JPS6097672A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6097672A
JPS6097672A JP20652383A JP20652383A JPS6097672A JP S6097672 A JPS6097672 A JP S6097672A JP 20652383 A JP20652383 A JP 20652383A JP 20652383 A JP20652383 A JP 20652383A JP S6097672 A JPS6097672 A JP S6097672A
Authority
JP
Japan
Prior art keywords
reinforcing plate
metal reinforcing
junction
semiconductor device
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20652383A
Other languages
Japanese (ja)
Inventor
Kazuhiko Niwayama
和彦 庭山
Toyohiko Kiyohara
豊彦 清原
Moichi Yoshida
吉田 茂一
Tsutomu Nakagawa
勉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20652383A priority Critical patent/JPS6097672A/en
Publication of JPS6097672A publication Critical patent/JPS6097672A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3185Partial encapsulation or coating the coating covering also the sidewalls of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To prevent the creeping discharge by lengthening the creeping distance and to upgrade the voltage stopping power in a semiconductor device, thyristor, by a method wherein both of the substrate and the metal reinforcing plate are coated with a silicon rubber over the exposing part of the P-N junction between the substrate and the metal reinforcing plate and parts or the whole of the sides of the metal reinforcing plate. CONSTITUTION:A semiconductor substrate 15 is formed by the same method as the conventional one and a metal reinforcing plate 10 is bonded thereto. After the peripheral part thereof was cut, the substrate 15 and the metal reinforcing plate 10 are inserted in a plastic mold 21 for molding, and a gel-shaped silicone rubber A mixed with a hardner is poured therein. After the rubber A was made to cure, the mold 21 is released and a semiconductor device is constituted. According to this structure, the creeping distance on the surface of the silicone rubber A becomes a distance of E-F-G-H. Concretely speaking, the creeping distance, which has been 8mm. in examples obtained hitherto, becomes a distance of 12mm.. As a result, the creeping discharge resistance of the thyristor is upgraded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、半導体装置およびその製造方法に関し、特
にその周縁部被覆方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to an improvement in a method for covering the peripheral edge thereof.

〔従来技術〕[Prior art]

以下、サイリスタを例にとり詳述する。 A detailed explanation will be given below using a thyristor as an example.

第1図は一般によく知られている逆阻止サイリスタの模
式図である。図において、15は半導体基体で、該基体
15ばその中にPエミッタN11゜Nベース層12.P
ベース層13.Nエミツタ層14を有し、PN接合19
及び2oが形成されている。10は金属補強板で、半導
体基体15の裏面全体に接着され、該基体15の陽極を
兼ねている。また16及び17はそれぞれ半導体基体1
5のゲート電極及び陰極である。18は半導体基体15
周縁部のPN接合露出部15aを覆う被覆材からなる被
覆層である、。
FIG. 1 is a schematic diagram of a generally well-known reverse blocking thyristor. In the figure, 15 is a semiconductor substrate, and the substrate 15 has a P emitter N11°N base layer 12 . P
Base layer 13. It has an N emitter layer 14 and a PN junction 19.
and 2o are formed. A metal reinforcing plate 10 is bonded to the entire back surface of the semiconductor substrate 15 and also serves as an anode of the substrate 15. Further, 16 and 17 are the semiconductor substrate 1, respectively.
5, the gate electrode and the cathode. 18 is a semiconductor substrate 15
This is a coating layer made of a coating material that covers the exposed PN junction portion 15a at the peripheral edge.

このようなサイリスクは、以下のようにして形成される
。即ち、例えばシリコンのような半導体基体に、拡散等
の周知の方法でもってい(つかの型の異なる不純物層1
1〜14を形成して所定の構造を得、しかる後にモリブ
デン等の金属の補強板10をアルミニウムなどのロウ材
を介して半導体基体15裏面に接着させ、接着後前記半
導体基体15の周縁部を削り落とし、適当な傾斜をつけ
てメサ構造とし、その後露出したPN接合部15aを適
当な被覆材18、例えばシリコンゴム等により被覆する
。今述べたものはサイリスクの製造方法の一例であり、
半導体基体150周縁部の傾斜づけはポジティブ及びネ
ガティブベベル構造となっているが、詳述はさけるがダ
ブルポジティブ構造やその他の構造をとることもある。
Such a silisk is formed as follows. That is, for example, impurity layers 1 of different types are deposited on a semiconductor substrate such as silicon by well-known methods such as diffusion.
1 to 14 to obtain a predetermined structure, and then a reinforcing plate 10 made of metal such as molybdenum is bonded to the back surface of the semiconductor substrate 15 via a brazing material such as aluminum, and after bonding, the peripheral edge of the semiconductor substrate 15 is bonded. The mesa structure is formed by cutting it off and giving an appropriate slope, and then the exposed PN junction 15a is covered with a suitable covering material 18, such as silicone rubber. What I just described is an example of the manufacturing method of Cyrisk,
The peripheral edge of the semiconductor substrate 150 has a positive and negative bevel structure, but it may also have a double positive structure or other structures, although not described in detail.

また被覆材18はシリコンゴムの単一被覆となっている
が、ポリイミド樹脂とシリコンゴムの二重被覆となるこ
ともある。
Further, the covering material 18 is a single coating of silicone rubber, but may be a double coating of polyimide resin and silicone rubber.

第2図はサイリスクエレメントの周縁部の断面模式図を
示したものである。
FIG. 2 shows a schematic cross-sectional view of the peripheral edge of the silisk element.

今、サイリスクに、例えば順方向に電圧を印加すると、
第2図の斜線で示されるように、半導体基体15中のP
N接合20の両側に空乏層が形成され、これが印加電圧
を阻止することは周知のことである。このときサイリス
クエレメントの半導体基体15の周縁のPN接合露出部
153表面においては、第2図のように、点Aから点B
まで空乏層が拡がり、その間で印加電圧を阻止している
Now, if we apply a voltage to Cyrisk in the forward direction, for example,
As shown by diagonal lines in FIG.
It is well known that depletion layers are formed on both sides of N-junction 20, which blocks the applied voltage. At this time, as shown in FIG.
The depletion layer expands to the point where the applied voltage is blocked.

ところが一般的に過大な電界のかかった固体表面では沿
面放電がおこる。第2図のものにおいては、点Aと点B
との沿面に、印加電圧による電界がかかり、当該部で沿
面放電がおこり、サイリスクは電圧阻止能力を失う。し
たがって、普通は第2図に示されたように、当該部をシ
リコンゴム18で被覆し、PN接合露出部15aを安定
化させるとともに、被覆により沿面距離を点Cから点り
というように伸ばして電界の緩和をはかり、沿面放電を
防いでいる。
However, creeping discharge generally occurs on solid surfaces where an excessive electric field is applied. In the one in Figure 2, point A and point B
An electric field due to the applied voltage is applied to the creeping surface of the capacitor, and a creeping discharge occurs in that area, causing the Cyrisk to lose its voltage blocking ability. Therefore, as shown in FIG. 2, this part is usually covered with silicone rubber 18 to stabilize the exposed PN junction part 15a and extend the creepage distance from point C to the other point. This reduces the electric field and prevents creeping discharge.

ところがサイリスクが高耐圧化してゆくにつれて印加電
圧が高まり、従来のままでは沿面電界を緩和しきれなく
なってきた。
However, as the withstand voltage of Cyrisk has increased, the applied voltage has increased, and it has become impossible to alleviate the creeping electric field with the conventional method.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの問題点に鑑みてな
されたもので、PN接合露出部と金属補強板の側面の一
部または全部とにまたがって両者を被覆することにより
、沿面距離が充分とれる半導体装置およびその製造方法
を提供することを目的とじている。
This invention was made in view of the problems of the conventional ones as described above, and by covering both the exposed PN junction part and part or all of the side surface of the metal reinforcing plate, a sufficient creepage distance can be achieved. The purpose of the present invention is to provide a semiconductor device that can be used for semiconductor devices and a method for manufacturing the same.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第4図および第3図は本発明の一実施例による半導体装
置およびその製造方法を示す。図において、第1.2図
と同一符号は同一のものを示し、21は本実施例方法に
おいて使用する、被覆材成型のための型である。
4 and 3 show a semiconductor device and a method of manufacturing the same according to an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 1.2 indicate the same parts, and 21 is a mold for molding the covering material used in the method of this embodiment.

以下、第3.第4図を用いて本発明の実施例を詳細に説
明する。
Below, 3rd. An embodiment of the present invention will be described in detail with reference to FIG.

本実施例では従来例と同様に半導体基体15を形成し、
これに金属補強板10を接着し、その周縁部を切削した
後、該基体15及び金属補強板10を第3図に示される
ように成型用のプラスチックの型21にはめこみ、そこ
へ硬化剤を混ぜたゲル状のシリコンゴムAを流しこみ、
これを硬化させた後、型21をはずして第4図に示され
るような構成としている。
In this example, the semiconductor substrate 15 is formed in the same manner as in the conventional example,
After adhering the metal reinforcing plate 10 to this and cutting the peripheral edge thereof, the base body 15 and the metal reinforcing plate 10 are fitted into a plastic mold 21 for molding as shown in FIG. 3, and a hardening agent is applied thereto. Pour the mixed gel-like silicone rubber A,
After this is cured, the mold 21 is removed and the structure shown in FIG. 4 is obtained.

この構造によると、シリコンゴムの表面の沿面距離は、
E−F−G−Hとなり、具体的には従来例で8難であっ
たのが、本実施例では12鶴となり、これによりサイリ
スタの耐沿面放電性が向ヒする。
According to this structure, the creepage distance of the silicon rubber surface is
E-F-G-H, and specifically, the conventional example had 8 difficulties, but in this example, it became 12 troubles, thereby improving the creeping discharge resistance of the thyristor.

このように本実施例ではPN接合露出部15aの他に陽
極電極である金属の補強板10の側面の一部又は全部を
も覆うことにより、沿面距離を伸ばすことが可能となり
、従来のものに比較し、逆阻止サイリスクの耐沿面放電
性を大幅に向上できる。
In this way, in this embodiment, by covering part or all of the side surface of the metal reinforcing plate 10, which is the anode electrode, in addition to the exposed PN junction part 15a, it is possible to extend the creepage distance, which is different from the conventional one. In comparison, the creeping discharge resistance of reverse blocking Cyrisk can be significantly improved.

なお上記実施例では被覆材の形成にプラスチックの型を
用いたが、この型はこれに限定されるものではなく、他
の方法でも本発明の目的を達成できるものであればよい
。また上記実施例では周縁部の傾斜づけ構造がポジティ
ブ及びネガティブペベル構造で、被覆が単一被覆のサイ
リスクを例にとったが、本発明はこれに限定されるもの
ではなく、ダブルポジティブベベル構造やその他の構造
のものでもよく、二重被覆のサイリスクにおいては半導
体基体とシリコンゴムとの間にポリイミド樹脂の薄膜が
存在するだけで、上記実施例と同様の効果が得られる。
In the above embodiments, a plastic mold was used to form the covering material, but the mold is not limited to this, and other methods may be used as long as the objects of the present invention can be achieved. In addition, in the above embodiment, the inclined structure of the peripheral edge is a positive and negative bevel structure, and the coating is a single coating. However, the present invention is not limited to this, and the present invention is not limited to this, but a double positive bevel structure. or other structures may be used; in the case of a double-coated silice, the same effects as in the above embodiments can be obtained by simply having a thin film of polyimide resin between the semiconductor substrate and the silicone rubber.

また本発明はサイリスクだけでなく、同様な構造をもっ
た他の半導体装置、例えば、ダイオード、トランジスタ
等にも適用できることは明らかである。また上記実施例
では被覆材の形状を第4図のようにしたが、適当な型を
つくり、第5図のように被覆材にコルゲーション18a
をつけることもできる。このようにすれば、沿面はI−
J−に−L−M−N〜Oとなり、さらに沿面距離が長く
することができる。
Furthermore, it is clear that the present invention is applicable not only to SiRisk but also to other semiconductor devices having a similar structure, such as diodes and transistors. Further, in the above embodiment, the shape of the sheathing material was made as shown in FIG.
You can also add . If you do this, the creepage will be I-
J- becomes -L-M-N~O, and the creepage distance can be further increased.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体装置およびその製
造方法によれば、PN接合露出部と金属補強板の側面の
一部または全部とにまたがって両者を被覆するようにし
た−ので、沿面距離を伸ばして沿面放電を防止でき、電
圧阻止能力を大幅に向上することができる効果がある。
As described above, according to the semiconductor device and the manufacturing method of the same according to the present invention, the exposed PN junction portion and a part or all of the side surface of the metal reinforcing plate are coated so as to extend over the creepage distance. It is possible to prevent creeping discharge by extending the voltage, and it has the effect of greatly improving the voltage blocking ability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のサイリスクの断面模式図、第2図は第1
図のサイリスクの周縁部の断面模式図、第3図は本発明
の一実施例による半導体装置の製造方法を示す図、第4
図は第3図のサイリスクの周縁部の断面模式図、第5図
は本発明の他の実施例による半導体装置の断面模式図で
ある。 10・・・金属補強板、11・・・Pエミッタ層、12
・・・Nベース層、13・・・Pベース層、14・・・
Nエミツタ層、15・・・半導体基体、16・・・陰極
電極、17・・・ゲート電極、18・・・被覆層、19
.20・・・PN接合、15a・・・PN接合露出部、
21・・・成型のための型。 なお図中、同一符号は同−又は相当部分を示す。 代理人 大岩増雄 第1図 第2図 第3図 ゲル辣シリコンゴムA 第4図
Figure 1 is a cross-sectional schematic diagram of a conventional Cyrisk, and Figure 2 is a cross-sectional diagram of a conventional Cyrisk.
FIG. 3 is a schematic cross-sectional view of the peripheral portion of the cyrisk shown in FIG.
This figure is a schematic cross-sectional view of the peripheral portion of the cyrisk in FIG. 3, and FIG. 5 is a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention. 10... Metal reinforcing plate, 11... P emitter layer, 12
...N base layer, 13...P base layer, 14...
N emitter layer, 15... Semiconductor base, 16... Cathode electrode, 17... Gate electrode, 18... Covering layer, 19
.. 20... PN junction, 15a... PN junction exposed part,
21...Mold for molding. In the drawings, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 3 Gel silicone rubber A Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1) 少なくとも1つ以上のPN接合を有し周縁部に
メサ型のPN接合露出部が形成された半導体基体と、該
半導体基体の裏面にロウ材を介して接着された金属補強
板と、上記PN接合露出部及び上記金属補強板の側面の
一部または全部を両者にまたがって覆う被覆層とを備え
たことを特徴とする半導体装置。
(1) a semiconductor substrate having at least one PN junction and a mesa-shaped PN junction exposed portion formed at the peripheral edge; a metal reinforcing plate bonded to the back surface of the semiconductor substrate via a brazing material; A semiconductor device comprising: a coating layer covering part or all of the side surface of the PN junction exposed portion and the metal reinforcing plate, spanning the both.
(2)半導体基体中に少なくとも1つ以上のPN接合を
形成する工程と、上記半導体基体の裏面にロウ材を介し
て金属補強板を接着する工程と、上記半導体基体の周縁
部を削すメサ型のPN接合露出部を形成する工程と、成
型用の型を用いて上記PN接合露出部及び上記金属補強
板の側面の一部または全部を両者にまたがって覆う被r
i層を形成する工程とを備えたことを特徴とする半導体
装置の製造方法。
(2) forming at least one PN junction in the semiconductor substrate; bonding a metal reinforcing plate to the back surface of the semiconductor substrate via a brazing material; and cutting the periphery of the semiconductor substrate with a mesa. A step of forming an exposed PN junction part of a mold, and a step of covering the exposed PN junction part and a part or all of the side surface of the metal reinforcing plate by using a molding mold.
1. A method of manufacturing a semiconductor device, comprising the step of forming an i-layer.
JP20652383A 1983-11-01 1983-11-01 Semiconductor device and manufacture thereof Pending JPS6097672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20652383A JPS6097672A (en) 1983-11-01 1983-11-01 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20652383A JPS6097672A (en) 1983-11-01 1983-11-01 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6097672A true JPS6097672A (en) 1985-05-31

Family

ID=16524772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20652383A Pending JPS6097672A (en) 1983-11-01 1983-11-01 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6097672A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152668A (en) * 1987-12-09 1989-06-15 Fuji Electric Co Ltd Manufacture of semiconductor device
EP0788152A2 (en) * 1996-01-30 1997-08-06 Kabushiki Kaisha Toshiba Internal compression bonded semiconductor device with a chip frame enabling a longer creepage distance
JP2009049339A (en) * 2007-08-23 2009-03-05 Denso Corp Method of manufacturing semiconductor device
JP2009231321A (en) * 2008-03-19 2009-10-08 Denso Corp Silicon carbide semiconductor device and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152668A (en) * 1987-12-09 1989-06-15 Fuji Electric Co Ltd Manufacture of semiconductor device
EP0788152A2 (en) * 1996-01-30 1997-08-06 Kabushiki Kaisha Toshiba Internal compression bonded semiconductor device with a chip frame enabling a longer creepage distance
EP0788152A3 (en) * 1996-01-30 1997-11-05 Kabushiki Kaisha Toshiba Internal compression bonded semiconductor device with a chip frame enabling a longer creepage distance
JP2009049339A (en) * 2007-08-23 2009-03-05 Denso Corp Method of manufacturing semiconductor device
JP2009231321A (en) * 2008-03-19 2009-10-08 Denso Corp Silicon carbide semiconductor device and its manufacturing method
JP4535151B2 (en) * 2008-03-19 2010-09-01 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
US7825017B2 (en) 2008-03-19 2010-11-02 Denso Corporation Method of making silicon carbide semiconductor device having multi-layered passivation film with uneven surfaces

Similar Documents

Publication Publication Date Title
JP3455762B2 (en) Semiconductor device and manufacturing method thereof
JPS59135753A (en) Semiconductor device and manufacture thereof
US4883773A (en) Method of producing magnetosensitive semiconductor devices
JPS6097672A (en) Semiconductor device and manufacture thereof
US3980508A (en) Process of producing semiconductor device
JP4126872B2 (en) Constant voltage diode
JP7181336B2 (en) Semiconductor package method and semiconductor package structure
KR100311463B1 (en) Method for manufacturing plated heat sink
JPH0693451B2 (en) Semiconductor device and manufacturing method thereof
JPH077112A (en) Resin sealed semiconductor device
JPS6112682Y2 (en)
JPS5891662A (en) Semiconductor device and manufacture thereof
JPS6025902B2 (en) Resin-encapsulated semiconductor device
KR200152651Y1 (en) Lead frame
JPH05299444A (en) Manufacture of thin semiconductor device sealed with resin
KR100253226B1 (en) Pad for discharging heat of semiconductor device and fabricating method thereof
JP2005203557A (en) Semiconductor device
JPS6177369A (en) Manufacture of semiconductor device
JPH11233691A (en) Semiconductor device
JPS54120588A (en) Gate turn-off thyristor
JPS607495Y2 (en) semiconductor element
JPS5940775Y2 (en) semiconductor element
JPH0616515B2 (en) Semiconductor device and manufacturing method thereof
JPS59164253U (en) Electrodes of semiconductor devices
JPS5759379A (en) Manufacture of semiconductor device