JPS6095987A - Laser unit - Google Patents

Laser unit

Info

Publication number
JPS6095987A
JPS6095987A JP58202627A JP20262783A JPS6095987A JP S6095987 A JPS6095987 A JP S6095987A JP 58202627 A JP58202627 A JP 58202627A JP 20262783 A JP20262783 A JP 20262783A JP S6095987 A JPS6095987 A JP S6095987A
Authority
JP
Japan
Prior art keywords
temperature
laser
semiconductor laser
unit
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58202627A
Other languages
Japanese (ja)
Inventor
Teruo Komatsu
小松 照夫
Yoshinori Sugiura
義則 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58202627A priority Critical patent/JPS6095987A/en
Publication of JPS6095987A publication Critical patent/JPS6095987A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02453Heating, e.g. the laser is heated for stabilisation against temperature fluctuations of the environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the circuit suitable for a laser beam printer at low cost by fixing a semiconductor laser element on a base metal plate of good thermal conductivity and arranging a heating device on a back surface of the metal plate to emitt the laser beam to the outside through a collimater lens while controlling laser driving current to make the laser beam output constant. CONSTITUTION:A semiconductor laser element 1 is fixed on a metal base 8 of good thermal conductivity such as of Al and a heating device 9 is arranged on a back surface of the base 8 and is covered with a heat insulating material 10, which is fixed to a printed board 11. Also, a collimater lens 5 for obtaining parallel beams is arranged oppositely to the element 1 and is fixed to a holder 6 by use of a nut 7. Further, a thermistor 4 and a pin photodiode 12 are arranged in a periphery of the element 1, thereby observing the laser beam output and keeping the output onstant. In this case, when the laser controlling temperature is T1 deg.C, environmental ultimate temperature is T2 deg.C, usable ultimate temperature is T3 deg.C, wavelength oscillation changing rate is alpha and allowable wavelength value beta, the values are selected so as to satisfy alpha(T2-T1)<=beta and T1<=T2.

Description

【発明の詳細な説明】 本発明は、レーザビームプリンタ(以下LBI)と言う
)およびレーザユニットに関し、特に半導体レーザを用
いたレーザユニットの温度調節装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser beam printer (hereinafter referred to as LBI) and a laser unit, and more particularly to a temperature control device for a laser unit using a semiconductor laser.

LBPに用いられるレーザは、装置の小型化、低価格化
等の要求により最近では、半導体レーザの利用が始めら
れている。
Recently, semiconductor lasers have been used as lasers used in LBP due to demands for smaller devices and lower costs.

しかし、この半導体レーザは、第1図に示す様に使用温
度(T)によりその発振するレーザ光の波長(λ)が変
動しその変化率Δλ/△T がほぼ0.2乃至0.6と
いう値をもち、さらに第2図に示すように温度により駆
動電流(I)に対する光出力(P)が変化する特質をも
つ。一方、とのレーザ光を受けて静電潜像を得る感光体
の感度は、その波長に対し第6図に示すように変化する
とともに、その出力に左右される。従って、この感光体
において、一定の感度を得るためには、レーザの波長お
よび出力が一定になる様に制御することが必要である。
However, as shown in Figure 1, the wavelength (λ) of the oscillated laser light of this semiconductor laser varies depending on the operating temperature (T), and the rate of change Δλ/ΔT is approximately 0.2 to 0.6. Furthermore, as shown in FIG. 2, the optical output (P) with respect to the drive current (I) changes depending on the temperature. On the other hand, the sensitivity of a photoreceptor that receives a laser beam and forms an electrostatic latent image changes with respect to the wavelength as shown in FIG. 6, and also depends on its output. Therefore, in order to obtain a constant sensitivity in this photoreceptor, it is necessary to control the laser wavelength and output to be constant.

このため、従来は例えば第4図に示すように、半導体レ
ーザを一定温度に保ってその波長および光出力の変動を
避ける方法が採られてきた。即し、半導体レーザ1は、
はルチェ効果、即ち異種金属の接触面を通じて弱い電流
が流れるとき電流の方向によって熱の発生又は吸収を起
す現象を用いて、通電電流の方向を変えることによって
冷却面と発熱面とを換えられる電子冷却装置2(以下は
ルチェ素子という)に取付けられる。このはルチェ素子
2は、ヒートシンク乙に取付けられている。また半導体
レーザ1の温度を検知するサーミスタ等の温度検知器4
が半導体レーザ1に取付けられる。
For this reason, conventionally, as shown in FIG. 4, for example, a method has been adopted in which the semiconductor laser is kept at a constant temperature to avoid fluctuations in its wavelength and optical output. Therefore, the semiconductor laser 1 is
This method uses the Lucie effect, a phenomenon in which heat is generated or absorbed depending on the direction of the current when a weak current flows through the contact surfaces of dissimilar metals, and electrons can be switched between a cooling surface and a heating surface by changing the direction of the current. It is attached to the cooling device 2 (hereinafter referred to as the Lucier element). This Lutier element 2 is attached to the heat sink B. Also, a temperature detector 4 such as a thermistor that detects the temperature of the semiconductor laser 1
is attached to the semiconductor laser 1.

半導体レーザ1から出射されたレーザ光は、ホルダ6に
ナツト7によって固定されたコリメータレンズ5によっ
て平行化される様に構成されている。
The laser beam emitted from the semiconductor laser 1 is configured to be collimated by a collimator lens 5 fixed to a holder 6 with a nut 7.

これにより半導体レーザの温度が一定に保たれれば、第
1図からも判断されるようにその発振波長は一定になり
、さらにレーザの駆動電流を一定に維持すれば、必然的
にレーザ光の出力も一定に保たれ、この光を受ける感光
体上に得られる潜像は一定し、安定した画質が得られる
As a result, if the temperature of the semiconductor laser is kept constant, the oscillation wavelength will be constant, as can be seen from Figure 1, and if the laser drive current is kept constant, the laser light will inevitably change. The output is also kept constant, and the latent image obtained on the photoreceptor that receives this light is constant, resulting in stable image quality.

しかしこの場合、gルチェ素子の駆動回路は複雑になり
、また、通電電流の方向を換えることにより冷却、発熱
現象を得るために、電源が2個必要となる。さらに第4
図に示す様にレーザの光軸方向に構成部品が積み重なる
ため、環境変化に伴う光軸方向のピントズレの補正が必
要になるなど、装置が複雑化し、これによりコスト高を
招来する。
However, in this case, the drive circuit for the g-Lucie element becomes complicated, and two power supplies are required in order to obtain cooling and heat generation phenomena by changing the direction of the current flowing. Furthermore, the fourth
As shown in the figure, components are piled up in the direction of the optical axis of the laser, which makes the device complicated, such as the need to correct out-of-focus in the direction of the optical axis due to environmental changes, leading to increased costs.

また、他の方法として、半導体レーザ光出力を、ピンフ
ォトダイオードなどを用いて監視し、レーザ光出力が一
定になるようにレーザの駆動電流な制御t’6 Ap 
c (オー )・ノξワー・コントロール)法と称する
方法もある。しかし、この場合は、レーザ光出力は一定
となるが、発振波長が変動するため、感光体には一定し
た潜像が得られず、従って安定した画質が得られなくな
る。
Another method is to monitor the semiconductor laser light output using a pin photodiode or the like, and control the laser drive current to keep the laser light output constant.
There is also a method called the c (o) no ξ war control) method. However, in this case, although the laser light output is constant, the oscillation wavelength varies, so a constant latent image cannot be obtained on the photoreceptor, and therefore stable image quality cannot be obtained.

本発明は、上記の諸子具合を含む問題な解決して簡易か
つ安価なレーザユニットを提供することを目的とする。
An object of the present invention is to provide a simple and inexpensive laser unit that solves the problems including the above-mentioned problems.

以下に、本発明に係るレーザユニットの1実施例の構成
断面を示す第5図について、本発明の構成および作用を
述べる。
The structure and operation of the present invention will be described below with reference to FIG. 5, which shows a cross section of the structure of one embodiment of the laser unit according to the present invention.

半導体レーザ1は、アルミニウム等゛の熱電導性の良好
な金属のベース8に取付けられ、その反対面に半導体レ
ーザ1を加温する加温器9が断熱材10を介して、ベー
ス8とプリント基板11に挾まれて固定される。また平
行光線を得るためのコリメータレンズ5は、従来例と同
様に、ナツト7によりホルダー6に固定され、ホルダ6
はベース8に取付けられる。半導体レーザな収納するパ
ッケージ内には感光体に出射される側と反対側に出射さ
れるレーザ光を監視するピンフォトダイオード12が内
蔵され、またパッケージ上またはその近傍に半導体レー
ザ1の温度を検知するサーミスタ4が配設される。
The semiconductor laser 1 is attached to a base 8 made of a metal with good thermal conductivity such as aluminum, and on the opposite side, a heater 9 for heating the semiconductor laser 1 is connected to the base 8 via a heat insulating material 10. It is sandwiched and fixed to the substrate 11. Further, the collimator lens 5 for obtaining parallel light beams is fixed to the holder 6 with a nut 7, as in the conventional example.
is attached to the base 8. A pin photodiode 12 that monitors the laser light emitted to the side opposite to the side emitted to the photoconductor is built into the package that houses the semiconductor laser, and the temperature of the semiconductor laser 1 is detected on or near the package. A thermistor 4 is provided.

上記のように構成された本発明によるレーザーユニット
の作用を述べれば、本ユニットは既述のAPC(オート
・7ξワー・コントロール)方式な用いるもので、ピン
フォトダイオード12により出射されたレーザ光出力を
監視し、このレーザ光出力を一定に保つ様にレーザ駆動
電流を制御して、受光対象の感光体に必要量の一定光出
力を付与する。
To describe the operation of the laser unit according to the present invention configured as described above, this unit is used in the APC (auto 7ξ power control) method described above, and the laser light output emitted by the pin photodiode 12 is is monitored, and the laser drive current is controlled so as to keep this laser light output constant, so that the required amount of constant light output is applied to the photoreceptor to receive light.

次に、本発明によるレーザユニットの発振波長の制御方
式について述べる。
Next, a method for controlling the oscillation wavelength of the laser unit according to the present invention will be described.

本発明に係るレーザユニットは、加熱器による加熱と、
自然放熱によって一定温度に温度調節され、さらに、レ
ーザユニットの温度が雰囲気等により、上記一定の温度
調節温度を超える温度、例えばT2になった場合には、
この温度T2で動作させること、および上記温度調節の
ための電流の断続作用が、このレーザユニットが装着さ
れたレーザビームプリンター等の装置のメインスイッチ
と連動し、該メインスイッチが入れられおよび切られる
まで常時温度調節されることを特徴とする。以下、これ
についてさらに詳しく説明する。
The laser unit according to the present invention includes heating by a heater,
If the temperature of the laser unit is adjusted to a constant temperature by natural heat radiation, and the temperature of the laser unit exceeds the above-mentioned constant temperature adjustment temperature due to the atmosphere, etc., for example, T2,
The operation at this temperature T2 and the intermittent action of the current for temperature adjustment are linked to the main switch of a device such as a laser beam printer to which this laser unit is installed, and the main switch is turned on and off. It is characterized by constant temperature control. This will be explained in more detail below.

半導体レーザの温度−波長特性は、一般に第1図に示し
た様に、1〔℃〕ごとに0.2〜0.3 [nm)ずつ
発振波長は長くなる。この変化率をαとする。
As shown in FIG. 1, the temperature-wavelength characteristic of a semiconductor laser is such that the oscillation wavelength increases by 0.2 to 0.3 nm for each degree of temperature. Let this rate of change be α.

一方、感光体の感度は、第6図に示すように、現在LB
Pで使用されている半導体レーザ光の波長780〜80
0[nm) 付近では急に変化しているが、一定レーザ
光出力のもとでは、790(nm)付近のレーザ光では
、仮に+2 (nm〕変化しても、感光体上ではζ1ぼ
安定した潜像が得られ、画質も問題にならない。この波
長許容値を±β(βは正の値)とする。
On the other hand, the sensitivity of the photoreceptor is currently LB
The wavelength of the semiconductor laser light used in P is 780-80
There is a sudden change near 0 [nm], but under a constant laser light output, for laser light around 790 (nm), even if it changes by +2 (nm), it remains stable by about ζ1 on the photoreceptor. A latent image is obtained, and the image quality is not a problem.The wavelength tolerance value is set to ±β (β is a positive value).

またレーザの温調温度をTI[C)とし、このレーザユ
ニットが雰囲気温度あるいはレーザ・ユニット取付面か
らの伝導熱により到達するレーザの環境温度T6の最高
到達温度なT2〔℃〕とする。ところで、T2はレーザ
・ユニットが取付けられている機内の状態により変わる
が、LBP等の通常の使用環境よりも、5〜10(℃、
)高く、約40℃程度である。またレーザ素子1の使用
温度の最大値T、は80℃程度である。ここでレーザ温
調温度T、をα(T2−TI)≦β (1) かつ T、≦Ts (2) の両式を満足する様に選べば、感光体上で安定した潜像
を得ることができ、画質も安定したものが得られる。
Further, let the temperature control temperature of the laser be TI [C], and let T2 [°C] be the highest temperature reached by the laser unit at the ambient temperature T6 of the laser due to the ambient temperature or conductive heat from the laser unit mounting surface. By the way, T2 varies depending on the conditions inside the machine where the laser unit is installed, but it is 5 to 10 degrees (℃,
) high, about 40°C. Further, the maximum operating temperature T of the laser element 1 is approximately 80°C. Here, if the laser temperature control temperature T is selected to satisfy both the expressions α(T2-TI)≦β (1) and T,≦Ts (2), a stable latent image can be obtained on the photoreceptor. It is possible to obtain stable image quality.

例えば α=0.25 (nm/℃) 、β=τ(nm
)T2 =40(1::l +T3 =80〔℃〕とし
た時、式(1) 、 +2)よりT1を32C℃〕≦T
、≦80C℃)に選べば良いことになる。
For example, α=0.25 (nm/℃), β=τ(nm
) T2 = 40 (1::l +T3 = 80 [℃], then from formula (1), +2), T1 is 32C℃]≦T
, ≦80C°C).

この時レーザ温度Tは、第6図からも判る様にレーザの
環境温度T:が変化した場合に、レーザの温調温度T、
を超えるまではT、であり、これを超えた場合にはレー
ザ環境温度T:の増加につれてこれと等しく増加するこ
とになり、最高到達温度T2まで変化する。
At this time, the laser temperature T changes, as can be seen from Figure 6, when the laser environmental temperature T: changes, the laser temperature control temperature T,
T until it exceeds T, and when it exceeds this, it increases equally as the laser environment temperature T: increases, and changes to the maximum temperature T2.

また、第7図のタイミングチャートに示す様にこのレー
ザ温調方式は、LBP等レーザ・ユニットが取付く装置
のメインスイッチと連動し、メインスイッチが入ると同
時にレーザ温調が開始され、メインスイッチが切られる
まで常時温調されるため、レーザの発光は常に待機状態
にでき、プリント命令の信号がくれば、即時にレーザを
発光することができる。
In addition, as shown in the timing chart in Figure 7, this laser temperature control method is linked to the main switch of the device to which the laser unit, such as the LBP, is attached, and the laser temperature control starts as soon as the main switch is turned on. Since the temperature is constantly controlled until the printer is turned off, the laser can always emit light in a standby state, and when a print command signal is received, the laser can emit light immediately.

また、本発明においては、加温するヒータをレーザ1を
取付けているベース8の反対側に配置したが、セラミッ
クヒータのような熱変形の少ない加温器を、レーザ1と
ベース8の間に配置しても良く、この場合温調される負
荷が少なくなイ)ため、加温器容量も少なくでき、また
応答性も良くなるため、温調精度も良くすることができ
る。
In addition, in the present invention, the heating heater is placed on the opposite side of the base 8 to which the laser 1 is attached, but a heater with less thermal deformation, such as a ceramic heater, is placed between the laser 1 and the base 8. In this case, since the load to be temperature regulated is small (a), the capacity of the heater can be reduced, and the responsiveness is also improved, so the accuracy of temperature control can be improved.

また、前述の説明ではレーザの温調温度1゛、が最高到
達温度T2以下の場合を示したが、T1が1゛2以上で
あれば、環境変化に関係なくレーザは一定温度となし、
さらに安定した画像が得られる。
In addition, in the above explanation, the case where the temperature control temperature 1゛ of the laser is less than or equal to the maximum temperature T2, but if T1 is 1゛2 or more, the laser temperature is maintained at a constant temperature regardless of environmental changes.
A more stable image can be obtained.

以上述べた様に、本発明に係るレーザユニットI+−+
+Ina!fi!/7−11m性1r)hWコ*mシ、
4ζ;→−^q、シL、j−M動作回路も安価であり、
またレーザ・ユニットの構成も簡単なため、光軸方向の
ピント補正を行なわなくても済む。また、レーザユニッ
トの温調温度TIが最高到達温度T2以下であれば環境
温度T;が′l゛1を超えた場合は、ヒータはoffと
なるため、全体的に消費電力は少なくなる。また、常時
レーザユニットは待機状態にあるため、直ちにプリント
を行なうことができるなど極めて顕著な使用上の効果を
奏する。
As described above, the laser unit I+-+ according to the present invention
+Ina! Fi! /7-11m sex 1r)hWko*mshi,
4ζ;→−^^q, shiL, j−M operation circuit is also inexpensive,
Furthermore, since the configuration of the laser unit is simple, there is no need to perform focus correction in the optical axis direction. Furthermore, if the temperature control temperature TI of the laser unit is below the maximum temperature T2, and the environmental temperature T; exceeds 'l'1, the heater is turned off, so the overall power consumption is reduced. In addition, since the laser unit is always in a standby state, printing can be performed immediately, which provides extremely significant usability effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、半導体レーザの波長・温度特性図、第2図は
、半導体レーザの温度に対する、駆動電流・レーザ光出
力の特性図、第3図は、感光体の感度・波長特性図、第
4図は、従来型半導体レーザユニットの構成を示す部分
断面図、第5図は、本発明に係る半導体°レーザユニッ
トの1実施例の構成を示す断面図、第6図は本発明に係
る半導体レーザユニットによるレーザ環境温度に対する
レーザ温度を示す図、第7図は、本発明に係る半導体レ
ーザユニットの温度調節方式のタイミングチヤードであ
る。 1・・・半導体レーザ 2・・・はルチェ素子6・・・
ヒートシンク 4・・・サーミスタ5・・・コリメータ
レンズ 6・・・ホルダ7・・・ナツト 8・・・ベー
ス 9・・・加温器 10・・・断熱材 11・・・フリント板12・・・ピンフォトダイオード
第1図 11丘1.mA 第2図 遅ムλ nm 第3図 第4図 第5図 第6図
Figure 1 is a wavelength/temperature characteristic diagram of a semiconductor laser, Figure 2 is a characteristic diagram of drive current/laser light output versus temperature of the semiconductor laser, and Figure 3 is a sensitivity/wavelength characteristic diagram of a photoreceptor. 4 is a partial cross-sectional view showing the structure of a conventional semiconductor laser unit, FIG. 5 is a cross-sectional view showing the structure of one embodiment of the semiconductor laser unit according to the present invention, and FIG. 6 is a partial cross-sectional view showing the structure of a semiconductor laser unit according to the present invention. FIG. 7, which is a diagram showing the laser temperature with respect to the laser environment temperature of the laser unit, is a timing chart of the temperature control method of the semiconductor laser unit according to the present invention. 1... Semiconductor laser 2... is a Lutier element 6...
Heat sink 4...Thermistor 5...Collimator lens 6...Holder 7...Nut 8...Base 9...Warmer 10...Insulating material 11...Flint plate 12... Pin photodiode Figure 11 Hill 1. mA Figure 2 Delay λ nm Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、 半導体レーザと、前記半導体レーザを加温する加
温器と、前記半導体レーザの温度を検知する温度検知手
段と、前記半導体レーザのレーザ光出力を監視する検出
器を含み、前記温度検知手段により検知された前記半導
体レーザの温度が、前記加温器の駆動電流の断続的な通
電制御により所定の一定温度維持制御)に維持され、か
つ前記検出器により検出された前記半導体レーザのレー
ザ光出力が、前記半導体レーザの駆動電流の制御により
所定の一定値に維持されるレーザユニットにおいて、前
記レーザユニットの使用中の最高環境温度をり2〔℃〕
、前記半導体レーザ光の波長の温度に対する変化率をα
(nm/℃λ前記半導体レーザ光の感光体のレーザ光波
長に対する許容感度変動値をβ[nm](βは正の値)
、および前記半導体レーザの使用最高温度なT、〔℃〕
とするとき、 前記レーザユニットが、 α(TI−TI)≦β および T、≦T3 なる関係を満足する温度T、 [:℃〕に制御される様
に構成したことを特徴とするレーザユニット。 28 前記半導体レーザユニットの一定温度維持制御が
、該レーザユニットの対象装着装置の主スィッチの断続
動作と連動され、前記主スィッチが「ON」状態にて常
時温度制御される特許請求の範囲第1項記載のしΦザユ
ニット。
[Claims] 1. A semiconductor laser, a warmer for heating the semiconductor laser, a temperature detection means for detecting the temperature of the semiconductor laser, and a detector for monitoring the laser light output of the semiconductor laser. and the temperature of the semiconductor laser detected by the temperature detection means is maintained at a predetermined constant temperature maintenance control by intermittent energization control of the drive current of the warmer, and the temperature of the semiconductor laser detected by the temperature detection means is maintained at a predetermined constant temperature maintenance control), and the temperature of the semiconductor laser detected by the temperature detection means is In a laser unit in which the laser light output of the semiconductor laser is maintained at a predetermined constant value by controlling the driving current of the semiconductor laser, the maximum environmental temperature during use of the laser unit is 2 [° C.]
, the rate of change of the wavelength of the semiconductor laser light with respect to temperature is α
(nm/℃λ The permissible sensitivity fluctuation value of the semiconductor laser light to the laser light wavelength of the photoreceptor is β [nm] (β is a positive value)
, and the maximum operating temperature of the semiconductor laser, T, [°C]
A laser unit characterized in that the laser unit is configured to be controlled to a temperature T [:° C.] that satisfies the following relationships: α(TI-TI)≦β and T,≦T3. 28 The constant temperature maintenance control of the semiconductor laser unit is interlocked with the intermittent operation of the main switch of the target mounting device of the laser unit, and the temperature is always controlled when the main switch is in the "ON" state. Φ The unit described in the section.
JP58202627A 1983-10-31 1983-10-31 Laser unit Pending JPS6095987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58202627A JPS6095987A (en) 1983-10-31 1983-10-31 Laser unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58202627A JPS6095987A (en) 1983-10-31 1983-10-31 Laser unit

Publications (1)

Publication Number Publication Date
JPS6095987A true JPS6095987A (en) 1985-05-29

Family

ID=16460482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58202627A Pending JPS6095987A (en) 1983-10-31 1983-10-31 Laser unit

Country Status (1)

Country Link
JP (1) JPS6095987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268922A (en) * 1991-10-31 1993-12-07 International Business Machines Corporation Laser diode assembly
GB2414214A (en) * 2004-05-19 2005-11-23 Intense Photonics Ltd Thermal printing with laser activation
KR100644500B1 (en) * 2000-07-07 2006-11-10 주식회사 지에스인스트루먼트 Apparatus for generating horizontal and vertical reference beams

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414180A (en) * 1977-07-05 1979-02-02 Canon Inc Semiconductor laser unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414180A (en) * 1977-07-05 1979-02-02 Canon Inc Semiconductor laser unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268922A (en) * 1991-10-31 1993-12-07 International Business Machines Corporation Laser diode assembly
KR100644500B1 (en) * 2000-07-07 2006-11-10 주식회사 지에스인스트루먼트 Apparatus for generating horizontal and vertical reference beams
GB2414214A (en) * 2004-05-19 2005-11-23 Intense Photonics Ltd Thermal printing with laser activation
GB2414214B (en) * 2004-05-19 2008-01-09 Intense Photonics Ltd Printing with laser activation

Similar Documents

Publication Publication Date Title
US4375067A (en) Semiconductor laser device having a stabilized output beam
EP1372009B1 (en) Method and apparatus for compensating transient heat loads in a lithography mirror
US4884279A (en) Optical transmission apparatus
US5197076A (en) Temperature stabilizable laser apparatus
JP2009064829A (en) Optical communication module, and optical transmission device
KR19990072839A (en) Measuring apparatus for laser output
US5495489A (en) Second harmonic generating method and apparatus
JPS6095987A (en) Laser unit
US7251261B2 (en) Temperature tuning the wavelength of a semiconductor laser using a variable thermal impedance
JP5946649B2 (en) Target supply device
JPS63302584A (en) Temperature controller for laser diode
JPS59204292A (en) Semiconductor device
CN115236812B (en) Optical device, optical power adjusting method thereof and optical module
JP4826091B2 (en) Image forming apparatus
US4730323A (en) Laser frequency drift control device and method
JP3049469B2 (en) Laser output detector
JP2814987B2 (en) Semiconductor laser module
JPH10117041A (en) Measuring apparatus of current versus optical output characteristic of semiconductor laser element
JPH0532917B2 (en)
JPH07302949A (en) Wavelength stabilizing device
JP2694989B2 (en) Laser scanner
JP2000228552A (en) Solid-state laser device
JPH0341787A (en) Solid-state laser
JP2006114774A (en) Wavelength stabilizing semiconductor laser equipment
JPS61166194A (en) Semiconductor laser device