JPS6097552A - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JPS6097552A
JPS6097552A JP58206606A JP20660683A JPS6097552A JP S6097552 A JPS6097552 A JP S6097552A JP 58206606 A JP58206606 A JP 58206606A JP 20660683 A JP20660683 A JP 20660683A JP S6097552 A JPS6097552 A JP S6097552A
Authority
JP
Japan
Prior art keywords
antimony
lead
alloy
alloy sheet
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58206606A
Other languages
Japanese (ja)
Other versions
JPH0320020B2 (en
Inventor
Masanobu Shinpo
新宝 雅信
Yuji Matsumaru
松丸 雄次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP58206606A priority Critical patent/JPS6097552A/en
Publication of JPS6097552A publication Critical patent/JPS6097552A/en
Publication of JPH0320020B2 publication Critical patent/JPH0320020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/82Multi-step processes for manufacturing carriers for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a light lead storage battery of good performance by using an expanded grid made of a lead alloy containing small percentages of antimony and arsenic. CONSTITUTION:A grid is made by heating a lead alloy sheet containing 0.8- 2.0% of antimony and 0.01-0.2% of arsenic to 190-300 deg.C, then quenching the heated alloy before it is expanded. When the content of antimony is at least 0.8% of the alloy sheet, its strength and corrosion resistance are improved by performing the heating and quanching. When the content of antimony exceeds 2.0% of the alloy sheet, its corrosion resistance is deteriorated and self discharge develops in a higher possibility in a battery constituted using the grid of this invention. Although the strength of the grid is widely improved by adding at least 0.01% of arsenic in forming the alloy sheet, addition of more than 0.2% of antimony can not achieve any higher effect and will result in a deteriorated corrosion resistance. In addition, the alloy sheet is required to be heated to a higher temperature as the content of antimony is lower.

Description

【発明の詳細な説明】 本発明は鉛蓄電池に関するものである。[Detailed description of the invention] The present invention relates to lead acid batteries.

一般に自己放電が少なく補水不要の鉛蓄電池にはアンチ
モン含有量の少ない鉛−低アンチモン合金或はアンチモ
ンを含まない鉛−カルシウム−スズ合金の格子体が用い
られている。従来これらの格子体は鋳造により得ていた
が電池の軽量化に対する要求が高まるにつれ格子体も薄
形軽量化する試みがなされている。格子体が薄くなると
鋳造では湯温れが悪くなり、軽量化を図ることが困難で
あるため、最近では薄い鉛合金シートをエキスバンド加
工することにより、軽量の格子体を得る方法が開発され
ている。しかしこの方法で格子体を得るには、シートに
適当な強度及び伸びが必要である。なぜなら強度が低い
場合は、エキスバンド加工時や活物質をペーストする際
に変形が生じやすく、不良率が高くなる原因となり、又
伸びが小さい場合、エキスバンド加工時にワイヤーやノ
ード部が切れやすくなるためである。
In general, lead-acid batteries that have little self-discharge and do not require refilling use a lattice of a lead-low antimony alloy containing little antimony or a lead-calcium-tin alloy that does not contain antimony. Conventionally, these lattice bodies have been obtained by casting, but as the demand for lighter batteries increases, attempts are being made to make the lattice bodies thinner and lighter. If the lattice becomes thin, the temperature of the hot water will deteriorate during casting, making it difficult to reduce weight.Recently, a method has been developed to obtain a lightweight lattice by expanding a thin lead alloy sheet. There is. However, in order to obtain a lattice body using this method, the sheet must have appropriate strength and elongation. This is because if the strength is low, deformation will easily occur during expansion processing or when pasting the active material, which will cause a high defect rate, and if the elongation is low, wires and node parts will be likely to break during expansion processing. It's for a reason.

鉛−カルシウム−スズ合金の場合、圧延や押出し等の塑
性加工によって得たシートや、溶融合金から冷却ドラム
で引き出す直接鋳造法によって得たシートの強度及び伸
びはエキスバンド加工に適したものである。
In the case of lead-calcium-tin alloys, the strength and elongation of sheets obtained by plastic processing such as rolling or extrusion, or sheets obtained by direct casting, which are drawn from molten alloy using a cooling drum, are suitable for expanded processing. .

一方、鉛−低アンチモン合金の場合は、圧延や押出し等
の塑性加工を行なうと強度が著しく低下する。又、この
合金は凝固開始から終了までの温度差が大きく、直接鋳
造法により均一な厚みのシートを得ることは回部である
On the other hand, in the case of a lead-low antimony alloy, the strength decreases significantly when plastic working such as rolling or extrusion is performed. In addition, this alloy has a large temperature difference from the start to the end of solidification, so it is difficult to obtain a sheet with a uniform thickness by direct casting.

従って現在のエキスバンド格子体には、前記方法によっ
て得た鉛−カルシウム−スズ合金シートが用いられてい
る。しかしこの鉛−カルシラム−スズ合金のエキスバン
ド格子体を正極板に用いた場合、過充電や深い充放電の
繰返しに弱い欠点がある。
Therefore, lead-calcium-tin alloy sheets obtained by the above method are used in current extended band lattice bodies. However, when this expanded lattice of lead-calcylum-tin alloy is used for the positive electrode plate, it has a drawback that it is susceptible to overcharging and repeated deep charging and discharging.

本発明は上記の欠点を改善し、位負かつ性能のよい鉛蓄
[池を提供するものである。
The present invention aims to improve the above-mentioned drawbacks and to provide a lead storage pond with a negative value and good performance.

その特徴は、0.8〜2.0%のアンチモン、0.01
〜0.2%の砒素を含む鉛合金シートを190〜500
℃に加熱した後、急冷しこれをエキスバンド加工した格
子体を用いることにある。
Its characteristics are 0.8-2.0% antimony, 0.01
190-500 lead alloy sheets containing ~0.2% arsenic
The purpose is to use a lattice body that is heated to ℃, then rapidly cooled, and processed into an expanded band.

つぎに本発明を実施例によって説明する。Next, the present invention will be explained by examples.

第1表は代表的組成の船−低アンチモン合金シートの抗
張力、伸び及び耐蝕性を示したものでアル。合金シート
はロールベルト方式の連続鋳造機で厚さ10朋の板を鋳
造後、圧延機により厚さj myに圧延した。鉛−低ア
ンチモン合金シートを10分間加熱後に、18°Cの水
中で急冷した。抗張力、伸びはり[張試験を行い測定し
たものであり、耐蝕性は腐蝕試験での重量減少で表わし
た。腐蝕試験は試料を比重1.28の硫酸中で30”A
/。dの宏電流で45分間V4極酸化させた後、15分
間休止するサイクルを200時間繰返す。試験後の試料
なアルカリマンニ) −ル液に浸漬し、酸化生成物を除
去し水洗乾燥後、重量減少をめた。
Table 1 shows the tensile strength, elongation, and corrosion resistance of low antimony alloy sheets with typical compositions. The alloy sheet was cast into a plate having a thickness of 10 mm using a roll belt type continuous casting machine, and then rolled to a thickness of j MY using a rolling mill. The lead-low antimony alloy sheet was heated for 10 minutes and then rapidly cooled in water at 18°C. Tensile strength and elongation were measured by performing a tension test, and corrosion resistance was expressed by weight loss in the corrosion test. Corrosion tests were carried out at 30”A in sulfuric acid with a specific gravity of 1.28.
/. A cycle of oxidizing the V4 electrode for 45 minutes at the high current of d and then resting for 15 minutes was repeated for 200 hours. After the test, the sample was immersed in an alkaline solution to remove oxidation products, washed with water, and dried to reduce weight.

第1表 第1表に示された如く、船−低アンチモン合金シートの
場合アンチモン含有量が0.8%以下では加熱急冷処理
による強度の改善がほとんど見られず強度は低く、エキ
スバンド格子体には適さない。
Table 1 As shown in Table 1, in the case of ship-low antimony alloy sheets, when the antimony content is less than 0.8%, there is almost no improvement in strength by heating and quenching treatment, and the strength is low. Not suitable for

しかし0.8%以上では加熱急冷処理により強度および
耐蝕性が向上する。またアンチモン含有■が2.0%を
こえると耐蝕性が患くなり、さらに電池の自己加電が多
くなる。従ってアンチモン含有量は0.8〜2.0%が
適切である。砒素は毒性があり少ない方が望ましいが、
添加しない場合には、強度が低い。砒素の添加量が0.
01%以上であれば、強度は大きく改善されるが、0.
2%より多く添加してもそれ以上の効果は見られず耐蝕
性が悪くなる。従って砒素含有量は0.01〜0.2%
が適切である。加熱温度については、エキスバンド格子
体とするのに適した加熱温度はアンチモン含有量によっ
て異なる。アンチモン含有量が少ない程高い加熱温度を
必要とする。第1図は加熱時間を30分以内としだ場合
のアンチモン含有量と最適加熱温度領域を示したもので
ある。図の斜線部分が最適温度領域でこれより高い場合
は、伸びが小さくなりエキスバンド加工時にワイヤーや
ノード部が切れやすくなり、低い場合は強度が弱く格子
体には適さない。
However, when the content is 0.8% or more, the strength and corrosion resistance are improved by heating and quenching treatment. Moreover, if the antimony content (■) exceeds 2.0%, the corrosion resistance will deteriorate and the self-electrification of the battery will increase. Therefore, the appropriate antimony content is 0.8 to 2.0%. Arsenic is toxic and less is better, but
When not added, the strength is low. The amount of arsenic added is 0.
If it is 0.01% or more, the strength will be greatly improved, but if it is 0.01% or more, the strength will be greatly improved.
Even if more than 2% is added, no further effect will be seen and the corrosion resistance will deteriorate. Therefore, the arsenic content is 0.01-0.2%
is appropriate. Regarding the heating temperature, the heating temperature suitable for forming an expanded lattice body differs depending on the antimony content. The lower the antimony content, the higher the heating temperature required. FIG. 1 shows the antimony content and the optimum heating temperature range when the heating time is 30 minutes or less. The shaded area in the figure is the optimal temperature range, and if it is higher than this, the elongation will be small and the wires and node parts will easily break during expansion processing, and if it is lower, the strength will be weak and it is not suitable for lattice bodies.

加熱時間を長くすれば加熱温度が低くてすむが、長時間
加熱は生産効率を低下させる。
If the heating time is increased, the heating temperature can be lowered, but prolonged heating reduces production efficiency.

加熱前の船−低アンチモン合金シートは圧延による方法
の他、押出しによって得てもよい。
The antimony-low antimony alloy sheet before heating may be obtained by extrusion in addition to rolling.

又、加熱後の急冷の方法は、水以外に油や冷却空気でも
よい。
Moreover, the method of rapid cooling after heating may be performed by using oil or cooling air instead of water.

次に電池性能を調べるために、35AHの自動車用電池
を組立て、寿命試験を実施した。電池Aは本発明による
一実施例で止、負極板にpb−1,5%5b−o、3%
A日合金の圧延シートを250°Cで10分間加熱後、
18°Cの水中で急冷し、エキスバンド加工した格子体
を用いた。
Next, in order to investigate battery performance, a 35AH automobile battery was assembled and a life test was conducted. Battery A is an embodiment according to the present invention, and the negative plate contains PB-1, 5% 5BO, 3%
After heating the rolled sheet of A-day alloy at 250°C for 10 minutes,
A lattice body that had been rapidly cooled in water at 18°C and subjected to an expand band process was used.

電池Bは正、負極板にPb−0,09%0a−0,5%
Sn合金の圧延シートを、エキスバンド加工した格子体
を用いた従来品である。寿命試験は放電々流20Aで1
時間放電、充電々流5Aで5時間充電のサイクルで行な
った。この寿命サイクル試験で、電池ムは148〜、電
池Bは78〜であった。本発明による鉛−低アンチモン
−砒素合金のエキスバンド格子体を使用した鉛蓄電池は
、従来の鉛−カルシウム−錫合金のエキスバンド格子体
を使用した鉛蓄電池に比べて、はるかに寿命が優れてい
る。またアンチモン含有量が2.0%以下であるため自
己放電も少ない。
Battery B has Pb-0,09% 0a-0,5% on the positive and negative electrode plates.
This is a conventional product using a lattice body obtained by expanding a rolled Sn alloy sheet. The life test is 1 with a discharge current of 20A.
A cycle of time discharging and charging at a current of 5 A for 5 hours was used. In this life cycle test, the battery number was 148~, and the battery B was 78~. A lead-acid battery using an expanded lattice of a lead-low antimony-arsenic alloy according to the present invention has a much better lifespan than a lead-acid battery using a conventional expanded lattice of a lead-calcium-tin alloy. There is. Furthermore, since the antimony content is 2.0% or less, self-discharge is also small.

実施例では正、負極板とも本発明による格子体を用いた
が、正極板は本発明による格子体を用いて、負極板は鉛
−カルシウム合金のエキスバンド格子体を用いてもよい
In the examples, the lattice body according to the present invention was used for both the positive and negative electrode plates, but the lattice body according to the present invention may be used for the positive electrode plate, and the expanded lattice body of lead-calcium alloy may be used for the negative electrode plate.

以上の如く、本発明は鉛−低アンチモン−砒素合金のエ
キスバンド格子体を用いるので、電池性能を低下させる
ことなく軽量化が可能であり、生産効率もよくその工業
的価値は大なるものである。
As described above, since the present invention uses an expanded lattice of lead-low antimony-arsenic alloy, it is possible to reduce the weight without deteriorating the battery performance, and the production efficiency is good, and its industrial value is great. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアンチモン含有量と本発明による、エキスバン
ド格子体を得るのに適した加熱温度との関係を示したも
のである。 出願人 湯浅電池株式会社
FIG. 1 shows the relationship between the antimony content and the heating temperature suitable for obtaining an expanded lattice according to the invention. Applicant Yuasa Battery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 0.8〜2.0%のアンチモン、0.01〜0.2%の
砒素を含む鉛合金シートを190〜300°Cに加熱し
た後急冷し、これをエキスバンド加工した格子体を用い
ることを特徴とする鉛蓄電池。
Use a grid body obtained by heating a lead alloy sheet containing 0.8 to 2.0% antimony and 0.01 to 0.2% arsenic to 190 to 300°C, then rapidly cooling it, and processing it into an expanded band. A lead-acid battery characterized by
JP58206606A 1983-11-01 1983-11-01 Lead storage battery Granted JPS6097552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58206606A JPS6097552A (en) 1983-11-01 1983-11-01 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58206606A JPS6097552A (en) 1983-11-01 1983-11-01 Lead storage battery

Publications (2)

Publication Number Publication Date
JPS6097552A true JPS6097552A (en) 1985-05-31
JPH0320020B2 JPH0320020B2 (en) 1991-03-18

Family

ID=16526169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58206606A Granted JPS6097552A (en) 1983-11-01 1983-11-01 Lead storage battery

Country Status (1)

Country Link
JP (1) JPS6097552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252189A2 (en) * 1986-06-06 1988-01-13 Matsushita Electric Industrial Co., Ltd. Process for producing a grid for use in lead acid batteries
JPH02123665A (en) * 1988-11-01 1990-05-11 Japan Storage Battery Co Ltd Lead-acid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252189A2 (en) * 1986-06-06 1988-01-13 Matsushita Electric Industrial Co., Ltd. Process for producing a grid for use in lead acid batteries
JPH02123665A (en) * 1988-11-01 1990-05-11 Japan Storage Battery Co Ltd Lead-acid battery
JPH0555984B2 (en) * 1988-11-01 1993-08-18 Japan Storage Battery Co Ltd

Also Published As

Publication number Publication date
JPH0320020B2 (en) 1991-03-18

Similar Documents

Publication Publication Date Title
KR100289221B1 (en) Battery grids and plates and lead-acid batteries made using these grids and plates
JP5140704B2 (en) Alloys for thin positive grids for lead-acid batteries and methods for making this grid
JP6597641B2 (en) Positive electrode grid for lead acid battery and lead acid battery
US6749950B2 (en) Expanded grid
JPH05290857A (en) Manufacture of electrode plate for lead-acid battery
JPS6097552A (en) Lead storage battery
JP5137371B2 (en) Rolled lead alloy sheet for expanded positive grid and lead-acid battery
US20030165742A1 (en) Electrode
JP4263465B2 (en) Electrode current collector, manufacturing method thereof, and sealed lead-acid battery
JP4774297B2 (en) Method for manufacturing grid for lead-acid battery and lead-acid battery
JPS6127066A (en) Grid for lead-acid battery and its manufacture
JP4423837B2 (en) Rolled lead alloy for storage battery and lead storage battery using the same
JP4579514B2 (en) Manufacturing method of grid substrate for lead acid battery
JPH10321236A (en) Lead-acid battery
JP5088679B2 (en) Lead acid battery
JP4972818B2 (en) Method for manufacturing grid for lead-acid battery
JP4066496B2 (en) Manufacturing method of electrode plate for lead acid battery and lead acid battery using the electrode plate
JP2002100365A (en) Rolling lead alloy sheet for storage battery and lead storage battery using it
JPH059903B2 (en)
JP3658871B2 (en) Lead acid battery
JPS58198860A (en) Lead storage battery
JPS63239768A (en) Grid for lead storage battery
JP2006196283A (en) Lead-acid battery
JP2004273308A (en) Process of manufacturing grid for lead-acid battery, and lead-acid battery
JPS58204165A (en) Manufacture of lead alloy member