high separability, and further, both heat resistance and pressure resistance, In addition, the present inventors have found that such a composite hollow fiber membrane can efficiently perform separation of carbon dioxide and methane, separation and recovery of hydrogen, and the like, leading to the present invention.

【0006】[0006]

【課題を解決するための手段】本発明による外圧型ガス
分離用複合中糸膜は、外表面の緻密層とこれを一体に支
持する多孔質層とからなり、5000〜100000の
範囲の分画分子量を有し、強度的支持機能を有する多孔
性非対称中空支持膜と、上記緻密層上の6FDA系含フ
ッ素ポリイミド樹脂からなるガス分離機能を有する非多
孔質薄膜とを有することを特徴とすることを特徴とす
る。
The composite medium-filament membrane for external pressure gas separation according to the present invention comprises a dense layer on the outer surface and a porous layer integrally supporting the outer layer, and has a fraction in the range of 5,000 to 100,000. A porous asymmetric hollow support membrane having a molecular weight and a strong support function, and a non-porous thin film having a gas separation function comprising a 6FDA-based fluorine-containing polyimide resin on the dense layer. It is characterized by.

【0007】このような本発明による外圧型ガス分離用
複合中糸膜は、外表面の緻密層とこれを一体に支持する
多孔質層とからなり、5000〜100000の範囲の
分画分子量を有し、強度的支持機能を有する多孔性非対
称中空支持膜の上記緻密層の上に、6FDA系含フッ素
ポリイミド樹脂を有機溶剤に溶解してなる溶液を接触さ
せた後、有機溶剤を蒸発させ、除去して、上記緻密層の
上に上記6FDA系含フッ素ポリイミド樹脂からなる非
多孔質薄膜を形成することによって得ることができる。
[0007] The composite medium-filtration membrane for external pressure gas separation according to the present invention comprises a dense layer on the outer surface and a porous layer integrally supporting the outer layer, and has a molecular weight cut-off in the range of 5,000 to 100,000. Then, a solution obtained by dissolving a 6FDA-based fluorine-containing polyimide resin in an organic solvent is brought into contact with the dense layer of the porous asymmetric hollow support membrane having a strong support function, and then the organic solvent is removed by evaporation. Then, it can be obtained by forming a non-porous thin film made of the 6FDA-based fluorine-containing polyimide resin on the dense layer.

【0008】[0008]

【発明の実施の形態】ガス分離の経済性を支配する第一
の要因は、所要のガスの膜透過速度である。所要のガス
の膜透過速度が小さいときは、膜に供給するガスの加圧
の必要性がより高くなり、結果的に装置コストや運転コ
ストが高くなる。膜モジュールに収容する膜の膜面積の
増加が上記問題点の解決の一助になる。膜モジュール単
位容量当たりに収容できる膜面積は、中空糸膜を充填し
た中空糸膜モジュールの方が平膜をのり巻き状に巻付け
たスパイラル型モジュールよりも大きいことは従来より
知られている。
DETAILED DESCRIPTION OF THE INVENTION The primary factor governing the economics of gas separation is the required gas permeation rate. When the required gas permeation rate is low, the necessity of pressurizing the gas supplied to the membrane becomes higher, and as a result, the equipment cost and operation cost increase. The increase in the membrane area of the membrane housed in the membrane module helps to solve the above problem. It is conventionally known that the membrane area that can be accommodated per unit capacity of a membrane module is larger in a hollow fiber membrane module filled with a hollow fiber membrane than in a spiral type module wound in a flat membrane.

【0009】更に、中空糸膜構造において、ガス分離機
能を有する薄膜が中空支持膜の内表面よりも外表面に位
置している方が、膜面積がより大きくなることは自明の
理である。このような観点から、本発明においても、外
圧型複合中空糸膜構造を採用している。
Further, in the hollow fiber membrane structure, it is obvious that the membrane area is larger when the thin film having the gas separation function is located on the outer surface than on the inner surface of the hollow support membrane. From such a viewpoint, the present invention also employs an external pressure type composite hollow fiber membrane structure.

【0010】本発明において、外圧型ガス分離用複合中
空糸膜とは、強度的支持機能を有する多孔性非対称中空
支持膜膜の外表面、即ち、緻密層の上にガス分離機能を
有する薄膜が形成されていて、分離すべきガス混合物を
複合中空糸膜の外側に供給し、分離処理したガス(混合
物)を複合中空糸膜の内側に得ることができる中空糸膜
をいう。
In the present invention, the external pressure type composite hollow fiber membrane for gas separation refers to a thin film having a gas separation function on the outer surface of a porous asymmetric hollow support membrane having a strong support function, that is, on a dense layer. A hollow fiber membrane that is formed and can supply a gas mixture to be separated to the outside of the composite hollow fiber membrane and obtain a separated gas (mixture) inside the composite hollow fiber membrane.

【0011】以下に、本発明による外圧型ガス分離用複
合中空糸膜及びその製造方法について詳細に説明する。
Hereinafter, a composite hollow fiber membrane for external pressure gas separation according to the present invention and a method for producing the same will be described in detail.

【0012】本発明において、強度的支持機能を有する
多孔性非対称中空支持膜は、外表面の緻密層とこれを一
体に支持する多孔質層とからなる非対称構造を有する中
空糸状の膜である。このような中空支持膜の内外径は、
特に限定されないが、膜モジュールの膜表面積をより大
きくするという点から、外径は200〜600μmが好
ましい。また、耐圧性と共に、透過ガスの効率的な排出
を考慮すると、内径は100〜500μmの範囲が好ま
しい。
In the present invention, the porous asymmetric hollow support membrane having a strong support function is a hollow fiber membrane having an asymmetric structure composed of a dense layer on the outer surface and a porous layer integrally supporting the dense layer. The inner and outer diameters of such a hollow support membrane are:
Although not particularly limited, the outer diameter is preferably 200 to 600 μm from the viewpoint of increasing the membrane surface area of the membrane module. Also, in consideration of the pressure resistance and the efficient discharge of the permeated gas, the inner diameter is preferably in the range of 100 to 500 μm.

【0013】本発明によれば、このような多孔性非対称
支持膜は、分画分子量が5000〜100000の範囲
にある。多孔性非対称支持膜の分画分子量が5000よ
りも小さいときは、得られる複合膜のガス透過速度が十
分でなく、他方、100000よりも大きいときは、後
述するように、本発明による複合膜の製造に際して、多
孔性非対称支持膜の外表面の緻密層上に6FDA系含フ
ッ素ポリイミド樹脂の溶液を接触させたときに、6FD
A系含フッ素ポリイミド樹脂の溶液が支持膜の内部に浸
透し、支持膜の内部においても、6FDA系含フッ素ポ
リイミド樹脂からなる緻密な層を形成して、得られる複
合膜のガス透過速度を小さくするからである。
According to the present invention, such a porous asymmetric support membrane has a cut-off molecular weight in the range of 5,000 to 100,000. When the molecular weight cut-off of the porous asymmetric support membrane is smaller than 5000, the gas permeation rate of the obtained composite membrane is not sufficient. On the other hand, when it is larger than 100,000, as described later, the composite membrane of the present invention has In the production, when a solution of 6FDA-based fluorine-containing polyimide resin is brought into contact with the dense layer on the outer surface of the porous asymmetric support membrane, 6FD
The solution of the A-based fluorinated polyimide resin penetrates into the inside of the support membrane, and also forms a dense layer of 6FDA-based fluorinated polyimide resin inside the support membrane, thereby reducing the gas permeation rate of the obtained composite membrane. Because you do.

【0014】ここに、多孔性非対称支持膜の分画分子量
とは、その多孔性非対称支持膜が湿潤膜の状態におい
て、分子量が即知の溶質に対する支持膜の排除率を測定
することによって求めることができる。本発明において
は、分子量分布が単分散性であるポリエチレングリコー
ルを溶質として5000ppm濃度で含有する水溶液を
温度25℃、圧力4kg/cm2 で膜面に供給して、排
除率が少なくとも90%であるポリエチレングリコール
の分子量をその膜の分画分子量とする。
Here, the molecular weight cutoff of the porous asymmetric support membrane is determined by measuring the exclusion ratio of the support membrane with respect to a solute whose molecular weight is known when the porous asymmetric support membrane is in a wet membrane state. Can be. In the present invention, an aqueous solution containing polyethylene glycol having a molecular weight distribution of monodisperse at a concentration of 5000 ppm as a solute is supplied to the membrane surface at a temperature of 25 ° C. and a pressure of 4 kg / cm 2 , and the rejection is at least 90%. The molecular weight of polyethylene glycol is defined as the molecular weight cut off of the membrane.

【0015】かかる強度的支持機能を有する多孔性非対
称支持膜の材質に要求される特性としては、本発明によ
るガス分離用複合中糸膜の製造の際に用いる有機溶剤や
熱に対する耐久性は勿論、ガス分離系における耐久性を
高めるために、特に、耐熱性と耐溶剤性にすぐれた一般
式(I)
The properties required of the material of the porous asymmetric support membrane having such a strong support function include, of course, the durability against the organic solvent and heat used in the production of the composite middle fiber membrane for gas separation according to the present invention. In order to enhance the durability in a gas separation system, the general formula (I) which is particularly excellent in heat resistance and solvent resistance

【0016】[0016]

【化3】 Embedded image

【0017】(式中、Rは炭素原子及び水素原子からな
る2価の芳香族、脂環族又は脂肪族の炭化水素基、又は
これらの炭化水素基が2価の有機結合基で結合されてな
る2価の有機基を示す。)で表わされる繰返し単位から
なり、30℃においてN−メチル−2−ピロリドン溶液
として測定した固有粘度〔η〕が0.5〜2dL/gの範
囲にあるポリイミド樹脂が特に好ましく用いられる。
(Wherein, R is a divalent aromatic, alicyclic or aliphatic hydrocarbon group comprising a carbon atom and a hydrogen atom, or these hydrocarbon groups are bonded by a divalent organic bonding group. A repeating unit represented by the following formula: wherein the intrinsic viscosity [η] measured as an N-methyl-2-pyrrolidone solution at 30 ° C. is in the range of 0.5 to 2 dL / g. Resins are particularly preferably used.

【0018】このようなポリイミド樹脂は、1,2,3,4−
ブタンテトラカルボン酸と次の一般式(II)
Such a polyimide resin is 1,2,3,4-
Butanetetracarboxylic acid and the following general formula (II)

【0019】[0019]

【化4】 Embedded image

【0020】(式中、Rは炭素原子及び水素原子からな
る2価の芳香族、脂環族又は脂肪族の炭化水素基、又は
これらの炭化水素基が2価の有機結合基で結合されてな
る2価の有機基を示す。) ジアミンとの反応によって得られるものであるので、以
下、BTC系ポリイミド樹脂という。BTC系ポリイミ
ド樹脂の固有粘度が小さすぎるときは、非対称膜の製膜
性が十分でなく、一方、大きすぎるときは、種々の溶剤
に溶解し難くなって、製膜作業性に劣るようになる。
(Wherein R is a divalent aromatic, alicyclic or aliphatic hydrocarbon group comprising a carbon atom and a hydrogen atom, or these hydrocarbon groups are bonded by a divalent organic bonding group. The divalent organic group is obtained by a reaction with a diamine, and is hereinafter referred to as a BTC-based polyimide resin. When the intrinsic viscosity of the BTC-based polyimide resin is too small, the film forming property of the asymmetric film is not sufficient. On the other hand, when it is too large, it becomes difficult to dissolve in various solvents and the film forming workability becomes poor. .

【0021】本発明において、上記ジアミン中の2価の
基Rは、特に、限定されるものではないが、好ましい具
体例として、例えば、
In the present invention, the divalent group R in the diamine is not particularly limited, but preferred specific examples include, for example,

【0022】[0022]

【化5】 Embedded image

【0023】等を挙げることができる。And the like.

【0024】従って、本発明において、上記ジアミンの
好ましい具体例として、例えば、4,4'−ジアミノジフェ
ニルエーテルや4,4'−ジアミノジフェニルメタン等を挙
げることができる。
Therefore, in the present invention, preferred specific examples of the diamine include 4,4'-diaminodiphenyl ether and 4,4'-diaminodiphenylmethane.

【0025】本発明による外圧型ガス分離用複合空中糸
膜は、前記BTC系ポリイミド樹脂からなる多孔性非対
称中空糸膜を支持膜とし、その外表面の緻密層の上に6
FDA系含フッ素ポリイミド樹脂からなるガス分離機能
を有する非多孔質薄膜が形成されている。
The composite aerial fiber membrane for external pressure type gas separation according to the present invention uses the porous asymmetric hollow fiber membrane made of the BTC-based polyimide resin as a support membrane, and has a porous membrane on the dense layer on the outer surface.
A non-porous thin film having a gas separation function and made of an FDA-based fluorine-containing polyimide resin is formed.

【0026】BTC系ポリイミド樹脂からなり、外側に
緻密層を有する多孔性非対称中空糸膜は、既に、よく知
られているように、湿式製膜によって湿潤膜を調製し、
これを乾燥すればよい。
As is well known, a porous asymmetric hollow fiber membrane made of a BTC-based polyimide resin and having a dense layer on the outside is prepared by preparing a wet membrane by wet membrane formation, as is well known.
It may be dried.

【0027】本発明において用いるこの6FDA系含フ
ッ素ポリイミドとは、下記式(III)
The 6FDA fluorine-containing polyimide used in the present invention is represented by the following formula (III)

【0028】[0028]

【化6】 Embedded image

【0029】で表わされる5,5'−2,2,2−トリフルオロ
−1−(トリフルオロメチル)エチリデン−ビス−1,3
−イソベンゾフランジオン(6FDA)とジアミンとの
反応によって得られるポリイミド樹脂をいう。
5,5'-2,2,2-trifluoro-1- (trifluoromethyl) ethylidene-bis-1,3
-Refers to a polyimide resin obtained by the reaction of isobenzofurandione (6FDA) with a diamine.

【0030】ここに、上記ジアミンは、前述したよう
に、特に限定されず、種々のものが用いられる。6FD
A系含フッ素ポリイミドは、その嵩高い構造のために、
高いガス透過係数を有しており、ガス分離素材として非
常にすぐれている。
As described above, the diamine is not particularly limited, and various diamines can be used. 6FD
A-based fluorine-containing polyimide, due to its bulky structure,
It has a high gas permeability coefficient and is very good as a gas separation material.

【0031】一般に、ポリイミド樹脂は、耐溶剤性にす
ぐれ、溶解力の強い溶剤にのみ溶解するが、幸いなこと
に、フッ素原子を有する6FDA系含フッ素ポリイミド
樹脂は、中程度の溶解力をもつ種々の溶剤に溶解する。
このような中程度の溶解力をもつ溶剤として、例えば、
ケトン系溶剤やエーテル系溶剤等を挙げることができ
る。より具体的には、例えば、アセトン、アセトニルア
セトン、ジイソブチルケトン、ジエチルケトン、ジプロ
ピルケトン、メチルアミルケトン、メチルブチルケト
ン、メチルシクロヘキサノン、メチルエチルケトン、メ
チルn−ヘキシルケトン、メチルイソブチルケトン、メ
チルプロピルケトン、ジエチレングリコールジメチルエ
ーテル、ジエチレングリコールジエチルエーテル等を挙
げることができる。本発明においては、6FDA系含フ
ッ素ポリイミド樹脂の溶液を調製するために、これらの
なかでは、特に、中沸点溶剤が好ましく用いられる。
In general, a polyimide resin is excellent in solvent resistance and can be dissolved only in a solvent having a strong dissolving power. Fortunately, a 6FDA-based fluorine-containing polyimide resin having a fluorine atom has a medium solubility. Dissolves in various solvents.
As such a solvent having a medium solubility, for example,
Ketone solvents and ether solvents can be mentioned. More specifically, for example, acetone, acetonylacetone, diisobutyl ketone, diethyl ketone, dipropyl ketone, methyl amyl ketone, methyl butyl ketone, methyl cyclohexanone, methyl ethyl ketone, methyl n-hexyl ketone, methyl isobutyl ketone, methyl propyl ketone , Diethylene glycol dimethyl ether, diethylene glycol diethyl ether and the like. In the present invention, among these, a medium-boiling solvent is particularly preferably used in order to prepare a solution of a 6FDA-based fluorine-containing polyimide resin.

【0032】このような有機溶剤に前記6FDA系含フ
ッ素ポリイミド樹脂を溶解した比較的希薄な溶液を前記
BTC系ポリイミド樹脂からなる多孔性非対称中空糸膜
の外側の緻密層に接触させることによって、6FDA系
含フッ素ポリイミド樹脂からなるガス分離機能を有する
非多孔質薄膜を形成させることができる。実用的には、
前記BTC系ポリイミド樹脂からなる多孔性非対称中空
糸膜の外側表面に上記6FDA系含フッ素ポリイミド樹
脂溶液を塗布するか、又は上記6FDA系含フッ素ポリ
イミド樹脂溶液がBTC系ポリイミド樹脂からなる多孔
性非対称中空糸膜の内部に侵入しないようにして、この
多孔性非対称中空糸膜を6FDA系含フッ素ポリイミド
樹脂溶液に浸漬した後、6FDA系含フッ素ポリイミド
樹脂溶液の有機溶剤に応じ、且つ、必要に応じて、適宜
温度、通常、50〜150℃程度に加熱して、有機溶剤
を除去すれば、BTC系ポリイミド樹脂からなる多孔性
非対称中空糸膜の緻密層の上に前記6FDA系含フッ素
ポリイミド樹脂からなるガス分離機能を有する非多孔質
薄膜を形成させることができる。
By contacting a relatively dilute solution of the 6FDA fluorine-containing polyimide resin in such an organic solvent with the dense layer outside the porous asymmetric hollow fiber membrane made of the BTC polyimide resin, the 6FDA It is possible to form a non-porous thin film having a gas separation function and made of a fluorine-containing polyimide resin. In practice,
The above 6FDA-based fluorinated polyimide resin solution is applied to the outer surface of the porous asymmetric hollow fiber membrane made of the BTC-based polyimide resin, or the 6FDA-based fluorinated polyimide resin solution is made of a porous asymmetric hollow fiber made of the BTC-based polyimide resin. After immersing the porous asymmetric hollow fiber membrane in a 6FDA-based fluorinated polyimide resin solution so as not to enter the interior of the fiber membrane, depending on the organic solvent of the 6FDA-based fluorinated polyimide resin solution, and as necessary When the organic solvent is removed by heating to an appropriate temperature, usually about 50 to 150 ° C., and the organic solvent is removed, the above-mentioned 6FDA-based fluorine-containing polyimide resin is formed on the dense layer of the porous asymmetric hollow fiber membrane made of the BTC-based polyimide resin. A non-porous thin film having a gas separation function can be formed.

【0033】この6FDA系含フッ素ポリイミド樹脂か
らなる非多孔質薄膜は、できる限り薄いことが望まし
い。即ち、前述したように、得られる複合膜のガス透過
速度は、実質的にこの6FDA系含フッ素ポリイミド樹
脂薄膜の厚みによって支配され、膜厚が薄いほど、ガス
透過速度が大きくなるからである。従って、上記6FD
A系含フッ素ポリイミド樹脂溶液は、通常、樹脂濃度が
0.01〜15重量%、好ましくは、0.1〜12重量%と
なるように調製される。樹脂濃度が0.01重量%よりも
小さいときは、形成される薄膜にピンホール等の欠陥が
生じやすいので好ましくなく、一方、15重量%よりも
大きいときは、形成される薄膜の厚みが大きすぎて、実
用上、複合膜のガス透過速度が小さすぎるので好ましく
ない。
It is desirable that the non-porous thin film made of the 6FDA fluorine-containing polyimide resin is as thin as possible. That is, as described above, the gas permeation rate of the obtained composite membrane is substantially governed by the thickness of the 6FDA-based fluorine-containing polyimide resin thin film, and the gas permeation rate increases as the film thickness decreases. Therefore, the above 6FD
A type fluorine-containing polyimide resin solution usually has a resin concentration of
It is prepared so as to be 0.01 to 15% by weight, preferably 0.1 to 12% by weight. When the resin concentration is less than 0.01% by weight, defects such as pinholes tend to occur in the formed thin film, which is not preferable. On the other hand, when the resin concentration is more than 15% by weight, the thickness of the formed thin film is large. It is not preferable because the gas permeation rate of the composite membrane is too low in practical use.

【0034】このようにして、BTC系ポリイミド樹脂
からなる多孔性非対称中空糸膜の緻密層の上に積層され
る6FDA系含フッ素ポリイミド樹脂からなるガス分離
機能を有する非多孔質薄膜は、用いる6FDA系含フッ
素ポリイミド樹脂溶液の濃度やその塗布厚みにもよる
が、通常、0.01〜5μm、好ましくは、0.01〜2μ
mの厚みを有する。この薄膜が余りに薄い場合は、膜に
欠陥が生じやすく、一方、余りに厚い場合は、ガス透過
速度が実用上小さすぎるからである。
As described above, the non-porous thin film having a gas separation function of the 6FDA-based fluorinated polyimide resin laminated on the dense layer of the porous asymmetric hollow fiber membrane made of the BTC-based polyimide resin is composed of 6FDA Although it depends on the concentration of the system fluorine-containing polyimide resin solution and its coating thickness, it is usually 0.01 to 5 μm, preferably 0.01 to 2 μm.
m. If the thin film is too thin, the film is likely to have defects, while if it is too thick, the gas permeation rate is too low for practical use.

【0035】[0035]

【発明の効果】以上のように、本発明によれば、強度的
支持機能を有する多孔性非対称中空支持膜として、分画
分子量が5000〜100000の範囲にあるものを用
いることによって、これを支持膜として、その表面の緻
密層の上に極めて薄い6FDA系含フッ素ポリイミド樹
脂からなるガス分離機能を有する非多孔質薄膜を形成す
ることができ、かくして、複合膜としてのガス透過速度
を高くすることができる。
As described above, according to the present invention, a porous asymmetric hollow support membrane having a strong support function having a molecular weight cut-off in the range of 5,000 to 100,000 is supported. As a membrane, it is possible to form a non-porous thin film having a gas separation function made of an extremely thin 6FDA-based fluorine-containing polyimide resin on a dense layer on the surface thereof, thereby increasing the gas permeation rate as a composite membrane. Can be.

【0036】更に、上記多孔性非対称中空支持膜の外径
を小さくすれば、得られる複合中空糸膜を集束して製造
する中空糸膜モジュールの膜面積を極めて大きくするこ
とができ、かくして、ガス透過速度の大きい膜モジュー
ルを得ることができ、このような膜モジュールを用いる
ことによって、ガス分離における設備費や運転費等を低
減することができる。
Further, if the outer diameter of the porous asymmetric hollow support membrane is reduced, the membrane area of the hollow fiber membrane module produced by converging the obtained composite hollow fiber membrane can be extremely large, and thus, the gas It is possible to obtain a membrane module having a high permeation rate, and by using such a membrane module, it is possible to reduce equipment costs and operation costs in gas separation.

【0037】上記に加え、本発明によれば、多孔性非対
称中空支持膜として、耐熱性と耐有機溶剤性にすぐれる
BTC系ポリイミド樹脂からなるものを用いるので、有
機溶剤蒸気が混入する種々の気体の分離処理にも好適に
用いることができる。
In addition to the above, according to the present invention, since a porous asymmetric hollow support membrane made of a BTC-based polyimide resin having excellent heat resistance and organic solvent resistance is used, various kinds of organic solvent vapor mixed therein can be used. It can also be suitably used for gas separation.

【0038】[0038]

【実施例】以下に実施例により本発明を説明するが、本
発明はこれから実施例に何ら限定されるものではない。
以下において、部は重量部である。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples.
In the following, parts are parts by weight.

【0039】実施例1 前記繰り返し単位(I)からなり、ジアミン成分が4,4'
−ジアミノジフェニルエーテルであるBTC系ポリイミ
ド樹脂(固有粘度〔η〕0.91dL/g)16部とジエ
チレングリコールジメチルエーテル16部とN,N−ジ
メチルホルムアミド27部とをN−メチル−2−ピロリ
ドン41部に溶解させて、溶液を得た。この溶液を環状
ノズルから中空状に押出し、水を凝固液として、内側及
び外側表面から凝固させて、内径300μm、外径50
0μmの多孔性非対称中空糸膜を得た。
Example 1 The diamine component comprising the repeating unit (I) was 4,4 '
Dissolving 16 parts of BTC-based polyimide resin (intrinsic viscosity [η] 0.91 dL / g) which is diaminodiphenyl ether, 16 parts of diethylene glycol dimethyl ether and 27 parts of N, N-dimethylformamide in 41 parts of N-methyl-2-pyrrolidone Then, a solution was obtained. This solution is extruded from an annular nozzle into a hollow shape, and water is used as a coagulating liquid to coagulate from the inner and outer surfaces.
A 0 μm porous asymmetric hollow fiber membrane was obtained.

【0040】この多孔性非対称中空糸膜は、その断面を
走査型電子顕微鏡で観察した結果、表面に緻密層を有
し、内部に向かうに従って粗である多孔質構造を有する
非対称膜であった。この支持膜の分画分子量は2000
0であり、純水透過速度は31L/m2 ・時・気圧であ
った。この多孔性非対称中空糸膜を50℃で乾燥させて
乾燥膜を得、これを多孔性非対称中空支持膜とした。
As a result of observing the cross section of the porous asymmetric hollow fiber membrane with a scanning electron microscope, it was found that the porous asymmetric hollow fiber membrane had a dense layer on the surface and had a porous structure that became coarser toward the inside. The molecular weight cutoff of this support membrane is 2000
0 and the pure water permeation rate was 31 L / m 2 · hr · atm. The porous asymmetric hollow fiber membrane was dried at 50 ° C. to obtain a dried membrane, which was used as a porous asymmetric hollow support membrane.

【0041】一方、6FDA系含フッ素ポリイミド樹脂
の一種である平均分子量が60000の6FDA−BA
AF(次式(IV)
On the other hand, 6FDA-BA having an average molecular weight of 60,000, which is a kind of 6FDA-based fluorine-containing polyimide resin, is used.
AF (Formula (IV)

【0042】[0042]

【化7】 Embedded image

【0043】で表わされる繰返し単位からなる。)1部
をジエチレングリコールジメチルエーテル99部に溶解
させて、濃度1.0重量%の樹脂溶液を調製した。
And a repeating unit represented by 1) 1 part was dissolved in 99 parts of diethylene glycol dimethyl ether to prepare a resin solution having a concentration of 1.0% by weight.

【0044】前記BTC系ポリイミド樹脂からなる多孔
性非対称中空糸膜の外表面に上記6FDA−BAAF溶
液をデイッピング法にて均一に塗布し、この塗膜を15
0℃に加熱して、塗膜からジエチレングリコールジメチ
ルエーテル蒸発除去させた後、室温で1時間放置して、
上記多孔性非対称中空糸膜の緻密層の上に厚さ約0.2μ
mの6FDA−BAAFの非多孔質薄膜を有する本発明
によるガス分離用複合中空糸膜を得た。
The above 6FDA-BAAF solution was uniformly applied to the outer surface of the porous asymmetric hollow fiber membrane made of the BTC-based polyimide resin by a dipping method.
After heating to 0 ° C. to evaporate and remove diethylene glycol dimethyl ether from the coating, leave it at room temperature for 1 hour.
About 0.2 μm thick on the dense layer of the porous asymmetric hollow fiber membrane
A composite hollow fiber membrane for gas separation according to the present invention having a non-porous thin film of 6FDA-BAAF of m was obtained.

【0045】この複合中空糸膜のガス透過速度を測定し
たところ、室温にて、CO2 透過速度(P(CO2)) は0.
26Nm3 /m2 ・hr・atm、メタン透過速度(P
(CH4))は0.0063Nm3 /m2 ・hr・atmであ
り、従って、分離係数(P(CO 2)/P (CH4))は41.3
であった。
The gas permeation rate of this composite hollow fiber membrane was measured.
Then, at room temperature, COTwoPermeation speed (P (COTwo)) is 0.
26NmThree/ MTwo・ Hr ・ atm, methane permeation rate (P
(CHFour)) Is 0.0063 NmThree/ MTwo・ Hr ・ atm
Therefore, the separation factor (P (CO Two) / P (CHFour)) Is 41.3
Met.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】外表面の緻密層とこれを一体に支持する多
孔質層とからなり、5000〜100000の範囲の分
画分子量を有し、強度的支持機能を有する多孔性非対称
中空支持膜と、上記緻密層上の6FDA系含フッ素ポリ
イミド樹脂からなるガス分離機能を有する非多孔質薄膜
とを有することを特徴とする外圧型ガス分離用複合中空
糸膜。
1. A porous asymmetric hollow support membrane comprising a dense layer on the outer surface and a porous layer integrally supporting the outer layer, having a molecular weight cutoff in the range of 5,000 to 100,000 and having a strong support function. A non-porous thin film having a gas separation function comprising a 6FDA-based fluorine-containing polyimide resin on the dense layer, and a composite hollow fiber membrane for external pressure type gas separation.
【請求項2】強度的支持機能を有する多孔性非対称中空
支持膜が一般式(I) 【化1】 (式中、Rは炭素原子及び水素原子からなる2価の芳香
族、脂環族又は脂肪族の炭化水素基、又はこれらの炭化
水素基が2価の有機結合基で結合されてなる2価の有機
基を示す。)で表わされる繰返し単位からなるポリイミ
ド樹脂によって形成されている請求項1に記載の外圧型
ガス分離用複合中空糸膜。
2. A porous asymmetric hollow support membrane having a strong support function is represented by the general formula (I): (Wherein, R is a divalent aromatic, alicyclic or aliphatic hydrocarbon group composed of a carbon atom and a hydrogen atom, or a divalent group formed by bonding these hydrocarbon groups with a divalent organic bonding group. The composite hollow fiber membrane for external pressure type gas separation according to claim 1, which is formed of a polyimide resin comprising a repeating unit represented by the following formula:
【請求項3】外表面の緻密層とこれを一体に支持する多
孔質層とからなり、5000〜100000の範囲の分
画分子量を有し、強度的支持機能を有する多孔性非対称
中空支持膜の緻密層の上に、6FDA系含フッ素ポリイ
ミド樹脂を有機溶剤に溶解してなる溶液を接触させた
後、有機溶剤を蒸発させ、除去して、上記緻密層の上に
上記6FDA系含フッ素ポリイミド樹脂からなる非多孔
質薄膜を形成することを特徴とする外圧型ガス分離用複
合中空糸膜の製造方法。
3. A porous asymmetric hollow support membrane comprising a dense layer on the outer surface and a porous layer integrally supporting the outer layer, having a molecular weight cut-off in the range of 5,000 to 100,000 and having a strong support function. After contacting a solution obtained by dissolving a 6FDA-based fluorinated polyimide resin in an organic solvent on the dense layer, the organic solvent is evaporated and removed, and the 6FDA-based fluorinated polyimide resin is removed on the dense layer. A method for producing a composite hollow fiber membrane for external pressure type gas separation, comprising forming a non-porous thin film comprising:
【請求項4】多孔性非対称中空支持膜が一般式(I) 【化2】 (式中、Rは炭素原子及び水素原子からなる2価の芳香
族、脂環族又は脂肪族の炭化水素基、又はこれらの炭化
水素基が2価の有機結合基で結合されてなる2価の有機
基を示す。)で表わされるポリイミド樹脂からなる請求
項3に記載の外圧型ガス分離用複合中空糸膜の製造方
法。
4. A porous asymmetric hollow support membrane having the general formula (I): (Wherein, R is a divalent aromatic, alicyclic or aliphatic hydrocarbon group composed of a carbon atom and a hydrogen atom, or a divalent group formed by bonding these hydrocarbon groups with a divalent organic bonding group. The method for producing a composite hollow fiber membrane for external pressure gas separation according to claim 3, comprising a polyimide resin represented by the following formula:
JP10212356A 1998-07-28 1998-07-28 External pressure type composite hollow fiber membrane for gas separation and its production Pending JP2000042342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10212356A JP2000042342A (en) 1998-07-28 1998-07-28 External pressure type composite hollow fiber membrane for gas separation and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10212356A JP2000042342A (en) 1998-07-28 1998-07-28 External pressure type composite hollow fiber membrane for gas separation and its production

Publications (1)

Publication Number Publication Date
JP2000042342A true JP2000042342A (en) 2000-02-15

Family

ID=16621197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10212356A Pending JP2000042342A (en) 1998-07-28 1998-07-28 External pressure type composite hollow fiber membrane for gas separation and its production

Country Status (1)

Country Link
JP (1) JP2000042342A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398059B1 (en) * 2000-12-26 2003-09-19 한국화학연구원 Fluorine-based polyimide composite membrane for gas separation
JP2006224098A (en) * 2005-01-21 2006-08-31 Ube Ind Ltd Polyimide asymmetric membrane comprising multi-component polyimide, gas separation membrane and gas separation method
CN103846013A (en) * 2012-12-05 2014-06-11 中国科学院大连化学物理研究所 Porous material-polymer gas separation composite membrane
WO2014087928A1 (en) * 2012-12-03 2014-06-12 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398059B1 (en) * 2000-12-26 2003-09-19 한국화학연구원 Fluorine-based polyimide composite membrane for gas separation
JP2006224098A (en) * 2005-01-21 2006-08-31 Ube Ind Ltd Polyimide asymmetric membrane comprising multi-component polyimide, gas separation membrane and gas separation method
WO2014087928A1 (en) * 2012-12-03 2014-06-12 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP2014108391A (en) * 2012-12-03 2014-06-12 Fujifilm Corp Gas separation membrane
US9700849B2 (en) 2012-12-03 2017-07-11 Fujifilm Coporation Gas separation membrane, gas separation module, gas separation apparatus, and gas separation method
CN103846013A (en) * 2012-12-05 2014-06-11 中国科学院大连化学物理研究所 Porous material-polymer gas separation composite membrane

Similar Documents

Publication Publication Date Title
JP6033281B2 (en) Composite membranes containing sulfonated polyaryl ethers and their use in forward osmosis processes
EP0509260B1 (en) Composite or asymmetric fluorine-containing polyimide membrane, a process for manufacturing the same and a method for the separation and concentration of gas using the same
JP2635051B2 (en) Irregular gas separation membrane
US5795920A (en) Polymeric dope solution for use in the preparation of an integrally skinned asymmetric membrane
US4971695A (en) Sulfonated hexafluoro bis-a polysulfone membranes and process for fluid separations
US4813983A (en) Composite membrane for use in gas separation
US5178940A (en) Composite or asymmetric fluorine-containing polyimide membrane, a process for manufacturing the same and a method for the separation and concentration of gas using the same
Shieh et al. Gas separation performance of poly (4-vinylpyridine)/polyetherimide composite hollow fibers
US5749943A (en) Method of selectively separating unsaturated hydrocarbon
JPS63116723A (en) Method of forming hollow fiber irregular gas separating film
JP3247953B2 (en) Hydrous gel-like gas separation membrane
JPS6094106A (en) Manufacture of compound membrane
US4746333A (en) Method for producing an integral asymmetric gas separating membrane and the resultant membrane
US5391219A (en) Method for the separation and concentration of gas using a composite or asymmetric fluorine-containing polyimide membrane
KR20200012863A (en) Gas separators, gas separator elements, gas separators and gas separation methods
JP2000042342A (en) External pressure type composite hollow fiber membrane for gas separation and its production
JP2688882B2 (en) Method for producing composite membrane for gas separation
JPH119974A (en) Composite hollow-yarn membrane for external pressure gas separation and method for producing the same
JPS60132605A (en) Preparation of asymmetric membrane
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JPS6391122A (en) Separation of steam
JPS588504A (en) Gas separation membrane comprising polysulfone hollow fiber
CN107073406B (en) Method for manufacturing polyamide-based water treatment separator having excellent permeation flux characteristics and water treatment separator manufactured thereby
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module
JPH0634910B2 (en) Method for producing polysulfone-based membrane