JPS6096509A - Method for improving recovery in o2-production apparatus - Google Patents

Method for improving recovery in o2-production apparatus

Info

Publication number
JPS6096509A
JPS6096509A JP58204408A JP20440883A JPS6096509A JP S6096509 A JPS6096509 A JP S6096509A JP 58204408 A JP58204408 A JP 58204408A JP 20440883 A JP20440883 A JP 20440883A JP S6096509 A JPS6096509 A JP S6096509A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
pressure
adsorption tower
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58204408A
Other languages
Japanese (ja)
Inventor
Jun Izumi
順 泉
Seiichi Shirakawa
白川 精一
Yuichi Fujioka
祐一 藤岡
Hiroyuki Tsutaya
博之 蔦谷
Shozo Fukuda
福田 昭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58204408A priority Critical patent/JPS6096509A/en
Publication of JPS6096509A publication Critical patent/JPS6096509A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PURPOSE:To improve the yield of separated and recovered O2 in the process comprising the supply of air alternately to a pair of adsorption columns packed with N2- adsorbent, by carrying out the desorption of N2 from the N2-adsorbent under reduced pressure. CONSTITUTION:Sodium faujasite whuch is a zeolite mineral represented by Na-X is packed as the N2-adsorbent 9, 9' in a pair of N2-adsorption columns 8, 8'. Air 1 is compressed with a compressor 2, cleaned by passing through the column 4 for removing moisture and CO2, cooled with the refrigerator 20, and supplied to the bottom of the N2-adsorption column 8. The N2 in the air is adsorbed to the N2-adsorbent 9, and the remaining gas having high O2 content is discharged from the top valve 10 and charged in the O2-gas reservior 13. The N2-adsorption column 8' containing the N2- adsorbent 9' saturated with adsorbed N2 is evacuated with the vacuum pump 18 to effect the desorption of the adsorbed N2 and the regeneration of the adsorbent 9'. The regenerated adsorption column 8 is used in place of the column 8. In contrast with conventional process, the desorption of N2 from the N2 adsorbent is carried out without using a part of the separated O2 in the present process, and accordingly, the yield of the recovered O2 gas can be improved.

Description

【発明の詳細な説明】 気体より選択的にN2を吸着するN2吸着剤を使用して
の0□,N2を主成分とする混合気体より02。
Detailed Description of the Invention: 0□ using a N2 adsorbent that selectively adsorbs N2 from gas, and 02 from a mixed gas containing N2 as the main component.

N2を分離する方法に関するものである。The present invention relates to a method for separating N2.

N2吸着剤を利用した空気からのo, N2吸着分離法
は,装置が小型簡易であり,又無人運転に近い殆ど保守
を必要としない利点をもつ為,o2製造駿10〜a,o
ooN/ 02/h程度の中小型装置として近年使用列
が増えてきており.#冷分離装置で作られる液体酸素を
輸送して使用するケースについての代替が進行している
O2 adsorption separation method from air using N2 adsorbent has the advantage that the equipment is small and simple and requires almost no maintenance, which is close to unmanned operation.
In recent years, the number of users has been increasing as a small to medium-sized device of about ooN/02/h. # Replacement of transporting and using liquid oxygen produced by cold separation equipment is underway.

この装置の代表的なものの概要を述べると。Let me give an overview of the typical devices.

装置は空気圧縮機,及び2塔又はそれ以上のN2吸着塔
,又場合によっては真空ポンプ等から構成される。この
装置において.1塔に圧縮空気を送ると,充填されたN
2吸着剤により空気中のN2は吸着除去されて,残る高
圧o2は吸着塔の後方に流出し回収される。一方,他塔
では吸着したN2を減圧条件で放出させ(時として製品
02の一部を向流で流すとか,真空ポンプで強力にN2
を除去する方法もとられる)再生する。これを交互にく
り返して連続的にo, N2を分離する。
The equipment consists of an air compressor, two or more N2 adsorption towers, and in some cases a vacuum pump. In this device. When compressed air is sent to one tower, the filled N
N2 in the air is adsorbed and removed by the 2 adsorbent, and the remaining high pressure O2 flows out to the rear of the adsorption tower and is recovered. On the other hand, in other towers, the adsorbed N2 is released under reduced pressure conditions (sometimes a part of product 02 is flowed in a countercurrent, or a vacuum pump is used to forcefully release N2).
(There are also methods for removing the .). Repeat this process alternately to continuously separate o and N2.

上記の吸着塔に充填していたN2吸着剤の代表的なもの
は、ユニオンカーバイド社により実用化ビ きれたNa−A型遮オライドの60〜70%Ca交換体
であり、02.N22成分混合ガスからN2を選択的に
吸着するものであって、空気条件下での02の共吸着は
N2吸着の10%以下と推定される。
A typical N2 adsorbent packed in the above adsorption tower is a 60-70% Ca exchanger of Na-A type barrier olide, which was put into practical use by Union Carbide. It selectively adsorbs N2 from the N2 component mixed gas, and co-adsorption of 02 under air conditions is estimated to be 10% or less of N2 adsorption.

この吸着による02.N2分離装置は中小型領域で有利
と前述したが、INr/のo2を製造するのに0.75
〜I Kwhを必要とし、大容量深冷分離法で製造され
る02の0.45Kwhに比し消費電力は大きい。又装
置容量の増大に対するスケールメリットが少く。
02 due to this adsorption. As mentioned above, N2 separation equipment is advantageous in small and medium-sized areas, but in order to produce o2 of INr/0.75
~I Kwh is required, and the power consumption is larger than 0.45 Kwh of 02, which is produced by a large-capacity cryogenic separation method. Also, there is little merit of scale for increasing equipment capacity.

3.000 Nu?−02/h以上の領域では深冷分離
法に混合できないといわれている。
3.000 Nu? It is said that in the region of -02/h or higher, it cannot be mixed in the cryogenic separation method.

従って、これら欠点についての改善方法が種々考えられ
るが2本発明に関連して改善方法を述べると以下のよう
な障害が通常出現する。
Therefore, various methods can be considered to improve these drawbacks, but when describing the improvement methods in connection with the present invention, the following problems usually occur.

先ず、消費電力の低減については、送風圧力を低くして
低圧で吸着操作を行なう事が考えられるが、 N2吸着
量が圧力にほぼ比例して低下する為、装置の&likが
極めて増大する。次に、吸着量の増大を図る為に、低温
条件で吸着操作を行なう事が考えられるが、この場合は
N2吸着量は増大するものの吸着・脱着速度が著しく低
下する為、同一塔長ての製品o2a度が室温時よりもか
えって低下してしまう。又温度の低下に伴ないN2吸着
時の02共吸着量が上昇する為、動力原単位が漸次上昇
する。
First, in order to reduce power consumption, it is possible to lower the blowing pressure and perform the adsorption operation at low pressure, but since the amount of N2 adsorption decreases almost in proportion to the pressure, the &lik of the device increases significantly. Next, in order to increase the amount of adsorption, it is possible to perform the adsorption operation under low temperature conditions, but in this case, although the amount of N2 adsorbed increases, the adsorption/desorption rate will decrease significantly, so even if the column length is the same, The O2A degree of the product is actually lower than that at room temperature. Furthermore, as the temperature decreases, the amount of 02 co-adsorbed during N2 adsorption increases, so the power consumption rate gradually increases.

そこで既に本発明者らは、上記欠点を改善した低温、低
圧吸着条件下での高性能な02.N2の分離方法につき
鋭意研究、実験を進める過程で。
Therefore, the present inventors have already developed a high-performance 02. In the process of conducting intensive research and experiments on N2 separation methods.

Na−X型ゼオライトに代表される鉱物名ナトリウムフ
ァウジアサイトは低温、低圧吸着条件下でN2吸着量が
増大するとともに実用的な範囲でのN2吸着速度の維持
が可能であり、かっN2吸着選択性の減少が小さいと七
を見出し、これに基づいた発明を既に特願昭58−54
626号として出願した@ 以下、特願昭58−54626号に開示した発明の一実
施例について第1図を用いて説明する。
Sodium fauziasite, a mineral represented by Na-X type zeolite, increases the amount of N2 adsorption under low temperature and low pressure adsorption conditions, and can maintain the N2 adsorption rate within a practical range, making it an excellent choice for N2 adsorption. He discovered that 7 had a small decrease in the viscosity, and had already filed a patent application for an invention based on this.
Filed as No. 626@ Below, an embodiment of the invention disclosed in Japanese Patent Application No. 58-54626 will be described with reference to FIG.

人口側ラインlを通じて圧縮機2で1.05〜3ata
に加圧された空気は、流路3から脱湿脱CO2塔4に入
り、極めて清浄な加圧空気となる。流路3′の後流に設
置されたバルブ5は開となっており。
1.05 to 3 ata in compressor 2 through population side line l
The pressurized air enters the dehumidifying and dehumidifying CO2 tower 4 through the flow path 3, and becomes extremely clean pressurized air. A valve 5 installed downstream of the flow path 3' is open.

清浄な加圧空気は流路6及び開状態のバルブ7を通じて
吸着塔8に入る。吸着塔8に入った加圧空気はN2吸着
剤9でN2が吸着除去されて後方に行くに従がい02濃
度が上昇する。この後加圧空気は開状態のバルブ10.
11.12及びバルブ11゜12の間に挿入された製品
02タンク13を通じて製品02として回収される。−
万製品02の一部は流路14の途中にある減圧弁15で
減圧されて、開状態のバルブ10′を通じて吸着塔8′
に入り吸着塔8′は開状態のバルブ16及び流路17を
通じて連結された真空ポンプ18で減圧されひかれてお
り、この為吸着塔8′は空気流れと反対方向に製品02
の一部が負圧状態で流れ、吸着塔8′中の吸着剤9′に
吸着されていたN2は容易に離脱され吸着剤9′は短時
間で再生される。吸着塔8のN2吸府剤9が飽和し、一
方吸着塔8′のN2吸着剤9′からN2が離脱して再生
が済むと1人口空気の流路6を6′に切り換え、今迄述
べた方法を交互に行なうと製品02が連続的に回収でき
る。なお、入口の清浄な加圧空気のライン3′と離脱N
2を主成分とするガスライン17の間は熱交換器19で
、熱交換可能となっており、製品02ライン21と流路
3′との間も又熱交換器22で熱交換可能となりている
Clean pressurized air enters adsorption tower 8 through channel 6 and valve 7 which is open. The pressurized air that has entered the adsorption tower 8 has N2 adsorbed and removed by the N2 adsorbent 9, and the 02 concentration increases as it moves toward the rear. After this, the pressurized air is released into the open valve 10.
11, 12 and the product 02 tank 13 inserted between the valves 11 and 12, the product 02 is recovered. −
A part of the ten thousand products 02 is depressurized by the pressure reducing valve 15 located in the middle of the flow path 14, and passed through the open valve 10' to the adsorption tower 8'.
The adsorption tower 8' is depressurized and drawn by the vacuum pump 18 connected through the open valve 16 and the flow path 17, so that the adsorption tower 8' is injected with the product 02 in the opposite direction to the air flow.
A part of the adsorbent flows under negative pressure, and the N2 adsorbed on the adsorbent 9' in the adsorption tower 8' is easily released and the adsorbent 9' is regenerated in a short time. When the N2 absorbent 9 of the adsorption tower 8 is saturated, and on the other hand, N2 is released from the N2 adsorbent 9' of the adsorption tower 8' and regeneration is completed, the flow path 6 for artificial air is switched to 6', and as described above. By performing these methods alternately, product 02 can be continuously recovered. In addition, the clean pressurized air line 3' at the inlet and the disconnection N
A heat exchanger 19 is used to exchange heat between the gas lines 17 containing 02 as the main component, and a heat exchanger 22 is also used to exchange heat between the product 02 line 21 and the flow path 3'. There is.

又流路3′には圧縮式冷凍機20が設置されている為、
極めて能率的に吸着塔8及び8′は冷却され低温条件に
設定される。なお、吸着塔の切り換えにあたっては、単
純に流路6から6′へ(又はその逆)切り換えるだけで
なく、切り換え直後の昇圧に伴なう入口空気の吹きぬけ
を防ぎかつ。
Also, since a compression refrigerator 20 is installed in the flow path 3',
Very efficiently the adsorption columns 8 and 8' are cooled and set to low temperature conditions. In addition, when switching the adsorption tower, it is not only necessary to simply switch from flow path 6 to 6' (or vice versa), but also to prevent inlet air from blowing through due to pressure increase immediately after switching.

吸着塔の後方に残存する02及び前方の加圧空気の系外
への放出を最小にする為、先ず、バルブ1G、 15.
10’ を全開にして吸着直後の吸着塔8の後方の残存
02を再生直後の吸着塔8′に一部移す。
In order to minimize the release of the pressurized air remaining at the rear of the adsorption tower and the pressurized air at the front, valves 1G and 15.
10' is fully opened and a portion of the remaining 02 at the rear of the adsorption tower 8 immediately after adsorption is transferred to the adsorption tower 8' immediately after regeneration.

この時吸着塔8の圧力をPa(ata)吸着塔8′の圧
力ヲP+(ata) トス;E) ト、 均圧t (D
 圧fJ ハ約”。+P−’(ata)2 となる。この後約−−(ata)となった吸着塔8′は
バルブ10.11’を開として製品o2タンク13と吸
着塔を均圧化して吸着塔8′を更に高圧の02で満たず
。製品02タンク13との均圧時の圧力p2(ata)
は吸着塔8.8′の死谷緻(吸着塔内の吸着剤で占めら
れていない空間の容積)をV+(Z)、製品o2タンク
の容はをVz(t)とし、均圧前の製品o2タンク13
の圧力をpo(ata) Kはぼ等しいとすると、均と
なり、単に塔を切り換える時のP+(ata)がらp。
At this time, the pressure in the adsorption tower 8 is Pa(ata), the pressure in the adsorption tower 8' is P+(ata);E), equal pressure t(D
The pressure fJ becomes approximately ".+P-' (ata)2. After this, the adsorption tower 8', which has reached approximately - (ata), opens the valve 10.11' to equalize the pressure of the product O2 tank 13 and the adsorption tower. , and the adsorption tower 8' is not filled with even higher pressure 02.The pressure p2 (ata) at the time of pressure equalization with product 02 tank 13
is the dead valley density of the adsorption tower 8.8' (the volume of the space not occupied by the adsorbent in the adsorption tower) is V + (Z), the volume of the product O2 tank is Vz (t), and the Product o2 tank 13
Assuming that the pressure of po(ata) and K are approximately equal, it becomes equal, and P+(ata) when simply switching the column is p.

(ata)への急速な昇圧に比べ2以上の操作ではPl
(ata)、2(ata) 、 P2(ata) 、 
’ PG(ata)とゆるやかに昇圧する為、昇圧時の
空気の吹き抜けを防止しつつ、脱着工程での残存0+、
高圧空気の系外への故山を最小にする様な対策がa(能
となっている。
Compared to the rapid pressure increase to (ata), Pl
(ata), 2(ata), P2(ata),
' Since the pressure is gradually increased with PG (ata), it prevents air from blowing through when increasing the pressure, while reducing the residual 0+ in the desorption process.
Measures are being taken to minimize the flow of high-pressure air out of the system.

以」−の操作方法で第1図に示した空気分離装置で空気
分離を行なった。装置の操作諸元を第1表に示す。
Air separation was carried out using the air separation apparatus shown in FIG. 1 using the operating method described below. The operating specifications of the device are shown in Table 1.

しかし、第1図に図示する圧力スイング方式の02. 
N2吸着分離方法では必ず製品酸素の一部は再生に使用
される。これは製品02酸素の収率を下げかつ真空ポン
プ18の消費動力を上昇させる事となった。
However, the pressure swing method shown in FIG.
In the N2 adsorption separation method, a portion of the product oxygen is always used for regeneration. This lowered the yield of product 02 oxygen and increased the power consumption of the vacuum pump 18.

本発明者らは、この消費動力の向上対策が一つの大きな
解決課題と考え1棟々実験・検討の結果減圧弁を全開と
し、単に真空ポンプで吸着塔中のN2を脱着せしめる事
で、容易に再生か可能であることに見い出した。そして
、この為真空ポンプの消費動力として10%程度の低減
The inventors of the present invention believe that measures to improve this power consumption are one of the major issues to be solved, and as a result of experiments and studies in each building, it is possible to easily open the pressure reducing valve fully and simply desorb the N2 in the adsorption tower using a vacuum pump. I have found that it is possible to play it. Therefore, the power consumption of the vacuum pump is reduced by about 10%.

製品回収率としては10%程度の性能向上が計られるこ
ととなった。
It was decided that the product recovery rate would improve by about 10%.

すなわち1本発明とは、Na−Xに代表される鉱物名ナ
トリウムファウジャサイトを充填した少くとも2塔の吸
着塔において、室温以下の温度Fで、酸素及び窒素を主
成分とする混合気体を大気圧以」13aLa以トで吸着
塔に流入させて該混合気体に含まれる窒素を選択的に吸
着せしめ。
In other words, 1 the present invention refers to at least two adsorption towers filled with the mineral name sodium faujasite represented by Na-X, at a temperature F below room temperature, a mixed gas containing oxygen and nitrogen as main components. The nitrogen contained in the mixed gas is selectively adsorbed by flowing into an adsorption tower at a pressure of 13 aLa or higher than atmospheric pressure.

該吸着塔出口から高純度酸素又は酸素富化ガスを流出さ
せ、一方窒素を吸着した吸着塔を008ata以上0.
5 ata 以1・に製品1す循環する事なく減圧せ以
下本発明の方法について実施例により詳細に説明する。
High-purity oxygen or oxygen-enriched gas is discharged from the outlet of the adsorption tower, while the adsorption tower adsorbing nitrogen is heated to a concentration of 0.008 ata or more.
5 ata Hereinafter, the method of the present invention will be explained in detail with reference to Examples.

実施例 本発明の有効性を実証する為第2図に示す空気分離装置
で空気からのNa−X等のす) IJウムファウジャサ
イト系のN2吸着剤によるQzJI2分離を試みた。
EXAMPLE In order to demonstrate the effectiveness of the present invention, an attempt was made to separate Na-X, etc. from the air using an air separation apparatus shown in FIG. 2 using an IJ umfaujasite-based N2 adsorbent.

以下第2図に基づいて実施した内容を説明する。The details of the implementation will be explained below based on FIG.

入口側ライン1を通じて圧縮機2で1.05〜3 at
aに加圧された空気は、流路3から脱湿脱CO2塔4に
入り、極めて清浄な加圧空気となる。流路3′の後流に
設置されたバルブ5は開となっており。
1.05 to 3 at compressor 2 through inlet side line 1
The pressurized air enters the dehumidifying and dehumidifying CO2 tower 4 through the flow path 3, and becomes extremely clean pressurized air. A valve 5 installed downstream of the flow path 3' is open.

清浄な加圧空気は流路6及び開状態のバルブ7を通じて
吸着塔8に入る。吸着塔8に入った加圧空気はN2吸着
剤9でN2が吸潰除去されて後方に行くに従がい02濃
度が上昇する。この後加圧空気は開状態のバルブ10,
11.12 及びバルブ11゜12の間に押入された製
品02り/りN3を通じて製品02として回収される。
Clean pressurized air enters adsorption tower 8 through channel 6 and valve 7 which is open. The pressurized air that has entered the adsorption tower 8 has N2 absorbed and removed by the N2 adsorbent 9, and the 02 concentration increases as it moves toward the rear. After this, the pressurized air is supplied to the valve 10 in the open state,
11.12 and the product 02 is pushed between the valves 11 and 12 and is recovered as product 02 through N3.

さて次に吸着塔8のN2吸着剤9が飽和し、一方吸着塔
8′のN2吸着剤9′からN2が離脱して再生が済むと
1人L1空気の流路6を6′に切り換え。
Next, when the N2 adsorbent 9 of the adsorption tower 8 becomes saturated and, on the other hand, N2 is released from the N2 adsorption agent 9' of the adsorption tower 8' and regeneration is completed, the flow path 6 for one person L1 air is switched to 6'.

今迄述べた方法を交互に行なうと製品02が連続的に回
収できる。なお1人口の清浄な加圧空気のライン3′と
離脱N2を主成分とするガスライン170間は熱交換器
19で、熱交換可能となっており、製品02ライン21
と流路3′との間も又熱交換器22で熱交換可能となっ
ている。又流路3′には圧縮式冷凍機20が設iaされ
ている為、極めて能率的に吸着塔8及び8′は冷却され
低温条件に設定される。なお、吸着塔の切シ換えにあた
っては、単純に流路6から6′へ(又はその逆)切り換
えるだけである。
By performing the methods described so far alternately, product 02 can be continuously recovered. Note that a heat exchanger 19 is installed between the clean pressurized air line 3' and the gas line 170 whose main component is separated N2, allowing heat exchange between the product 02 line 21.
A heat exchanger 22 also allows heat exchange between the flow path 3' and the flow path 3'. Further, since a compression type refrigerator 20 is installed in the flow path 3', the adsorption towers 8 and 8' are extremely efficiently cooled and set to a low temperature condition. In addition, when switching the adsorption tower, simply switch from channel 6 to channel 6' (or vice versa).

以」二の操作方法で第2回に示した空気分離装置で空気
分離を行なった。装置の操作諸元を第2表に示す。
Air separation was performed using the air separation apparatus shown in Part 2 using the following operating method. The operating specifications of the device are shown in Table 2.

第2表 吸着装置諸元 第2表の操作条件で空気から02.N2を分離した。Table 2 Adsorption device specifications 02.0 from air under the operating conditions shown in Table 2. N2 was separated.

阻 第1−および第1表に示す従来例と、第2図および第2
表に示す本発明の一実施例との実験結果を第3図以下に
要約する。以下aE3図から遂次ナトリウムファウジャ
サイト系吸着剤(以−FNa−Xと記す)による空気か
らの圧力スイング式02 、N2吸着分離の従来の製品
o2再循環のめる場合と今回の製品o2再循環なく減圧
再生する場合の空気分離に対する主たる改善点を説明す
る。
The conventional example shown in Figure 1 and Table 1, and the conventional example shown in Figure 2 and Table 1.
Experimental results with one embodiment of the present invention shown in the table are summarized in FIG. 3 and below. The following aE3 diagram shows the pressure swing type 02 from air using a sequential sodium faujasite adsorbent (hereinafter referred to as -FNa-X), the conventional product of N2 adsorption separation, the case of o2 recirculation, and the case of this product o2 recirculation. The main improvements for air separation in the case of vacuum regeneration without air separation will be explained.

第3図は吸着圧力と動力原単位との関係を示すグラフで
あり、第3図に於いて、横軸は吸着圧力po ata 
、FU ’l1ll &よspxm/hで02を製造す
ルに必要な消費電力(暉)である。吸着剤としてNa−
X及びCa2/3−Na1/3 A を使用し、温度2
0’C。
Figure 3 is a graph showing the relationship between adsorption pressure and power consumption. In Figure 3, the horizontal axis is adsorption pressure po ata
, FU 'l1ll & Yospxm/h is the power consumption (暉) required to manufacture 02. Na- as an adsorbent
X and Ca2/3-Na1/3 A, temperature 2
0'C.

脱着圧力P l−”0.2a t a 、塔内空筒速度
U =0.8cWV′a e C(出口規孕)に設定し
て、吸着塔圧力を15〜4.5ataに変更した時の消
費電力を調べだものである図中、○印は製品o2再循環
のないものについて、■印は製品o2再循環のあるもの
について示している。第3図から判るように製品o2再
循iRすることなく真空減圧再生しても何ら支障なく吸
着剤の再生が計られている事が判る。図中には従来の吸
着剤のデータであるC a 2/3−Na 1/3−A
の製品02再循環のない場合の消費電力をO印でイ・」
記した。これは従来の実用化されたいがなる142吸看
剤を利用した空気分離方法においてもNa−Xが利用さ
れておらず、かつこの吸着剤では製品02再循環の不用
な事は従来のいかなる文献にも記載されていない事から
も全く新しい事実といえる。
When the adsorption tower pressure is changed from 15 to 4.5 ata with the desorption pressure P l-'0.2 ata and the column cavity velocity U = 0.8 cWV'a e C (outlet regulation). In the figure, which is a study of power consumption, the ○ marks are for products without O2 recirculation, and the ■ marks are for products with O2 recirculation.As can be seen from Figure 3, product O2 recirculation iR It can be seen that the adsorbent can be regenerated without any problem even if it is regenerated under vacuum without any problems.In the figure, the data of the conventional adsorbent is C a 2/3-Na 1/3-A
Product 02 Power consumption without recirculation is marked O.
I wrote it down. This is because Na-X is not used in the conventional air separation method using the 142 adsorbent, which has been put into practical use, and no previous literature has shown that this adsorbent does not require product 02 recirculation. It can be said that this is a completely new fact since it is not mentioned in the previous article.

次に上記の有効性が成立する領域である吸着圧力P o
=1.5 a t a 、空筒速W IJ=0.8CI
IL/ see 、温度zO℃に操作条件を設定して吸
着剤としてCa 2/3 Na 1/3−A、Na−X
の各々について脱着圧力p+をO1〜0.5ata迄変
更してNa−Xについては製品02再循環のある場合と
ない場合について動力原単位を測定しこれを第4図に示
しだ。第4図は脱着圧力と動力原単位との関係を示すグ
ラフである。
Next, the adsorption pressure P o is the region where the above effectiveness holds true.
= 1.5 a ta , cylinder speed W IJ = 0.8CI
The operating conditions were set to IL/see, temperature zO ℃, and Ca 2/3 Na 1/3-A, Na-X were used as adsorbents.
For each, the desorption pressure p+ was changed from O1 to 0.5ata, and for Na-X, the power consumption was measured with and without product 02 recirculation, and the results are shown in FIG. FIG. 4 is a graph showing the relationship between desorption pressure and power consumption.

第4図に於いて横軸は脱着圧力pl(ata)、縦軸は
(CINm/h 製造時の動力原単位を示す。図中○印
はNIL−Xの製品O2再循環のない場合、■印は製品
02再循環のある場合について・印はC8イーNal/
3−Aにりいて製品02再循環ない場合の従来例の併記
を示している。深冷分離法による02製造動力原単位が
0.45〜0.6牌h/Ny? 02であり、N2吸着
剤を用いた現行装置での分離による動力原単位が0.7
 KW h /N m’ Oz近傍を下限とする事及び
第4図から実用的な税源圧力としては、脱着圧に関連し
て、吸着剤のN2選択性は再生圧を低圧にする程上昇す
るが、真空ポンプの消費電力は逆0.2 に上昇する為、消費電力は脱着圧力が9=F a t 
a付近で最小となるので0.08ata〜0.5att
tの領域であり’l!lに好ましくは01〜0.3at
a近傍と思われる。
In Figure 4, the horizontal axis shows the desorption pressure pl (ata), and the vertical axis shows the power consumption during production (CINm/h). The mark is for product 02 with recirculation.The mark is C8 E-Nal/
3-A also shows the conventional example in the case where product 02 is not recirculated. 02 production power consumption by cryogenic separation method is 0.45 to 0.6 tiles h/Ny? 02, and the power consumption rate for separation with the current equipment using N2 adsorbent is 0.7
By setting the lower limit near KW h /N m' Oz and from Figure 4, as a practical source pressure, in relation to the desorption pressure, the N2 selectivity of the adsorbent increases as the regeneration pressure is lowered. , the power consumption of the vacuum pump increases inversely by 0.2, so the power consumption is 9=F a t when the desorption pressure is
It is minimum near a, so 0.08 ata to 0.5 att
It is the area of 'l! preferably 01 to 0.3 at
It seems to be near a.

次いで吸着塔を冷却条件に導き低温条件下での吸着分離
を試みた。これは、低温条件に設定する事により吸着l
の上昇が一般的におこるので吸着時の破過帯が縮少し装
置の小型化と分離効率の向−ヒが期待できた為である。
Next, the adsorption tower was brought to a cooling condition and adsorption separation under low temperature conditions was attempted. This can be achieved by setting the temperature to low temperature.
This is because the breakthrough zone during adsorption is generally reduced, leading to a reduction in the size of the device and an increase in separation efficiency.

その他の操作条件を吸着圧力1.5ata、−A生圧力
0.2ata、空筒速度U=0.8園/seaに設定し
温度を室温から漸次低温へ下げてo21N、rニアh 
製造時の動力単位をめた。第5図は操作温度と動力原単
位との関係を示すグラフである。第5図において横軸は
温度、縦軸は動力原単位を示し○印はNa−Xの製品0
2再循環のある場合、I!I印は製品02再循環のない
場合について、・印はCa2/3メ−1LNa 1/3
−Aの製品02再循環ない場合について示している。第
5図かられかるようにCa 2/3−Na 1/3−A
では温度の低下に伴ないむしろ動力原単位が上昇してい
るのに対し、Na−Xでは温度の低下に伴ない動力原単
位は低下し続けた。又製品02再循環のない事による効
率の低下は夕りどない。
Other operating conditions were set to adsorption pressure 1.5 ata, -A raw pressure 0.2 ata, and cavity speed U = 0.8/sea, and the temperature was gradually lowered from room temperature to low temperature.
The power unit at the time of manufacture was determined. FIG. 5 is a graph showing the relationship between operating temperature and power consumption rate. In Figure 5, the horizontal axis is the temperature, the vertical axis is the power consumption, and the ○ mark is the Na-X product 0.
2 If there is recirculation, I! The mark I is for product 02 without recirculation, and the mark is Ca2/3Me-1LNa1/3
- The case where product 02 of A is not recirculated is shown. As shown in Figure 5, Ca 2/3-Na 1/3-A
In the case of Na-X, the power consumption rate actually increased as the temperature decreased, whereas in the case of Na-X, the power consumption rate continued to decrease as the temperature decreased. Also, the efficiency decreases constantly due to the lack of product 02 recirculation.

−60℃迄の領域でのNa−Xの動力原単位を調べだが
空気の吸着分離に関して特に問題は発生しなかった。更
に、1次分系でのNa−Xの等圧データによると、−1
oo℃程度でもその有効性は失なわれない。しかしなが
ら、それ以下の温度では、 Na吸着時の02の共吸着
が無視できなくなるので好ましくない。冷却手段につい
ては、特にこの温度領域での問題はなく、深冷分離装置
の冷却技術が共通して使える。
The power unit consumption of Na-X in the region up to -60°C was investigated, and no particular problems were found regarding adsorption and separation of air. Furthermore, according to the isobaric data of Na-X in the first-order subsystem, -1
Its effectiveness is not lost even at temperatures around 0°C. However, temperatures lower than this are not preferable because the co-adsorption of 02 during Na adsorption cannot be ignored. Regarding the cooling means, there are no particular problems in this temperature range, and the cooling technology of cryogenic separators can be commonly used.

低温領域でのNa−Xの性能の著しい向上及びCa 2
/3−N a 1/3−Aの不適合性は、吸着塔出口の
02濃度にも表われる。第6図は温度と吸着塔出口02
濃度との関係を示すグラフであり9図中横軸は渦電縦軸
は吸着塔出口02濃度を示し○印はNa−Xの製品02
丙循環なしについて、c印はCa、)−Nal/3−A
の製品02再循環のない場合について示している。操作
条件を吸着圧力P o=1.5 a t a 、脱着圧
力p +=Q2a t a 、空筒速[U ==0.4
〜o、8cm/s e cに設定し、温度を低Fさせて
、吸着分離を行った。
Significant improvement in performance of Na-X and Ca2 in low temperature range
The incompatibility of /3-N a 1/3-A is also reflected in the 02 concentration at the outlet of the adsorption column. Figure 6 shows temperature and adsorption tower outlet 02
This is a graph showing the relationship with the concentration. In Figure 9, the horizontal axis is the eddy current. The vertical axis is the concentration of the adsorption tower outlet 02, and the circle indicates the Na-X product 02.
Regarding C without circulation, c mark is Ca, )-Nal/3-A
The case of product 02 without recirculation is shown. The operating conditions are: adsorption pressure P o = 1.5 a ta , desorption pressure p + = Q2a ta , cylinder speed [U = = 0.4
~o, 8 cm/sec, temperature was lowered to low F, and adsorption separation was performed.

台 第6図の軸線はU = 0.8crn/ seeの場合
を示している。第6図から判るように、Ca2/3−N
a1/3−Aでは吸着塔出口02d11度が低温域でも
殆ど増加しないのに対し、Na−Xでは、温度の低下に
伴ない02g1Jtは急激に上昇している。更に空筒速
度04crn78ec、温度−30℃の場合は、02濃
度がN2吸着剤による空気分離の理論的上限である02
濃度945%を超えて(残ガスアルゴン)96%に到達
した。これは、この温度領域でのNa−Xの使用により
、アルゴンをも除去可能な高純度02製造方法を新規に
導いたものである。又、このように低温側でのN2吸着
性能の改善が認められる事は、スケールアップに伴なう
塔内温度低下の問題に対してもかなりの負担軽減をして
いる事となる。
The axis line in FIG. 6 shows the case where U=0.8 crn/see. As can be seen from Figure 6, Ca2/3-N
In a1/3-A, 02d11 degrees at the adsorption tower outlet hardly increases even in the low temperature range, whereas in Na-X, 02g1Jt increases rapidly as the temperature decreases. Furthermore, when the cylinder speed is 04crn78ec and the temperature is -30℃, the 02 concentration is the theoretical upper limit for air separation by the N2 adsorbent.
The concentration exceeded 945% (residual gas argon) and reached 96%. This has led to a new method for producing high-purity 02 that can also remove argon by using Na-X in this temperature range. Furthermore, the fact that the N2 adsorption performance has been improved on the low-temperature side means that the problem of lowering the temperature inside the column due to scale-up is considerably alleviated.

以上述べてきた事は、主として動力費、02純度に関連
する事であるが9次に初期設備費に関連する項目につい
てのべる。第6図の操作条件即ち吸着圧力P o=l、
5 a t a 、脱着圧力p +=0.2 a t 
a 、空筒速[U=0.8cIn//se cでの毎時
INmの02を製造する場合の必要吸着剤量を第7図に
示した。第7図は温度と上記の吸着剤量との関係を示す
グラフであり9図中横軸は温度、縦軸は前述の毎時lN
m’の02を製造するに必要な吸着剤重量〔〜〕であり
、○印はNa−Xの製品02再循3Jなしについて、O
印はCa 2/3−Na 1/3−Aの製品02再循環
のない場合について示している。第7図から判るように
Ca2/3−Na 1/3−Aが低温にしても吸着剤重
量が室温の場合の10%程度しか節約できないのに対し
、Na−Xでは一30℃で45%程度節約できるqlと
なり装置費のかなりの部分を占める吸着剤の低減に使め
て効果が大きい。以上詳細に述べたように2本発明によ
れば、即ちNa−Xで代表される鉱物基ナトリウムファ
ウジャサイトを使用し、吸着工程圧力を3 ata以下
、脱着工程圧力を0.08〜0.5 a t aの圧力
領域下におき、製品02再循環する事なく室温以下の温
度域を利用して混合気体例えば空気の圧力スイング式吸
着分離を行えば、従来毎時I Nm’の02を製造する
のに要する動力原単位が深冷分離法で045〜0.6K
W現行の吸着分離で0.7KW以上を要していたものを
、−挙に0.4KW近傍迄低減せしめ併せて吸着剤使用
量も現行の吸着剤法の55%に低減し得る。
What has been described above is mainly related to power costs and 02 purity, but next we will discuss items related to initial equipment costs. The operating conditions in FIG. 6, namely adsorption pressure P o = l,
5 a t a , desorption pressure p + = 0.2 a t
FIG. 7 shows the amount of adsorbent required to produce 02 INm/hour at a cylinder velocity [U=0.8 cIn//sec c. Figure 7 is a graph showing the relationship between temperature and the amount of adsorbent mentioned above. In Figure 9, the horizontal axis is temperature and the vertical axis is lN per hour as described above
The adsorbent weight [~] required to produce 02 of m' is the O
The markings indicate the case without Ca 2/3-Na 1/3-A product 02 recirculation. As can be seen from Figure 7, Ca2/3-Na1/3-A can save only about 10% of the adsorbent weight at room temperature even at low temperatures, while Na-X can save 45% at -30°C. It is highly effective because it can save a considerable amount of ql, which can be used to reduce the amount of adsorbent that accounts for a considerable portion of the equipment cost. As described in detail above, according to the present invention, mineral-based sodium faujasite represented by Na-X is used, the adsorption process pressure is 3 ata or less, and the desorption process pressure is 0.08 to 0. If the pressure swing adsorption separation of a mixed gas, such as air, is carried out under a pressure range of 5 at a and without recirculating the product 02 and using a temperature range below room temperature, it is possible to conventionally produce I Nm' of 02 per hour. The power unit required to do this is 045-0.6K using the cryogenic separation method
The current adsorption separation process, which requires 0.7KW or more, can be reduced to around 0.4KW, and the amount of adsorbent used can also be reduced to 55% of the current adsorbent method.

まだ、製品02を再循項する事なく再生工程を行なうの
で、真空ポンプの消費電力としてはlO係程度の低減、
また製品回収率としては10%程度の性能向上が計られ
るのである。
Since the regeneration process is still performed without recycling product 02, the power consumption of the vacuum pump is reduced by about 10%.
Furthermore, the product recovery rate is expected to improve by about 10%.

以上詳細に説明したように1本発明は所要の動力原単位
及び吸着剤;jlが従来の吸着剤法に比べ少なく、産業
上非常に有用な混合気体からの酸素及び窒素の分離方法
を提案するものである。
As explained in detail above, 1. The present invention proposes a method for separating oxygen and nitrogen from a mixed gas that requires less power consumption and less adsorbent than conventional adsorbent methods, and is very useful industrially. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の分離方法を実施するのに用られる空気分
離装置の例示図、第2図は本発明の分離方法を実施する
のに用いられる空気分離装置の例示図、第3図は吸着圧
力と動力原単位との関係を示すグラフ、第4図は脱着圧
力と動力原単位との関係を示すグラフ、第5図は温度と
動力原単位との関係を示すグラフ、第6図は温度と吸着
塔出口02濃度との関係を示すグラフ。 第7図は温度とINm−Q2/hを製造するに必要な吸
着剤との関係を示すグラフである。 2・・・圧縮機、4・・・脱湿脱COm塔、8・・・吸
着塔。 13・・・製品02タンク、1B・・・真空ポツプ、2
0・・・圧縮式冷凍機。 第2図 第3図 吸着圧力P0rofa) 脱nJE力Pf(ata) 第50 第60 泡 席 r’c) 第7図 、dp41 匈こ ′S?革 の一 温度 r’cJ 第1頁の続き @発明者福1)昭三 長崎重砲の浦町1番1号 三菱重工業株式会社長崎研究
所手続補正出(自発) 昭和59年5月7ρ日 事件の表示 昭和58年 特 許 願第204408 号発明の名称 02製造装置の回収率向上方法 補正をする者 事件との関係 特許出願人 住 所 東京都千代田区丸の内−’、l’D 5&1号
名 h・(620)三菱重工業株式会社代 理 人 す 111ン 」 藩 補正の対象 1、 明細書第5jj第14行の「バルブ16」を「バ
ルブ16′」と補正する。 λ 明細這第7頁第15行の「残存01」を「残存へ」
と補正する。 3、 明細書第11頁第2行〜第5行の「一方吸着塔8
′の・・・・・・回収できる。」をつぎのように補正す
る。 「一方その間吸着塔8′に関して、バルブ10′。 16を閉じ、バルブ16′を開いて真空ポンプ18によ
り吸着塔8′を減圧に導いてN2吸着剤9′からN2が
離脱して流路17.真空ポンプ18により糸外に放出さ
れて再生が終了する。その後、バルブ7.7’、11を
閉じ、バルブjO,10’を開くと、吸着塔8の後方に
残存する高濃度02は。 減圧状態の吸着塔8′に移行して回収される。この時の
塔8と8′の圧力は#1ぼ等しい。この後入口空気の流
路を6から6′に切り換え、今迄述べた方法を交互に行
なうと製品02が連続的に回収できる。」 4、 明細書第11頁第15行と第16行の間に次の文
を挿入する。 [なし、先に述べた様に製品02の一部を分岐して再生
工程にある吸着塔をパージする必要のない事はいうまで
も/、Cい。1 5 明細−1第11工1i第16行の「第2回」を「第
2図」と補正する。 6、 第1図を別添の図面の第1図のように補正する。 7.1!21”?lを別添の図面の第2図のように補正
する。
FIG. 1 is an illustration of an air separation device used to carry out the conventional separation method, FIG. 2 is an illustration of an air separation device used to carry out the separation method of the present invention, and FIG. 3 is an illustration of an air separation device used to carry out the separation method of the present invention. Graph showing the relationship between pressure and power consumption. Figure 4 is a graph showing the relationship between desorption pressure and power consumption. Figure 5 is a graph showing the relationship between temperature and power consumption. Figure 6 is temperature. FIG. FIG. 7 is a graph showing the relationship between temperature and adsorbent required to produce INm-Q2/h. 2... Compressor, 4... Dehumidification and COm tower, 8... Adsorption tower. 13...Product 02 tank, 1B...Vacuum pop, 2
0...Compression refrigerator. Figure 2 Figure 3 Adsorption pressure P0rofa) De-nJE force Pf (ata) 50th 60th bubble seat r'c) Figure 7, dp41 匈子'S? One Temperature of Leather r'cJ Continued from page 1 @ Inventor Fuku 1) No. 1-1 Uramachi, Nagasaki Heavy Artillery, Mitsubishi Heavy Industries, Ltd. Nagasaki Research Institute Procedural Amendment (Voluntary) Incident of May 7, 1980 Indication 1982 Patent Application No. 204408 Name of the invention 02 Relationship with the case of a person who amends a method for improving the recovery rate of manufacturing equipment Patent applicant address Marunouchi, Chiyoda-ku, Tokyo-', l'D 5 & 1 Title h. (620) Mitsubishi Heavy Industries Co., Ltd. Agent 111' Subject of domain amendment 1, "Valve 16" in Line 14 of Specification No. 5jj is amended to "Valve 16'". λ Change “Remaining 01” on page 7, line 15 of the detailed description to “Remaining”
and correct it. 3. “On the other hand, adsorption tower 8
'...can be recovered. ” is corrected as follows. Meanwhile, with respect to the adsorption tower 8', the valve 10' is closed, the valve 16' is opened, the adsorption tower 8' is brought to a reduced pressure by the vacuum pump 18, and N2 is separated from the N2 adsorbent 9' and flows into the flow path 17. The high concentration 02 remaining at the rear of the adsorption tower 8 is discharged to the outside of the thread by the vacuum pump 18, and the regeneration is completed.Then, when the valves 7, 7' and 11 are closed and the valves jO and 10' are opened, the high concentration 02 remaining at the rear of the adsorption tower 8 is removed. It is transferred to adsorption tower 8' under reduced pressure and recovered. At this time, the pressures of towers 8 and 8' are approximately equal to #1. After that, the inlet air flow path is switched from 6 to 6', and the By performing the methods alternately, product 02 can be recovered continuously.'' 4. Insert the following sentence between lines 15 and 16 on page 11 of the specification. [No, as mentioned earlier, it goes without saying that there is no need to branch part of product 02 and purge the adsorption tower in the regeneration process. 1 5 Specification-1 11th work 1i Correct "2nd" in line 16 to "Fig. 2". 6. Figure 1 shall be amended as shown in Figure 1 of the attached drawings. 7. Correct 1!21”?l as shown in Figure 2 of the attached drawings.

Claims (1)

【特許請求の範囲】[Claims] Na −X に代表される鉱物名ナトリウムファウジャ
サイトを充填した少くとも2塔の吸着塔において、室温
以下の温度下で、酸素及び窒素を主成分とする混合気体
を大気圧以上3 ata 以下で吸着塔に流入させて該
混合気体に含まれる窒素を選択的に吸着せしめ、該吸着
塔出口から高純度酸素又は酸素富化ガスを流出させ、一
方窒素を吸着した吸着塔を0.08ata以上0.5a
ta以下に製品再循環する事なく減圧せしめて再生する
ことを特徴とする0□製造装置の回収率向上方法。
In at least two adsorption towers filled with the mineral name sodium faujasite represented by Na - Nitrogen contained in the mixed gas is selectively adsorbed by flowing into an adsorption tower, and high-purity oxygen or oxygen-enriched gas is discharged from the outlet of the adsorption tower, while the adsorption tower that has adsorbed nitrogen is heated to a concentration of 0.08 ata or more. .5a
A method for improving the recovery rate of a 0□ manufacturing device, characterized in that the product is depressurized and regenerated without being recirculated below ta.
JP58204408A 1983-10-31 1983-10-31 Method for improving recovery in o2-production apparatus Pending JPS6096509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58204408A JPS6096509A (en) 1983-10-31 1983-10-31 Method for improving recovery in o2-production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58204408A JPS6096509A (en) 1983-10-31 1983-10-31 Method for improving recovery in o2-production apparatus

Publications (1)

Publication Number Publication Date
JPS6096509A true JPS6096509A (en) 1985-05-30

Family

ID=16490049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58204408A Pending JPS6096509A (en) 1983-10-31 1983-10-31 Method for improving recovery in o2-production apparatus

Country Status (1)

Country Link
JP (1) JPS6096509A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132600A (en) * 1974-09-12 1976-03-19 Dai Ichi Kogyo Seiyaku Co Ltd KORESUTEROORUOBUNRISURUHOHO
JPS5588823A (en) * 1978-12-27 1980-07-04 Union Carbide Corp Multiplae bed rapid pressure amplitude adsorption of oxygen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132600A (en) * 1974-09-12 1976-03-19 Dai Ichi Kogyo Seiyaku Co Ltd KORESUTEROORUOBUNRISURUHOHO
JPS5588823A (en) * 1978-12-27 1980-07-04 Union Carbide Corp Multiplae bed rapid pressure amplitude adsorption of oxygen

Similar Documents

Publication Publication Date Title
EP0537597B1 (en) Low temperature pressure swing adsorption with refrigeration
EP0302658A2 (en) Process for producing high purity oxygen gas from air
CN107344058B (en) Energy-saving hydrogen chloride gas deep purification process
JPH1057744A (en) Multi-heat-pulse type psa system
JPH0127962B2 (en)
US20050217481A1 (en) Rotary adsorbent contactors for drying, purification and separation of gases
JP2000317244A (en) Method and device for purifying gas
JPH02281096A (en) Carbon dioxide and moisture remover for methane-enriched mixed gas
JPS6272504A (en) Production of nitrogen having high purity
JPS58128123A (en) Separation of gas and its device
JPH05220321A (en) Method for separating mixed gas and device therefor
EP0332390B1 (en) Heaterless adsorption system for combined purification and fractionation of air
JPS59179127A (en) Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure
JPS6096509A (en) Method for improving recovery in o2-production apparatus
JPS60246205A (en) Method of dehumidification and cold heat recovery of o2 production unit
US3884661A (en) Method of and installation for fractionation by adsorption
CN114621798A (en) Combined natural gas heavy hydrocarbon removal device and using method thereof
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JPH0952703A (en) Method for adsorbing nitrogen from gas mixture by using pressure pendulum adsorption with zeolite
JPS60231402A (en) Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower
JP2596952B2 (en) Nitrogen production method
US20020185005A1 (en) Air separation process
JPH0455964B2 (en)
JPH0255202A (en) Production of gas rich in oxygen
JPH0768042B2 (en) High-purity oxygen production method