JPS6094196A - Biological denitrification and dephosphorization process for organic waste water - Google Patents

Biological denitrification and dephosphorization process for organic waste water

Info

Publication number
JPS6094196A
JPS6094196A JP19922683A JP19922683A JPS6094196A JP S6094196 A JPS6094196 A JP S6094196A JP 19922683 A JP19922683 A JP 19922683A JP 19922683 A JP19922683 A JP 19922683A JP S6094196 A JPS6094196 A JP S6094196A
Authority
JP
Japan
Prior art keywords
sludge
anaerobic
supernatant liquid
effluent
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19922683A
Other languages
Japanese (ja)
Inventor
Yasushi Shibazaki
柴崎 康
Yuji Yasuda
雄二 保田
Tetsuo Takahashi
哲郎 高橋
Isamu Furihata
布利幡 勇
Takao Hashizume
隆夫 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19922683A priority Critical patent/JPS6094196A/en
Publication of JPS6094196A publication Critical patent/JPS6094196A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a treating system and to reduce consumption of chemical agents by treating org. waste water contg. ammonical nitrogenor org. nitrogen compds. and phosphorus compds. by biological denitrification process alone. CONSTITUTION:Discharged water from a reaeration stage 10 is flowed into a second sludge separation stage 12, and is separated into supernatant liquid and settled activated sludge. The supernatant liquid flows out of a treating liquid pipe 15, and a part of the activated sludge separated in the second sludge separating stage 12 is discharged to the outside of the system as excess sludge 14, and residual portion is introduced into a second anaerobic stage 17 through a return pipe 11. Since the excess sludge 8 can absorb and contain a large amt. of P in the aeration stage, P compds. remaining in the supernatant liquid in the first sludge separating stage 5 is removed by the excess sludge and is discharged to the outside of the system to reduce the P content in the treated water discharged from the treating liquid pipe 15 to less than the content of P in the supernatant liquid of the first sludge separation stage.

Description

【発明の詳細な説明】 本発明は有機性廃水の生物学的脱窒素説リン方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for biological denitrification of organic wastewater.

アンモニア性窒素、あるいは有機性窒素などの窒素化合
物を多量に含む有機性廃水を生物学的に脱窒素する従来
の方法を第1図に示した。
A conventional method for biologically denitrifying organic wastewater containing a large amount of nitrogen compounds such as ammonia nitrogen or organic nitrogen is shown in FIG.

第1図において廃水1は第−説窒素工程2に導入され、
硝化工程3より循環液管4を通じ返送されてくる硝化混
合液及び第一汚泥分離工程5より返送管6を通じ返送さ
れてくる返送汚泥と混合される。第−説窒素工程2内で
硝化混合液中に含まれるNo、 −N あるいはNo、
−N は原廃水中に含有されるBOD源を水素供与体と
して活性汚泥中の脱窒素菌の生物還元作用によシN2ガ
スにまで還元される。
In FIG. 1, wastewater 1 is introduced into a nitrogen stage 2,
It is mixed with the nitrification mixed liquid returned from the nitrification process 3 through the circulating liquid pipe 4 and the return sludge returned from the first sludge separation process 5 through the return pipe 6. No, -N or No contained in the nitrification mixture in the nitrogen step 2,
-N is reduced to N2 gas by the biological reduction action of denitrifying bacteria in activated sludge using the BOD source contained in the raw wastewater as a hydrogen donor.

第−説窒素工程2の流出液中には原廃水中に含まれるN
H,−N が第−説窒素工程で生物学的作用を受けずに
含有されるので、これを硝化工程乙に導入し、曝気によ
り酸素を供給しながら活性汚泥中の硝化菌の作用により
NO□−N あるいはNo、 −N まで酸化する。
Theory - Nitrogen The effluent from the nitrogen process 2 contains N contained in the raw wastewater.
Since H and -N are contained without undergoing any biological action in the nitrogen process, they are introduced into the nitrification process B, and while supplying oxygen through aeration, NO is produced by the action of nitrifying bacteria in the activated sludge. □ Oxidize to -N or No, -N.

NH4−N がNO□−NあるいはNo、−NK酸化き
れる際、混合液中に水素イオンが放出されるので、混合
液のpHが低下し、硝化菌の活動を妨げるので、pH調
整装置7よシ消石灰あるいは苛性ソーダ等のアルカリ剤
を硝化工程6に添加し、混合液のpHを硝化菌の活動に
適した範囲に調整する。硝化工程3の流出液の一部は循
環液管4を通じ第−説窒素工程2に返送され、残部は第
一汚泥分離工程5に導入される。第一汚泥分離工程5に
流入した硝化工程乙の流出液は、第一汚泥分離工程5の
中で上澄液と沈降する活性汚泥に分離される。
When NH4-N is oxidized to NO□-N or No, -NK, hydrogen ions are released into the mixed solution, which lowers the pH of the mixed solution and impedes the activity of nitrifying bacteria. An alkaline agent such as slaked lime or caustic soda is added to the nitrification step 6 to adjust the pH of the mixture to a range suitable for the activity of nitrifying bacteria. A part of the effluent from the nitrification process 3 is returned to the first nitrogen process 2 through the circulating liquid pipe 4, and the remainder is introduced into the first sludge separation process 5. The effluent from the nitrification process B that has flowed into the first sludge separation process 5 is separated into a supernatant liquid and settled activated sludge in the first sludge separation process 5.

第一汚泥分離工程5で沈降分離された活性汚泥の一部は
余剰汚泥8として系外に排出され、残部は返送管6を通
じ第−説窒素工程2に返送される。
A part of the activated sludge separated by sedimentation in the first sludge separation step 5 is discharged outside the system as surplus sludge 8, and the remainder is returned to the second nitrogen step 2 through a return pipe 6.

第一汚泥分離工程5の上澄液には、硝化工程5で生じた
N’02−NあるいはN O,−14のうち、N2ガス
にまで還元し残した分が残存している。
In the supernatant liquid of the first sludge separation step 5, the portion of N'02-N or NO,-14 generated in the nitrification step 5 that has been reduced to N2 gas remains.

第一汚泥分離工程5の上澄液は第二脱窒素工程9に流入
し、返送管11を通じ返送されてくる返送汚泥と混合さ
れる。第二脱窒素工径9内で第一汚泥分離工程上澄液中
に残存し含まれるNO□−NあるいはNo、−Nは水素
供与体供給装置13より供給されるメタノールあるいは
エタノール等を水素供与体として活性汚泥中の脱窒素菌
の生物還元作用によりN、ガスまで還元される。
The supernatant liquid of the first sludge separation step 5 flows into the second denitrification step 9 and is mixed with the return sludge returned through the return pipe 11. In the second denitrification diameter 9, the NO□-N or No, -N remaining and contained in the supernatant liquid of the first sludge separation process is supplied with methanol or ethanol, etc. supplied from the hydrogen donor supply device 13 as a hydrogen donor. As a result of the biological reduction action of denitrifying bacteria in activated sludge, N and gas are reduced.

残存No、−NあるいはNo、−Nを、N、ガスまで還
元作用を受けた第二脱窒素工程の流出液は、再曝気工程
10に流入し、第二脱窒素工程で残存したメタノールあ
るいはエタノール等の水素供与体は、再曝気工程10内
で好気的に活性汚泥処理をされ、除去される。再曝気工
程の流出水は第二汚泥分離工程12に流入し、上澄液と
沈降する活性汚泥に分離される。上澄液は処理液915
より流出し、第二汚泥分離工程12で沈降分離された活
性汚泥の一部は余剰汚泥14として系外に排出され、残
部は返送管11を通じ第二脱窒素工程9に返送される。
The effluent from the second denitrification step, which has undergone the action of reducing the residual No. -N or No. These hydrogen donors are aerobically treated with activated sludge in the reaeration step 10 and removed. The effluent from the reaeration process flows into the second sludge separation process 12 and is separated into a supernatant liquid and settled activated sludge. The supernatant liquid is treated liquid 915.
A part of the activated sludge that flows out and is sedimented and separated in the second sludge separation step 12 is discharged outside the system as surplus sludge 14, and the remainder is returned to the second denitrification step 9 through the return pipe 11.

このように、第1図示例で廃水を処理すると、廃水中の
窒素化合物および有機物を効率良く処理できるが、廃水
中のリン化合物の除去率は低いものとなる。通常、第1
図示例の処理水に残存するリン化合物は後処理としての
凝集沈殿法により除去されている。凝集沈殿法は凝集剤
等の薬品を多量に必要とし、発生する余剰汚泥は脱水性
が悪く、余剰汚泥処理工程に悪影響を与えることがある
As described above, when wastewater is treated in the first illustrated example, nitrogen compounds and organic substances in the wastewater can be efficiently treated, but the removal rate of phosphorus compounds in the wastewater is low. Usually the first
Phosphorus compounds remaining in the treated water in the illustrated example are removed by a coagulation-sedimentation method as a post-treatment. The coagulation-sedimentation method requires a large amount of chemicals such as flocculants, and the generated surplus sludge has poor dewatering properties, which may adversely affect the surplus sludge treatment process.

本発明は上記の欠点解消を目的とするもので廃水の生物
学内膜窒素処理工程内において廃水中のリン化合物を同
時に処理し、除去するもので、従来は生物学的脱窒素処
理と凝集沈殿処理の組合わせで廃水中の有機物、it化
合物、リン化合物を処理していたものを、生物学内膜窒
素処理工程内でリン化合物も同時に処理し、処理システ
ムを簡略化し、さらに従来と比較し、リン除去に必要と
される薬品延金大巾に低減、又は無薬注とする方法であ
る。
The purpose of the present invention is to eliminate the above-mentioned drawbacks by simultaneously treating and removing phosphorus compounds in wastewater during the biological internal membrane nitrogen treatment process of wastewater. Instead of treating organic matter, IT compounds, and phosphorus compounds in wastewater using a combination of treatments, we now also treat phosphorus compounds at the same time in the biological membrane nitrogen treatment process, simplifying the treatment system and making it even more effective compared to conventional methods. This is a method that reduces the amount of chemicals required for phosphorus removal to just a sliver, or eliminates the use of chemicals.

活性汚泥のリン摂取能力を上けるには(1ンまず絶対嫌
気性条件(液中に溶存ば素DO及びNo。
To increase the phosphorus uptake capacity of activated sludge, first, under absolute anaerobic conditions (dissolved sulfur, DO and NO).

−N、N03−Nが存在しないことをいう)で、活性汚
泥中のリンを溶解性リンとして液中に放出させる。(2
)次に好気性条件下に活性汚泥をおき、滞留させると活
性汚泥(はリンを過剰摂取するという実験的事実が判明
しているので、本発明者らはこの方法を適用することに
想到して本発明の生物学的脱窒素膜リン法を創案した。
-N, N03-N is not present), the phosphorus in the activated sludge is released into the liquid as soluble phosphorus. (2
) Next, the present inventors came up with the idea of applying this method, as it has been experimentally found that activated sludge is placed under aerobic conditions and allowed to stagnate, resulting in excessive intake of phosphorus. The biological denitrification membrane phosphorus method of the present invention was developed based on the above.

第1図に示す従来法では絶対嫌気槽がないので、活性汚
泥のリン過剰摂取が起きにくく、処埋水中にリンが残存
する。
Since the conventional method shown in FIG. 1 does not have an absolute anaerobic tank, excessive phosphorus uptake in activated sludge is less likely to occur, and phosphorus remains in the treated water.

すなわち本発明の要旨は、アンモニア性窒素あるいは有
機性窒素などの窒素化合物およびリン化合物を含む有機
性廃水を第一嫌気工程に導入し、第一汚泥分離工程から
返送される返送汚泥と混合し、第一嫌気工程流出水を第
−説窒素工程に導入し硝化工程からの循環液と混合し、
第−説窒素工程流出水を硝化工程に導入した彼、硝化工
程流出水の一部を循環液として第−説窒素工程に返送す
ると共に残部を第一汚泥分離工程に導入し、上澄液と沈
降する活性汚泥に固液分離し、分離した活性汚泥の一部
を系外に余剰汚泥として引抜き、残りを返送汚泥として
第一嫌気工程に返送する第一工程と第一汚泥分離工程上
澄液を第二脱窒素工程に導入し、第二嫌気工程流出水と
混合し、第一嫌気工程流出水を再曝気工程に導入し、再
曝気工程流出水を第二汚泥分離工程に導入し上澄液と沈
降する活性汚泥に固液分離し、上澄液は処理水として系
外に放出し、分離した活性汚泥の一部を余剰汚泥として
系外に引抜き、残部を第二嫌気槽に導入し、第二嫌気槽
流出水を返送汚泥として第二脱窒素工程に返送する第二
工程からなQ、水素供与体を第二嫌気工程および第二脱
窒素工程、あるいは第二嫌気工程のみに注入することを
特徴とする有機性廃水の生物学的脱窒脱リン法を提供す
るところにある。
That is, the gist of the present invention is to introduce organic wastewater containing nitrogen compounds such as ammonia nitrogen or organic nitrogen and phosphorus compounds into the first anaerobic process, mix it with return sludge returned from the first sludge separation process, The first anaerobic process effluent is introduced into the second nitrogen process and mixed with the circulating liquid from the nitrification process,
He introduced the nitrification process effluent into the nitrification process. A part of the nitrification process effluent was returned to the nitrification process as circulating fluid, and the remainder was introduced into the first sludge separation process, forming the supernatant liquid. The first process involves solid-liquid separation into settled activated sludge, a part of the separated activated sludge is extracted from the system as surplus sludge, and the remainder is returned to the first anaerobic process as return sludge, and the first sludge separation process supernatant liquid. is introduced into the second denitrification process and mixed with the second anaerobic process effluent, the first anaerobic process effluent is introduced into the reaeration process, and the reaeration process effluent is introduced into the second sludge separation process and supernatant. The solid-liquid is separated into liquid and settled activated sludge, and the supernatant liquid is discharged outside the system as treated water. A part of the separated activated sludge is drawn out of the system as surplus sludge, and the remainder is introduced into the second anaerobic tank. , from the second step in which the second anaerobic tank effluent is returned as return sludge to the second denitrification step. The present invention provides a biological denitrification and dephosphorization method for organic wastewater characterized by the following.

アンモニア性窒素あるいは有機性窒素などの窒素化合物
およびリン化合物を含む有機性廃水を生物学的に脱リン
、脱窒素する本発明の方法を第2図および第6図に示し
た。
The method of the present invention for biologically dephosphorizing and denitrifying organic wastewater containing nitrogen compounds such as ammonia nitrogen or organic nitrogen and phosphorus compounds is shown in FIGS. 2 and 6.

第2図において廃水1は第一嫌気工程16に導入され、
第一汚泥分離工程5よジ返送管6を通じ返送されてくる
返送汚泥と混合される。第一嫌気工程内では、返送汚泥
中に含有されるNo、−NあるいはNo、−Nが、廃水
中に含有されるBOD源を水素供与体として活性汚泥中
の脱窒素菌の生物還元作用によりN、ガスまで還元され
、N0x−N が存在しなくな夕、しかも溶存酸素(D
o)も存在しない絶対嫌気性状態となる。絶対嫌気性状
態となった後も、原水と返送汚泥の混合液を第一嫌気工
程内に滞留させると、活性汚泥中に含有されていたリン
化合物が溶解性リンとして液中に放出される。活性汚泥
のリン放出により液中のリン濃度が上昇した第一嫌気工
程16の流出液は、硝化工程3より循環液管4を通じ返
送されてくる硝化混合液と共に第−説窒素工程2に流入
し混合される。第−説窒素工程2内で硝化混合液中に含
まれるNo2−N あるいはNo、−N ij第一嫌気
工程の流出水に含有されるBOD源を水素供与体として
活性汚泥中の脱窒素菌の生物還元作用によシN2ガスま
で還元される。第−説窒素工程2の流出液中には原廃水
中に含まれるNH,−N が第−説窒素工程で生物学的
作用を受けずに含有されると共に、原廃水中のリン化合
物と、第一嫌気工程で活性汚泥から放出された溶解性リ
ンが含有されるので、これを硝化工程3に導入し、曝気
により酸素を供給しながら活性汚泥中の硝化菌の作用に
よりNO,−NあるいはNo3−Nまで酸化すると共に
、活性汚泥は第1図示例の活性汚泥よりも多量に液中の
リン化合物を摂取し液中からリンを除去する。硝化工程
3にpH調整装置7よジアルカリ剤を添加し混合液のp
Hを硝化菌の活動に適した範囲に調整する。硝化工程3
の流出液の一部は循環液管4を通じ、第−説窒素工程2
に返送され、残部は第一汚泥分離工程5に導入される。
In FIG. 2, wastewater 1 is introduced into a first anaerobic step 16,
The first sludge separation step 5 is mixed with the return sludge that is returned through the return pipe 6. In the first anaerobic process, No, -N or No, -N contained in the returned sludge is reduced by the biological reduction action of denitrifying bacteria in the activated sludge, using the BOD source contained in the wastewater as a hydrogen donor. N is reduced to gas, and NOx-N no longer exists, and dissolved oxygen (D
It becomes an absolute anaerobic state where o) also does not exist. When the mixed solution of raw water and returned sludge is allowed to remain in the first anaerobic step even after the state becomes absolutely anaerobic, the phosphorus compounds contained in the activated sludge are released into the solution as soluble phosphorus. The effluent from the first anaerobic process 16, in which the concentration of phosphorus in the liquid has increased due to the release of phosphorus from the activated sludge, flows into the nitrogen process 2 together with the nitrification mixture returned from the nitrification process 3 through the circulating liquid pipe 4. mixed. Theory - No2-N or No, -N contained in the nitrification mixture in the nitrogen step 2. Denitrification bacteria in the activated sludge are activated using the BOD source contained in the effluent of the first anaerobic step as a hydrogen donor. It is reduced to N2 gas by biological reduction action. In the effluent of the second theory nitrogen step 2, NH and -N contained in the raw wastewater are contained without being subjected to biological effects in the second theory nitrogen step, and the phosphorus compounds in the raw wastewater are Since the activated sludge contains soluble phosphorus in the first anaerobic step, it is introduced into the nitrification step 3, and while supplying oxygen through aeration, NO, -N, or While being oxidized to No. 3 -N, the activated sludge takes in a larger amount of phosphorus compounds in the liquid than the activated sludge of the first illustrated example and removes phosphorus from the liquid. In the nitrification process 3, a dialkali agent is added to the pH adjuster 7 to adjust the pH of the mixed liquid.
Adjust H to a range suitable for the activity of nitrifying bacteria. Nitrification process 3
A part of the effluent is passed through the circulating liquid pipe 4 to the nitrogen process 2.
and the remainder is introduced into the first sludge separation step 5.

第一汚泥分離工程5に流入した硝化工程乙の流出液は、
第一汚泥分離工程5の中で上澄液と沈降する活性汚泥に
分離される。第一汚泥分離工程5で沈降分離された活性
汚泥の一部は余剰汚泥8として系外に排出され、残部は
返送管6を通じ第一嫌気工程16に返送される。余剰汚
泥8は硝化工程でリンを多量に摂取し含有しているので
、原廃水に含有されていたリン化合物は余剰汚泥中に除
去され、系外に排出されるので、第一汚泥分離工程5の
上澄水はリン化合物が大巾に除去されたものとなる。
The effluent from the nitrification process B that entered the first sludge separation process 5 is
In the first sludge separation step 5, the sludge is separated into a supernatant liquid and activated sludge that settles. A portion of the activated sludge separated by sedimentation in the first sludge separation step 5 is discharged outside the system as surplus sludge 8, and the remainder is returned to the first anaerobic step 16 through the return pipe 6. Since the surplus sludge 8 takes in a large amount of phosphorus during the nitrification process and contains it, the phosphorus compounds contained in the raw wastewater are removed from the surplus sludge and discharged outside the system, so the first sludge separation process 5 The supernatant water has phosphorus compounds removed to a large extent.

なお、汚泥分離工程で活性汚泥と上澄水を固液分離する
際、上澄液から分離された活性汚泥が嫌気状態にさらさ
れると活性汚泥中のリンが液中に放出され、上澄水のリ
ン濃度を上昇させてしまう。本発明の汚泥分離工程5へ
の流入水には、必らず硝化工程3で生じたNO,−N 
6るいはNo、−N が含有され、汚泥分離工程5で固
液分離された活性汚泥側にもNO,−N あるいはNo
3−N が含有される。No、−NあるいはN 03−
Nが活性汚泥と共存すると、絶対嫌気性とはなりにくく
、活性汚泥からのリン放出を抑制する事ができ、第一嫌
気工程16から汚泥分離工程5までのリン除去率を汚泥
分離工程に於けるリン放出によシ低下する事を抑止する
ことができる。
In addition, when activated sludge and supernatant water are solid-liquid separated in the sludge separation process, when the activated sludge separated from the supernatant liquid is exposed to anaerobic conditions, the phosphorus in the activated sludge is released into the liquid, and the phosphorus in the supernatant water It will increase the concentration. The inflow water to the sludge separation process 5 of the present invention necessarily contains NO and -N generated in the nitrification process 3.
The activated sludge that has been separated into solid and liquid in the sludge separation step 5 also contains NO, -N or No.
3-N is contained. No, -N or N 03-
When N coexists with activated sludge, it is difficult to become absolutely anaerobic, and phosphorus release from activated sludge can be suppressed. It is possible to suppress the decline due to phosphorus release.

汚泥分離工程5までで、原廃水中に含有されたリン化合
物と窒素化合物の大部分が除去されるが窒素化合物(N
o2−NあるいはNo、−N )とリン化合物が残存す
るので次の工程でこれら残存物を除去する。
Up to sludge separation step 5, most of the phosphorus compounds and nitrogen compounds contained in the raw wastewater are removed, but nitrogen compounds (N
o2-N or No, -N) and phosphorus compounds remain, so these residues are removed in the next step.

すなわち、第一汚泥分離工程5の上澄液は第二脱窒素工
程9に流入し、返送管11を通じ返送されてくる返送汚
泥と混合される。第二嫌気工程9内で流入する上置液中
に残存し含有されるNo、−NあるいはNo3−Nは水
素供与体供給装置13よp供給されるメタノールあるい
はエタノール等を水素供与体として活性汚泥中の脱窒素
菌の生物還元作用によりI4□カスまで還元される。但
し、後述するように、第二嫌気工程に添加する水素供与
体の量が、來二脱蟹素工程9でのNo2−NあるいはN
o3−N還元の為に十分である場合は第二腕窒素工程2
への水素供与体添加はおこなわなくてもよい。
That is, the supernatant liquid from the first sludge separation process 5 flows into the second denitrification process 9 and is mixed with the return sludge returned through the return pipe 11. No, -N or No3-N remaining and contained in the overlay liquid flowing in the second anaerobic process 9 is activated sludge using methanol, ethanol, etc. supplied from the hydrogen donor supply device 13 as a hydrogen donor. It is reduced to I4□ residue by the biological reduction action of the denitrifying bacteria inside. However, as will be described later, the amount of hydrogen donor added to the second anaerobic step is the same as No2-N or N in the second decarboxylation step 9.
Second arm nitrogen step 2 if sufficient for o3-N reduction
It is not necessary to add a hydrogen donor to.

第二脱窒素工程9の流出液は再曝気工程1゜に流入し、
第二嫌気工程で残存したメタノールあるいはエタノール
等の水素供与体は、再曝気工程10内で好気的に活性汚
泥処理をされ、除去されると共に、第一汚泥分離工程5
の上澄液に残存するリン化合物と後述する第二嫌気工程
17で活性汚泥から放出される溶解性リンは、第二脱窒
素工程9を経由して再曝気工程10に流入し、再曝気工
程内の活性汚泥によシ、第1図示例の活性汚泥よフも多
量に液中のリン化合物が摂取されることにより液中から
リンが除去される。再曝気工程10の流出水は第二汚泥
分離工程12に流入し、上澄液と沈降する活性汚泥に分
離される。上澄液は処理液管15より流出し、第二汚泥
分離工程12で沈降分離された活性汚泥の一部は余剰汚
泥14として糸外に排出され、残部は返送管11を通じ
第二嫌気工程17に導入される。余剰汚泥8は再曝気工
程でリンを多量に摂取し含有しているので、第一汚泥分
離工程5の上澄液に残存し含有されでいたリン化合物は
余剰汚泥中に除去され、系外に排出されて、処理液管1
5よ逆流出する処理水中のリン量は第一汚泥分離工程上
澄水よ勺もさらに低減される。第二嫌気工程17に流入
した余剰汚泥は嫌気状態に保たれ、活性汚泥中のリンを
放出する。リン放出の際、BODが共存した方がリン放
出が容易になされるので、第二嫌気工程17には、水素
供与体供給装置16よシBOD源を供給する。その際B
OD源としては、第二嫌気工程9で脱窒素の際、水素供
力体として効果的なメタノールあるいはエタノール等を
選定することがよい。
The effluent from the second denitrification step 9 flows into the reaeration step 1°,
Hydrogen donors such as methanol or ethanol remaining in the second anaerobic step are removed by aerobic activated sludge treatment in the reaeration step 10, and are removed in the first sludge separation step 5.
The phosphorus compounds remaining in the supernatant liquid and the soluble phosphorus released from the activated sludge in the second anaerobic process 17 described below flow into the reaeration process 10 via the second denitrification process 9, Phosphorus is removed from the liquid by the activated sludge in the first illustrated example ingesting a large amount of phosphorus compounds in the liquid. The effluent from the reaeration process 10 flows into the second sludge separation process 12 and is separated into a supernatant liquid and settled activated sludge. The supernatant liquid flows out from the treated liquid pipe 15, and a part of the activated sludge that has been sedimented and separated in the second sludge separation process 12 is discharged to the outside as surplus sludge 14, and the remainder passes through the return pipe 11 to the second anaerobic process 17. will be introduced in Since the surplus sludge 8 takes in a large amount of phosphorus during the re-aeration process and contains it, the phosphorus compounds that remained and were not contained in the supernatant liquid of the first sludge separation process 5 are removed from the surplus sludge and released outside the system. The processing liquid pipe 1
5) The amount of phosphorus in the treated water flowing back is further reduced in the supernatant water of the first sludge separation process. The surplus sludge that has flowed into the second anaerobic process 17 is kept in an anaerobic state and releases phosphorus in the activated sludge. Since phosphorus is released more easily when BOD is present, the second anaerobic step 17 is supplied with a BOD source as well as the hydrogen donor supply device 16 . At that time B
As the OD source, it is preferable to select methanol, ethanol, or the like, which is effective as a hydrogen donor during denitrification in the second anaerobic step 9.

第二嫌気工程で活性汚泥中のリンを放出した混合液は第
二嫌気工程に返送される。
The mixed liquid from which phosphorus in the activated sludge has been released in the second anaerobic process is returned to the second anaerobic process.

なお本発明によれば、第2図示例で貌明すると、第一工
程では硝化、脱窒素、脱リンを同時におこなっており、
硝化作用を良好とする為には硝化菌を系内に保持する必
要があり、従ってSRT (汚泥金)を硝化菌のwas
h out が起きない値以上とする必要がある。ここ
でいう washout (抗原)とは、硝化菌の増殖
速度よりも早い速度で余剰汚泥を引き抜いた際、硝化菌
が系外に排除されてしまうことを意味する。SRTが制
限される、すなわち余剰汚泥の引抜率を設定することは
余剰汚泥8の量をある値以下にせねばならず、余剰汚泥
中のリン含有率には上限が有るので、第一工程のリン除
去量は硝化菌の系内保持の為のSRT Kよって1lt
lJ限される。ところが第二工程は脱窒素とす多除去を
主目的とし、硝化処理を必要としないから、第一工程の
ように硝化菌保持の為のSRT制御をする必要がない。
According to the present invention, as shown in the second illustrated example, nitrification, denitrification, and dephosphorization are performed simultaneously in the first step,
In order to improve the nitrification effect, it is necessary to maintain nitrifying bacteria in the system, so SRT (sludge gold) is added to the nitrifying bacteria was
It is necessary to set it to a value greater than or equal to the value at which h out does not occur. Washout (antigen) as used herein means that when excess sludge is removed at a rate faster than the growth rate of nitrifying bacteria, the nitrifying bacteria are eliminated from the system. SRT is limited, that is, setting the withdrawal rate of excess sludge requires the amount of excess sludge 8 to be below a certain value, and since there is an upper limit to the phosphorus content in excess sludge, the phosphorus content in the first step is The amount removed is 1lt due to SRT K for retaining nitrifying bacteria in the system.
lJ is limited. However, the second step mainly aims at denitrification and large removal and does not require nitrification treatment, so there is no need to perform SRT control to retain nitrifying bacteria as in the first step.

従って水素供与体供給装置13よシ第二工程に添加する
BOD量を増減し、第二工程に負荷されるBOD tと
P量の比を生物脱リンにとって適正なものとし、さらに
脱蟹素の為にも十分なりOD量を供給することができる
ので、第一工程からの流出水中に含有されるリン化合物
とNo2−NおよびNo、−N を十分処理し、良好な
処理水質を得ることができる。
Therefore, the amount of BOD added to the second step by the hydrogen donor supply device 13 is increased or decreased, the ratio of BOD t loaded to the second step and the amount of P is made appropriate for biological dephosphorization, and the amount of BOD added to the second step is adjusted to be appropriate for biological dephosphorization. Since it is possible to supply a sufficient amount of OD for the treatment, it is possible to sufficiently treat phosphorus compounds, No2-N and No,-N contained in the effluent water from the first step, and obtain good treated water quality. can.

不発8Aは第3図に示す方法でもおこなうことができる
。第2図に示した例と異なる点は、第一汚泥分離工程5
の流出水と第二汚泥分離工程12の返送汚泥を第二嫌気
工程17に流入させ、第二嫌気工程流出水を第二脱窒素
工程に導入していることである。
Misfire 8A can also be performed by the method shown in FIG. The difference from the example shown in Figure 2 is that the first sludge separation step 5
The effluent water and the returned sludge from the second sludge separation process 12 are made to flow into the second anaerobic process 17, and the effluent water from the second anaerobic process is introduced into the second denitrification process.

第2図示例および第3図示例で汚泥分離工程5および1
2は重力式の沈殿槽あるいは加圧浮上槽等、処理水と活
性汚泥に分離する装置を用いることができる。
Sludge separation steps 5 and 1 in the second illustrated example and the third illustrated example
For 2, a device for separating treated water and activated sludge, such as a gravity settling tank or a pressurized flotation tank, can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の有機性廃水の生物学内膜窒素方法の概略
のフローを示し、第2図及び第3図は本発明の方法によ
る有機性廃水の生物学的脱リン、脱窒素方法の一列及び
別の一列の概略のフローを示す。 復代理人 内 1) 明 復代理人 萩 原 亮 −
Figure 1 shows the general flow of the conventional biological membrane nitrogenization method for organic wastewater, and Figures 2 and 3 show the biological dephosphorization and denitrification method for organic wastewater according to the method of the present invention. 2 shows a schematic flow of one row and another row; Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 1、 アンモニア性窒素あるいは有機性窒素などの窒素
化合物およびリン化合物を含む有機性廃水を第一嫌気工
程に導入し、第一汚泥分離工程から返送される返送汚泥
と混合し、第一嫌気工程流出水を第−説窒素工程に導入
し硝化工程からの循環液と混合し、第−説窒素工程流出
水を硝化工程に導入した後、硝化工程流出水の一部を循
環液として第−説窒素工程に返送すると共に残シを第一
汚泥分離工程に導入し、上澄液と沈降する活性汚泥に固
液分離し、分離した活性汚泥の一部を系外に余剰汚泥と
して引抜き、残シを返送汚泥として第一嫌気工程に返送
する第一工程と第一汚泥分離工程上澄液を第二脱窒素工
程に導入し、第二嫌気工程流出水と混合し、第一嫌気工
程流出水を再曝気工程に導入し、再曝気工程流出水を第
二汚泥分離工程に導入し上澄液と沈降する活性汚泥に固
液分離し、上澄液は処理水として系外に放出し、分離し
た活性汚泥の一部を余剰汚泥として系外に引抜き、残ジ
を第二嫌気槽に導入し第二嫌気槽流出水を返送汚泥とし
て第二脱窒素工程に返送する第二工程からなシ、水素供
与体を第二嫌気工程および第二脱窒素工程、あるいは第
二嫌気工程のみに注入することを特徴とする有機性廃水
の生物学的脱望脱リン法。
1. Organic wastewater containing nitrogen compounds such as ammonia nitrogen or organic nitrogen and phosphorus compounds is introduced into the first anaerobic process, mixed with the return sludge returned from the first sludge separation process, and then removed from the first anaerobic process outflow. Water is introduced into the nitrification process and mixed with the circulating fluid from the nitrification process, and after the effluent water from the nitrification process is introduced into the nitrification process, a portion of the nitrification process effluent is used as the circulating fluid. At the same time as returning it to the process, the remaining sludge is introduced into the first sludge separation process, where it undergoes solid-liquid separation into supernatant liquid and settled activated sludge, and a portion of the separated activated sludge is pulled out of the system as surplus sludge, and the remaining sludge is removed. The supernatant liquid from the first process and the first sludge separation process, which is returned to the first anaerobic process as return sludge, is introduced into the second denitrification process, mixed with the second anaerobic process effluent, and the first anaerobic process effluent is recycled. The effluent from the reaeration process is introduced into the second sludge separation process, where it is solid-liquid separated into supernatant liquid and settled activated sludge. The supernatant liquid is discharged outside the system as treated water, and the separated activated sludge is A part of the sludge is drawn out of the system as surplus sludge, the residue is introduced into the second anaerobic tank, and the water flowing out of the second anaerobic tank is returned as return sludge to the second denitrification process. A biological dephosphorization method for organic wastewater, characterized by injecting the body into a second anaerobic step and a second denitrification step, or only into the second anaerobic step.
JP19922683A 1983-10-26 1983-10-26 Biological denitrification and dephosphorization process for organic waste water Pending JPS6094196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19922683A JPS6094196A (en) 1983-10-26 1983-10-26 Biological denitrification and dephosphorization process for organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19922683A JPS6094196A (en) 1983-10-26 1983-10-26 Biological denitrification and dephosphorization process for organic waste water

Publications (1)

Publication Number Publication Date
JPS6094196A true JPS6094196A (en) 1985-05-27

Family

ID=16404240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19922683A Pending JPS6094196A (en) 1983-10-26 1983-10-26 Biological denitrification and dephosphorization process for organic waste water

Country Status (1)

Country Link
JP (1) JPS6094196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372009B1 (en) 1999-08-20 2002-04-16 Kvaerner Metals Method for reducing CO and VOC's in steelmaking furnace off-gas stream without forming or exhausting undesirable products
JP2006255598A (en) * 2005-03-17 2006-09-28 Nippon Steel Chem Co Ltd Biological nitrification denitrification treatment system and denitrification treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372009B1 (en) 1999-08-20 2002-04-16 Kvaerner Metals Method for reducing CO and VOC's in steelmaking furnace off-gas stream without forming or exhausting undesirable products
JP2006255598A (en) * 2005-03-17 2006-09-28 Nippon Steel Chem Co Ltd Biological nitrification denitrification treatment system and denitrification treatment method
JP4532315B2 (en) * 2005-03-17 2010-08-25 新日鐵化学株式会社 Biological nitrification denitrification treatment system and denitrification treatment method

Similar Documents

Publication Publication Date Title
JPH07171594A (en) Method and apparatus for denitrifying and dephosphorizing sewage
JP3477161B2 (en) Wastewater treatment method and apparatus
JPH1157773A (en) Biological dephosphorizing device
JPS6254075B2 (en)
JPS6094196A (en) Biological denitrification and dephosphorization process for organic waste water
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
JPH0639396A (en) Method for treating waste water
JPS58146495A (en) Treatment of organic waste liquid
JP2004105872A (en) Method of treating waste water
JP4085436B2 (en) Drainage treatment apparatus and method
JPH0483594A (en) Biological treatment of organic sewage
JPS6222678B2 (en)
JPH0437760B2 (en)
JPH06182377A (en) Method for treating sewage
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JPH0134119B2 (en)
JPS6099394A (en) Biological denitrification and dephosphorization apparatus of sewage
JP3327979B2 (en) Septic tank sludge treatment method and equipment
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JPH01215400A (en) Biological denitrifying and dephosphorizing method for waste water
JPH07115026B2 (en) Water treatment method
JPH11104693A (en) Method for treatment of returning water in sludge treatment system
JPH0116559B2 (en)
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JPS61192395A (en) Treatment of organic sewage