JPS6095857A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS6095857A
JPS6095857A JP58201101A JP20110183A JPS6095857A JP S6095857 A JPS6095857 A JP S6095857A JP 58201101 A JP58201101 A JP 58201101A JP 20110183 A JP20110183 A JP 20110183A JP S6095857 A JPS6095857 A JP S6095857A
Authority
JP
Japan
Prior art keywords
battery
graphite
active material
positive
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58201101A
Other languages
Japanese (ja)
Inventor
Kohei Yamamoto
浩平 山本
Tomoya Murata
村田 知也
Hisao Kobayashi
久夫 小林
Makoto Ishikura
誠 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP58201101A priority Critical patent/JPS6095857A/en
Publication of JPS6095857A publication Critical patent/JPS6095857A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enable the shape of a molded positive mixture to be maintained in a higher degree so as to improve the yield of a nonaqueous electrolyte battery by decreasing its internal resistance during initial discharge without causing any decrease of the discharge capacity by mixing a specified amount of graphite used as a conductive agent into lead bismuthate used as a positive active material. CONSTITUTION:A nonaqueous electrolyte battery is constituted using a negative electrode 20 containing an alkali metal as a negative active material and a positive electrode 16 containing lead bismuthate as a positive active material. The positive electrode 16 contains graphite as a conductive agent. The proportion of the weight of graphite to the total weight of the positive electrode 16 (graphite/Bi2Pb2O5 + graphite X 100) is adjusted to within the range or 0.05-2%. By the means mentioned above, it is possible to decrease the internal resistance of the battery during its initial discharge, and the shape retention of the molded positive mixture is improved. As a result, crakcs or fissures hardly develop in the molded positive mixture during the assembly of the battery, thereby improving the yield of the battery.

Description

【発明の詳細な説明】 この発明□は′Jl水電解液電池に関し、特に、正極活
物質どし゛Cビスマス酸鉛を用いる非水電解液電池に関
りる。□ 例えばリチウム等のアルカリ金属をi極活物v1と7−
るとともに非水電解液を用いる1上池は、小型軒a1の
高−[ネルギー密瓜電池とし”C近年注目されている。
DETAILED DESCRIPTION OF THE INVENTION This invention □ relates to a 'Jl aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte battery in which the positive electrode active material is lead bismuthate. □ For example, use an alkali metal such as lithium as an i-electrode active material v1 and 7-
In recent years, a high-energy cell battery using a non-aqueous electrolyte has attracted attention as a small-sized, high-energy melon battery.

この種の非水電解M電池の一種として、ビスマス酸”t
:1 (’B i・2 pH20g )を正極活物質と
じて用いる電池が知られている。この電池では、放電に
伴う正極反応により、正極活物質であるビスマス酸鉛中
に金属鉛と金属ビスマスとを生じる。この金属鉛と金属
ビスマスは導電性であり、これが正極活物質中に生成さ
れると、活物質粒子間の導電率が向上づる。このことは
、この電池の放電電圧の平坦性、ビスマス酸鉛の利用率
が良好なこと等の原因となつCいる。
As a type of this type of non-aqueous electrolytic M battery, bismuth acid "t"
:1 ('B i 2 pH 20 g) as a positive electrode active material is known. In this battery, metallic lead and metallic bismuth are produced in lead bismuthate, which is a positive electrode active material, by a positive electrode reaction accompanying discharge. The metal lead and metal bismuth are electrically conductive, and when they are generated in the positive electrode active material, the electrical conductivity between the active material particles increases. This is the cause of the flatness of the discharge voltage of this battery and the good utilization rate of lead bismuthate.

どころが上記の電池では、その放電初111Jにおいて
(Jl[極側の導電性を:良、々fにり゛るのに1分な
Mの金属鉛が生成され−Cおらず、このため放電11期
におい4内部抵抗が比較的高いという問題があった。
However, in the above battery, at the beginning of the discharge at 111 J, metal lead of M, which is equivalent to 1 minute to increase the conductivity of the electrode side to (Jl), is not generated. In the 11th period, there was a problem that 4 internal resistance was relatively high.

このため、特に放電初期にa3 Ljる。パルス/+9
゛市時の閉路用1i−が比較的低い笠の不満があり、こ
の貞を改善して放電性能をさらに・向上さけることがこ
の4千の)1水雷解液電池の課題・(゛ある1゜てこて
゛従来、正極活物質:′cあるヒスンス酸鉛に予め智電
剤どし−く粉末状の金属鉛を)1〜人しくおき、放電初
1!IJにJ3Lノる放電特性を改善Jるというス・j
策がとられ′(いる。
For this reason, a3 Lj is particularly high in the early stage of discharge. Pulse/+9
゛There is a dissatisfaction with the cap that the closing circuit 1i- during market time is relatively low, and the challenge for these 4,000) 1 torpedo solution batteries is to improve this characteristic and further improve the discharge performance.゜Tekote゛Conventionally, the positive electrode active material: ``Cold powder metal lead was added to the lead hissunate in advance in a warm environment, and the discharge was started for the first time. Improving the discharge characteristics of J3L in IJ
Measures have been taken.

しかし、金属鉛を導電剤とし′C混入づることは、その
分だ(J活物質であるビスマス酸鉛の■が低下づること
を意味づる。従って、導電剤としては掻く少岳で目的を
達成でさるものが望ましい。この点で金属鉛は良好な導
電剤どは言い難く、相当なωの金属鉛をヒ゛スマス酸鉛
に混入しておがなC)れば、電池の初期放電性能を改善
することがて゛きなかった。従っ−C、ビスマス酸鉛の
減少による放電容tr1の11℃−I・が極めて顕著で
あった。また、ビスマス酸鉛に金属鉛をR合して成形し
た正極成形合剤の、彎状保持強度は比較的低く、電池の
引立過程にd3いで、i[極成形合剤の割れ・欠1プが
発生し易く、歩留りを悪くする原因となっている。
However, using metallic lead as a conductive agent and mixing it with 'C' means that the ■ of lead bismuthate, which is a J active material, decreases. In this respect, it is difficult to say that metallic lead is a good conductive agent, and if a considerable amount of metallic lead of ω is mixed into lead acetate, the initial discharge performance of the battery can be improved. I couldn't stand it. Therefore, the discharge capacity tr1 of 11°C -I due to the decrease in -C and lead bismuthate was extremely significant. In addition, the strength of the positive electrode molding mixture, which is formed by combining lead bismuthate with metallic lead, is relatively low, and during the battery drawing process, there are cracks and chips in the electrode molding mixture. Drops are likely to occur, which causes a decrease in yield.

まlこ一般的な傾向どしく一1有害な金属どしての印τ
!が強い鉛を電池内に入れることは、その電池の商品イ
メージを71つ1止置にもなる。また、電池の製造1揚
において金属鉛を例えば粉末にしC扱うことは、製造装
置の汚れを激しくりる等、好ましくない要素が多い。
What is the general trend?11 Signs of harmful metals
! Inserting lead, which has a strong chemical resistance, into a battery completely changes the product image of that battery. Furthermore, handling metallic lead, for example, in powder form, during the manufacturing process of batteries has many undesirable factors, such as the fact that the manufacturing equipment is heavily contaminated.

この発明は前述した従来の問題点に鑑みなされたもので
あって、その目的は、正極活物質としCビスマス酸鉛を
用いる非水電解M電池におい(、極く少ない吊で放電初
期性能の改善効果が1!〕られる導電剤を正極活物質に
混入し、放電容01の低下を伴わす゛に放電初JIIJ
にa3tJる内部抵抗を減少させ、またiE極成形合剤
としての形状保持強度を向上さけて電池の歩留りを良く
りることにある。
This invention was made in view of the conventional problems mentioned above, and its purpose is to improve initial discharge performance with minimal suspension in non-aqueous electrolytic M batteries that use lead carbon bismuthate as the positive electrode active material. When a conductive agent with an effect of 1! is mixed into the positive electrode active material, the discharge initial JIIJ is accompanied by a decrease in discharge capacity of 0.1.
The purpose of this invention is to reduce the internal resistance of a3tJ, improve the shape retention strength of the iE electrode forming mixture, and improve the yield of batteries.

上記の目的を達成するために、この発明は、フルカリ金
属を負極活物質とりる負極ど、じスマス酸鉛を正極活物
工!(とVる正極を用いる非水電解液する。
In order to achieve the above object, the present invention uses alkali metal as a negative electrode active material, and uses lead dismutate as a positive electrode active material! (V) using a positive electrode with a non-aqueous electrolyte.

Jズト、この弁明の実施例を図面にJ、t Jい(訂細
に説明づる。
An example of this defense is shown in the drawings (explained in detail).

この弁明(J電池の形態に捕られれるt)の(゛は41
いが、 例どしてボタン型のul水゛市M液電池の+1
4造を第1図に示しCいる。同図に承り電池(、E、ス
アンレススヂールで形成された正441rlj 10と
El 444端子12d3よび封1」ガスケット22か
らなる電池ケース内に正極16.レバレータ18:、負
極20を積層し″て4する光電要素が密封状態で装填さ
れている。
This defense (t captured in the form of J battery) (゛ is 41
However, for example, the button type UL water city M liquid battery has +1
The four structures are shown in Figure 1. According to the same figure, a positive electrode 16, a lever lever 18, and a negative electrode 20 are laminated in a battery case consisting of a positive 441rlj 10, an El 444 terminal 12d3, and a seal 1 gasket 22 made of Suanresu Steel. A photovoltaic element is loaded in a sealed manner.

負極20は金属リヂウ11を活物質、としCい、る。The negative electrode 20 uses the metal substrate 11 as an active material.

正(へ1.6はビスマス酸鉛を活物質とじCいる。レバ
レータ18はボリプI]ビレン不械布・等の多孔性フィ
ルムからなり、これには非水電解液が81pされている
The positive (1.6) contains lead bismuthate as an active material. The lever 18 is made of a porous film such as polypropylene, which is coated with a non-aqueous electrolyte.

正’4i1i’ 16に′二)いて詳述りる。□正11
fli 1■6は、活物質とじCI/)’ビスマス酸鉛
に導電・剤としCの黒鉛を混入じた成形合剤である。導
電’fflとし−Cの黒鉛のある。これ(よ、従来1の
金属641を、・導電剤としたものの含4−i率に比べ
C非常に低い値で:ある・、、(従来、導電剤□として
の金属鉛は15%程:1度含よ:れCいるのが一般的C
゛ある)3、 つまり、黒鉛・の導電性は金属鉛のそれに比べC遥かに
良好で’iMす、受石ぐあつ゛(も導、?h剤としての
効果は十分に発揮される。その結果、正極活物質どして
のじスマスM 14)のfQを殆どへらJことなく、放
電初期にお(プる内部抵抗を減少さlることかできる。
This will be explained in detail in Section 16 of '4i1i'. □ Positive 11
fli 1■6 is a molding mixture in which the active material CI/)' lead bismuthate is mixed with C graphite as a conductive agent. There is graphite of -C as a conductive 'ffl. This is a very low C content compared to the 4-i content of conventional metal 641 as a conductive agent. Contain once: It is common to have C
3. In other words, the conductivity of graphite is much better than that of lead metal, and its effect as a conductive agent is fully demonstrated. , it is possible to reduce the internal resistance at the initial stage of discharge without substantially changing the fQ of the mass M14) as a positive electrode active material.

また、ビスマス酸鉛に黒1))を混ぜた合剤の成形強度
は金属14)をiIlぼた合剤のそれに比べ°(人^く
、正極成形合剤としCの形状12 J、II性か向上J
る。その結果、電池の組立過程にJ5い(、正44ス成
形合剤のΔηれ・欠りが発<fシfII < <;す、
電池、Q) 3b ’、’4tりが” lfj]上づる
In addition, the molding strength of a mixture of lead bismuthate and black 1)) is compared to that of the metal 14) iIl porcelain mixture. Ka improvement J
Ru. As a result, Δη cracks and chips in the J5 molding mixture occur during the battery assembly process.
Battery, Q) 3b', '4t rises lfj].

第2図には上述の黒鉛の含イi X9′ど7Th池’l
!i (’Iの関1系を示しCいる。1つは黒鉛含イ」
渾ど放電初期(、−、、d3【〕る内部抵抗の関係であ
り、bう′1つは黒鉛含有!t′と放電111間との関
係(ある。いり“れの1!i t!I bl、\111
)を↑く含まない電池の値をI 00ど()る相対、指
数(+Q (示しでいる。
Figure 2 contains the graphite mentioned above.
! i ('C indicates the 1st series of I. One contains graphite.'
This is the relationship between the internal resistance at the initial stage of the discharge (, -,, d3), and the other is the relationship between the graphite-containing!t' and the discharge 111. I bl,\111
) is the relative value of the battery that does not include ↑I 00 (), the index (+Q (indicated).

第2図から明らかl、’i J、″)に、市!出の初1
!III内部抵抗1;L +[E極活物質(・あるじス
7ス酸11)に;ζ1電剤としくのIJj鉛を(^く1
吊かに)1シ入りるだIJ r人さく低1・りる、、黒
鉛含有率を0.05%にりればivJ期内811抵抗を
・、低下さUる効果1,1重茗になる。まlこ黒鉛含イ
j率を0.05%以上に殖やしても、正極内部抵抗の低
減効果【、1それはど変化しない。
It is clear from Figure 2 that the first 1 of the city!
! III internal resistance 1; L + [E electrode active material (・Arjisu 7 sulfuric acid 11);
Hanging Crab) 1 piece of IJ r human saku low 1, Ruru, If the graphite content is reduced to 0.05%, the effect of lowering the 811 resistance within the ivJ period is 1,1 heavy weight. become. Even if the graphite content is increased to 0.05% or more, the positive electrode internal resistance reduction effect does not change.

また電池の放電時間は、黒1イ1含有率を増加するとそ
の分だりi上極活物質であるビスマス酸鉛のmが減るた
め、黒鉛含有率の増加とともに減少する。
Further, the discharge time of the battery decreases as the graphite content increases, because as the black 1-1 content increases, the m of lead bismuthate, which is the upper electrode active material, decreases accordingly.

しかし、黒鉛含有率が2%以下であれば、放電時間の減
少は極く僅かC′あり、殆ど問題にならない。
However, if the graphite content is 2% or less, the decrease in discharge time is only a slight amount C', which causes almost no problem.

黒鉛含有率が2%を越えると、放電時間の減少率が急激
に人さくイfす、放電音tnの低下が著しくなる。また
、ざらに多室の黒鉛を加えた場合は、成形密度が高<4
i:す、電解液の拡散が阻害され、その結果放電性能力
用1天干づ゛ることが確認された。
If the graphite content exceeds 2%, the rate of decrease in discharge time will decrease rapidly and the discharge sound tn will decrease significantly. In addition, when multi-chambered graphite is added to the grain, the molding density is high < 4
i: It was confirmed that the diffusion of the electrolytic solution was inhibited, and as a result, the discharge capacity was reduced.

上記のJ、うに、ビスマス酸≦イ)を活物v1とりる正
極1Gに導電剤としc +tシ入−りる黒鉛の含有率は
、0.0!:)−・2%のn(+囲が適当(゛あり、こ
の範囲Cあれば、電池の敢1゛;l容用の低下をぎたり
ことなく、放電初1ulに、1月〕る内部抵抗を十分に
低下さけることができる。また、成形合剤としての強度
も向上りる。
The above J, sea urchin, bismuth acid ≦ a) is used as a conductive agent in the positive electrode 1G, which takes the active substance v1, and the content of graphite containing c +t is 0.0! :) -・2% n It is possible to sufficiently avoid a decrease in resistance, and the strength as a molding mixture is also improved.

以上詳細に説明したように、この発明によれば、i[極
活物質にビスマス鉛を用いる非水電解液電池の内部抵抗
特性や放電性能をさらに一層向上さけることがC′き、
この種の電池の有用性が高まる。
As explained in detail above, according to the present invention, it is possible to further improve the internal resistance characteristics and discharge performance of a non-aqueous electrolyte battery using bismuth lead as the electrode active material,
This increases the usefulness of this type of battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明が適用される非水電解液電池の構造例
を示4断面図、第2図はこの発明の詳細な説明りるため
のグラフである。 10・・・・・・正極缶 12・・・・・・負極端r1
6・・・・・・正(仮 18・・・・・・レバレータ2
0・・・・・・負極 22・・・・・・、)5+ 1−
’]ガスケットQ:f i+’l出願人 畠″X1゛山
気化パ;り・株式会?、1代 理 人 弁理 1 − 
色叶輔
FIG. 1 is a four-sectional view showing an example of the structure of a non-aqueous electrolyte battery to which the present invention is applied, and FIG. 2 is a graph for explaining the present invention in detail. 10...Positive electrode can 12...Negative electrode r1
6...Correct (tentative) 18...Leverator 2
0...Negative electrode 22...,)5+ 1-
'] Gasket Q: f i+'l Applicant Hata"
Irokanosuke

Claims (1)

【特許請求の範囲】[Claims] (1)アルカ□す金属を負極活物質とづる負極と、どス
マス酸鉛を正極活物質とする正極を用いる非とJ乞非水
電解液電池。
(1) A non-aqueous electrolyte battery using a negative electrode made of an alkaline metal as the negative electrode active material and a positive electrode made of lead dosumathate as the positive electrode active material.
JP58201101A 1983-10-28 1983-10-28 Nonaqueous electrolyte battery Pending JPS6095857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201101A JPS6095857A (en) 1983-10-28 1983-10-28 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201101A JPS6095857A (en) 1983-10-28 1983-10-28 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS6095857A true JPS6095857A (en) 1985-05-29

Family

ID=16435410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201101A Pending JPS6095857A (en) 1983-10-28 1983-10-28 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS6095857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689512B2 (en) * 2001-04-11 2004-02-10 Hitachi Maxell Ltd. Flat-shaped nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689512B2 (en) * 2001-04-11 2004-02-10 Hitachi Maxell Ltd. Flat-shaped nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
US4197366A (en) Non-aqueous electrolyte cells
JP3215446B2 (en) Zinc alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPS6095857A (en) Nonaqueous electrolyte battery
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof
JPH0317181B2 (en)
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JPH06231757A (en) Zinc alkaline battery
JP3178160B2 (en) Method for producing negative electrode for button-type alkaline battery and button-type alkaline battery
JPS5978451A (en) Battery
JPS6151749A (en) Nonaqueous electrolyte battery
JPH07147160A (en) Lead-acid battery
JPS62165880A (en) Solid-electrolyte secondary cell
JPH0317182B2 (en)
JPH07335227A (en) Alkaline battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPS5832359A (en) Alkaline zinc secondary battery
JPS63307662A (en) Organic electrolyte battery
JP2002343413A (en) Seal type lead-acid battery
JPS6095855A (en) Nonaqueous electrolyte battery
JPS6166363A (en) Nonaqueous electrolyte cell
JPH10188964A (en) Sealed lead-acid battery
JPS6398959A (en) Sealed alkaline manganese secondary battery