JPS6093273A - Multiple effect absorption type refrigerator - Google Patents

Multiple effect absorption type refrigerator

Info

Publication number
JPS6093273A
JPS6093273A JP20091883A JP20091883A JPS6093273A JP S6093273 A JPS6093273 A JP S6093273A JP 20091883 A JP20091883 A JP 20091883A JP 20091883 A JP20091883 A JP 20091883A JP S6093273 A JPS6093273 A JP S6093273A
Authority
JP
Japan
Prior art keywords
refrigerant
burner
temperature regenerator
boiler
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20091883A
Other languages
Japanese (ja)
Inventor
章 西口
大内 富久
臼井 三平
福田 民雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20091883A priority Critical patent/JPS6093273A/en
Publication of JPS6093273A publication Critical patent/JPS6093273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、多重効用吸収式冷凍機に係り、特に高温再生
器に用いるバーナの過熱を防止するのに好適な多重効用
吸収式冷凍機に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a multi-effect absorption refrigerating machine, and particularly to a multi-effect absorption refrigerating machine suitable for preventing overheating of a burner used in a high-temperature regenerator. It is.

〔発明の背景〕[Background of the invention]

循環冷媒が、高圧下での加熱によって溶液から分離蒸発
し、ついで低圧下で再吸収される吸収サイクルを原理と
した吸収式冷凍機では、たとえば冷水と温水とを取り出
せるような多重効用吸収式冷凍機の需要が高まっている
Absorption refrigerators are based on the principle of an absorption cycle in which the circulating refrigerant is separated from the solution by heating under high pressure, evaporated, and then reabsorbed under low pressure. Demand for machines is increasing.

まず、従来技術について第1図および第2図を参照して
説明する。
First, the prior art will be explained with reference to FIGS. 1 and 2.

第1図は、従来の多重効用吸収式冷凍機の構成図、第2
図は、その高温再生器部の断面図である。
Figure 1 is a block diagram of a conventional multi-effect absorption chiller;
The figure is a sectional view of the high temperature regenerator section.

第1図において、lは蒸発器で、破線矢印のように冷水
を熱交換させる冷水管1a、冷媒散布ヘッダ9およびフ
ロート弁14を内蔵しておシ、冷媒を蒸発させて冷#能
力を発生させるものである。
In Fig. 1, l is an evaporator, which has a built-in cold water pipe 1a for heat exchange with cold water, a refrigerant distribution header 9, and a float valve 14 as shown by the dashed arrow, and evaporates the refrigerant to generate cooling capacity. It is something that makes you

2は吸収器で、破線矢印のように冷却水を熱交換させる
冷却水’@2aと濃溶液散布へラダ7を内蔵しており、
蒸発器1で蒸発した冷媒を波形矢印のように吸収器2に
導き、吸収器2内で溶液に吸収させるものである。
2 is an absorber, which has a built-in rudder 7 for dispersing the cooling water '@2a and concentrated solution, which exchanges heat with the cooling water as shown by the dashed arrow.
The refrigerant evaporated in the evaporator 1 is guided to the absorber 2 as shown by the wave-shaped arrow, and is absorbed into a solution within the absorber 2.

3は高温再生器で、冷媒を吸収した溶液を加熱して^温
高圧の冷媒蒸気を発生させるようにバーナ部3aとボイ
ラ一部3bとを備えたものである。
Reference numeral 3 denotes a high-temperature regenerator, which is equipped with a burner section 3a and a boiler section 3b to heat a solution that has absorbed a refrigerant and generate high-temperature, high-pressure refrigerant vapor.

4は低温再生器で、加熱管4aを備え、高温再生器3か
らの冷媒蒸気を溶液を散布して凝縮させるものである。
Reference numeral 4 denotes a low-temperature regenerator, which is equipped with a heating tube 4a and condenses the refrigerant vapor from the high-temperature regenerator 3 by spraying a solution thereon.

5は凝縮器で、破線矢印で示す冷却水管5aを備え、低
温再生器4で発生した冷媒蒸気を凝縮させるものである
A condenser 5 is provided with a cooling water pipe 5a indicated by a broken arrow, and is used to condense the refrigerant vapor generated in the low-temperature regenerator 4.

6.8は溶液ポンプ、10は冷媒ポンプ、11゜12は
低、筒温熱文換器であシ、上記の吸収サイクル作動機器
を特に符号は付していないが冷媒配管、溶液配管で連結
して多重効用吸収式冷凍機が構成されている。図中配管
に沿う矢印は冷媒または溶液の流れを示すものである。
6.8 is a solution pump, 10 is a refrigerant pump, 11° and 12 are low temperature and cylinder heat exchangers, and the above-mentioned absorption cycle operating equipment is connected by refrigerant piping and solution piping, although no particular code is attached. A multi-effect absorption refrigerator is constructed. Arrows along the piping in the figure indicate the flow of refrigerant or solution.

このように構成された多重効用吸収式冷凍機の冷水製造
時(冷房運転時)には、冷暖切換弁15を閉じ、冷媒を
散布ヘッダ9から蒸発器1の冷水管la上に散布して蒸
発させ、この冷媒ガスを吸収器2へ送る。一方、温水製
造時(暖房運転時)には、冷暖切換弁15を開き、冷媒
を吸収器2に送って溶液と混合させるものである。
When producing chilled water (during cooling operation) in the multi-effect absorption chiller configured as described above, the cooling/heating switching valve 15 is closed, and the refrigerant is sprayed from the spray header 9 onto the cold water pipe la of the evaporator 1 and evaporated. and sends this refrigerant gas to the absorber 2. On the other hand, during hot water production (during heating operation), the cooling/heating switching valve 15 is opened to send the refrigerant to the absorber 2 and mix it with the solution.

次に第2図を参照して高温再生器3の詳細を説明する。Next, details of the high temperature regenerator 3 will be explained with reference to FIG.

高温再生器3は、バーナ部3aとボイラ一部3bとから
なっておシ、まずバーナ部3aの構成を説明する。
The high temperature regenerator 3 consists of a burner section 3a and a boiler section 3b. First, the configuration of the burner section 3a will be explained.

21はバーナケース、22aは燃料ガスと一次空気とを
予混合する混合室、22bはライン状のボート部、22
Cは炎口面である。24は整流板で、二次空気流路24
aを補えている。25は仕切壁で、火炎23の流通する
ライン状の絞り25aを備えている。26は一次燃焼室
で、整流板24と仕切壁25との間に形成されている。
21 is a burner case, 22a is a mixing chamber for premixing fuel gas and primary air, 22b is a line-shaped boat part, 22
C is the flame mouth surface. 24 is a rectifier plate, which serves as a secondary air flow path 24.
I am able to compensate for a. A partition wall 25 is provided with a linear aperture 25a through which the flame 23 flows. A primary combustion chamber 26 is formed between the rectifier plate 24 and the partition wall 25.

バーナケース21の頂部には三次空気室30が形成され
、その三次空気室30に設けた三次空気噴出口29を介
して連通ずる二次燃焼室27が形成されており、バーナ
ケース21頂部のボイラー3bと対接する而はバーナ端
板28となっている。
A tertiary air chamber 30 is formed at the top of the burner case 21, and a secondary combustion chamber 27 is formed which communicates with the tertiary air chamber 30 through a tertiary air outlet 29 provided in the tertiary air chamber 30. The burner end plate 28 is in contact with the burner end plate 3b.

一方、ボイラ部3bは、バーナ部3a上に設けられ、か
つ二次燃焼室27と連通ずる三次燃焼室31と、この三
次燃焼室31の下流に配設された溶液管群32と、その
三次燃焼室31および溶液管群32を包囲する溶液室3
3とからなシ、この溶液室33はバーナ端板z8と結合
されたボイラ端板34および内、外壁35.36によシ
形成されている。
On the other hand, the boiler section 3b includes a tertiary combustion chamber 31 provided on the burner section 3a and communicating with the secondary combustion chamber 27, a solution tube group 32 disposed downstream of the tertiary combustion chamber 31, and the tertiary combustion chamber 31. Solution chamber 3 surrounding combustion chamber 31 and solution tube group 32
3, this solution chamber 33 is formed by the boiler end plate 34, which is connected to the burner end plate z8, and the inner and outer walls 35, 36.

このような構造からなる従来の高温再生器3は、(1)
−次空気率を低くシ、二次空気と三次空気によシ燃焼を
完結するようにしたため、燃料として各種ガスおよびガ
ス化した灯油などの使用が可能である。(2)燃焼室負
荷を従来の約2,5倍にすることができ、三次燃焼室3
1を小形化することができるから高温再生器のコンパク
ト化が可能になる。
The conventional high temperature regenerator 3 having such a structure has (1)
- Since the secondary air ratio is low and combustion is completed using secondary air and tertiary air, various gases and gasified kerosene can be used as fuel. (2) The combustion chamber load can be increased to about 2.5 times compared to the conventional one, and the tertiary combustion chamber 3
1 can be made smaller, the high temperature regenerator can be made more compact.

したがって、高価な溶液量の低減およびこれに伴って起
動に要する時間の短縮をはかることができるなどの長所
がある。
Therefore, there are advantages in that the amount of expensive solution can be reduced and the time required for startup can be shortened accordingly.

ところが、上記高温再生器3には次のような欠点がある
。すなわち、二次燃焼室27において反応中の高温(1
300〜1500C程度)の燃焼ガスからの熱が輻射お
、よび対流によシ、二次燃焼室27の壁27aに伝達さ
れる。この熱は二次燃焼室壁27a1バーナ端板28お
よびボイラ端板34を経て溶液室33内の溶液に伝達さ
れるので、このような熱の移動を維持するために二次燃
焼室壁27aの温度が高温となる。溶液の温度は吸収式
冷凍機の多重効用化が進むにつれて高くなるので、効用
の次数が上がるとともに二次燃焼室壁27の温度もさら
に高くなる。
However, the high temperature regenerator 3 has the following drawbacks. That is, the high temperature (1
Heat from the combustion gas (approximately 300 to 1500 C) is transferred to the wall 27a of the secondary combustion chamber 27 by radiation and convection. This heat is transferred to the solution in the solution chamber 33 via the secondary combustion chamber wall 27a, the burner end plate 28 and the boiler end plate 34, so in order to maintain such heat transfer, the secondary combustion chamber wall 27a is The temperature becomes high. The temperature of the solution increases as the absorption refrigerator becomes more multi-effect, so as the order of effect increases, the temperature of the secondary combustion chamber wall 27 also becomes higher.

例えは、バーナ部3aおよ゛びボイラ部3bをそれぞれ
アルミニウムおよび鉄で製作し、バーナ端板28とボイ
ラ端板34とをボルトにより固定して構成したとする。
For example, assume that the burner section 3a and the boiler section 3b are made of aluminum and iron, respectively, and the burner end plate 28 and the boiler end plate 34 are fixed with bolts.

二重効用の場合、溶液の温度は約150Cとなり、バー
ナ熱入力を30.000kca7/h とすれば、二次
燃焼室27から二次燃焼室壁27aに流れ込む熱量は約
1000 kcal/ hとなシ、二次燃焼室壁の温度
は約350U、バーナ端板の温度は約220C,ボイラ
端板の温度は約160Cとなる。三重効用では、溶液温
度は約210Cとなるので各部の温度はそれぞれ60C
はど高くなる。これらのことから明らかなように、二次
燃焼室壁27aは非常に高温となりアルミニウムの耐熱
上問題となる。また、バーナ端板28とボイラ端板34
との接合部ではボイラとバーナの材質の違いによる熱膨
張率の差により熱応力が発生し、疲労破壊の恐れも出て
くるという問題があった。
In the case of double effect, the temperature of the solution is about 150 C, and if the burner heat input is 30.000 kcal/h, the amount of heat flowing from the secondary combustion chamber 27 to the secondary combustion chamber wall 27a is about 1000 kcal/h. The temperature of the secondary combustion chamber wall is approximately 350 U, the temperature of the burner end plate is approximately 220 C, and the temperature of the boiler end plate is approximately 160 C. In triple effect, the solution temperature is about 210C, so the temperature of each part is 60C.
My throat gets high. As is clear from these facts, the secondary combustion chamber wall 27a reaches a very high temperature, which poses a problem in terms of heat resistance of aluminum. In addition, the burner end plate 28 and the boiler end plate 34
There was a problem in that thermal stress was generated at the joint between the boiler and burner due to the difference in coefficient of thermal expansion caused by the different materials of the boiler and burner, and there was a risk of fatigue failure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の問題点を解決し、バーナが過熱
することを防ぎ、バーナ材質の過熱による強度の低下や
熱応力による疲労破壊を防止するとともに、高温になっ
たバーナ表面から失われていた熱を回収することによシ
省エネルギー効果を図った多重効用吸収式冷凍機を提供
することにあろう 〔発明の概要〕 本発明に係る多重効用吸収式冷凍機の構成は、冷媒を蒸
発させて冷凍能力を発生する蒸発器と、蒸発した冷媒を
溶液に吸収させる吸収器と、冷媒を吸収した溶液を加熱
して高温高圧の冷媒蒸気を発生させるようにバーナ部と
ボイラ一部とを備えた高温再生器と、高温再生器からの
冷媒蒸気で溶液を加熱して冷媒を発生させる加熱管を備
えた低温再生器と、冷媒蒸気を凝縮させる凝縮器とを連
結してサイクルを構成する多重効用吸収式冷凍機におい
て、上記高温再生器の前記ボイラ一部を加熱する前記バ
ーナ部に接合して熱交換部を設け、当該熱交換部に、上
記低温再生器と接続して冷媒を循環させる冷媒管を配設
して構成したものである。
The purpose of the present invention is to solve the above-mentioned problems, prevent the burner from overheating, prevent the strength of the burner material from decreasing due to overheating and fatigue failure due to thermal stress, and prevent the burner from being lost from the high-temperature burner surface. [Summary of the Invention] The structure of the multi-effect absorption refrigerator according to the present invention is such that the refrigerant is evaporated. an evaporator that absorbs the evaporated refrigerant into a solution, and a burner section and a part of the boiler that heat the solution that has absorbed the refrigerant and generate high-temperature, high-pressure refrigerant vapor. A cycle is constructed by connecting a high-temperature regenerator equipped with a refrigerant, a low-temperature regenerator equipped with a heating tube that generates refrigerant by heating a solution with refrigerant vapor from the high-temperature regenerator, and a condenser that condenses the refrigerant vapor. In the multi-effect absorption refrigerator, a heat exchange section is provided connected to the burner section that heats a part of the boiler of the high temperature regenerator, and the heat exchange section is connected to the low temperature regenerator to circulate a refrigerant. It is constructed by disposing refrigerant pipes to

なおイ」記すると、本発明は、高温再生器中の溶lK 
比べて沸点の低い液冷媒をバーナのボイラ取p付は部分
に循環させることにより、バーナを冷却して、バーナの
過熱を防いで熱応力の発生を防止し、あわせて高温にな
ったバーナ表面から失なわれていた熱を回収するように
したものである。
Furthermore, in the present invention, the molten K in the high temperature regenerator
By circulating a liquid refrigerant with a lower boiling point in the boiler mounting area of the burner, the burner is cooled and the burner is prevented from overheating, thereby preventing the generation of thermal stress. It was designed to recover the heat that was lost from the

〔発明の実施列〕 以下、本発明の一実施例を第3図および第4図を参照し
て説明する。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 3 and 4.

第3図は、本発明の一実施例に係る多重効用吸収式冷凍
機の構成図、第4図は、その高温再生器部の断面図であ
る、第3,4図において、さきの第1.2図と同一符号
のものは従来技術と同等部分であるから、その説明を省
略する。
FIG. 3 is a block diagram of a multi-effect absorption refrigerator according to an embodiment of the present invention, and FIG. 4 is a sectional view of the high temperature regenerator section. .2 The parts with the same reference numerals as those in Fig. 2 are the same parts as in the prior art, so their explanation will be omitted.

図において、4oは熱交換器で、熱交換器4゜はバーナ
部3aとホイラー3bとの間に設置され、内部に冷媒管
40aが通っている。冷媒管4oの一方は冷媒管41を
もって低温再生器4内の加熱管4aの入口側に連通し、
他方は冷媒管42をもって前記加熱管4aの出口側に連
通している。
In the figure, 4o is a heat exchanger, and the heat exchanger 4° is installed between the burner section 3a and the wheeler 3b, and has a refrigerant pipe 40a running inside. One of the refrigerant pipes 4o communicates with the inlet side of the heating pipe 4a in the low temperature regenerator 4 with a refrigerant pipe 41,
The other side communicates with the outlet side of the heating tube 4a through a refrigerant tube 42.

このように構成した多重効用吸収式冷凍機では、高温再
生器3で発生した冷媒蒸気が低温再生器4の加熱管4a
に導ひかれて凝縮したのち、一部は凝縮器5に送られ一
部は冷媒管42を経て熱交換器40に送られる。熱交法
器40に送られた液冷媒はバーナ3aを冷却しながら蒸
発し、冷媒管41を経て尚温再生器3で発生した蒸気と
ともに低温再生器4へ戻る。高温再生器3は低温再生4
よシも低い位置にあるので、加熱管4aから熱交換器4
0への循環はサーモサイホン作用により駆動される。熱
交換器40での冷媒の蒸発温度は95C程度であり、従
来例のように約150Cの溶液でバーナを冷却するより
も約550バーナ温度を低下できる。これによりバーナ
の耐熱強度や熱応力による疲労破壊の問題を解決できる
。また、高温のバーナ表面から放散する熱を液冷媒中に
回収するので省エネルギにもつながるっ なお、熱交換器40とバーナ3aを一体構造で作れば接
触熱抵抗がなくなるので、さらにバーナの冷却効果が高
まシ、省エネルギ効果も上がる。
In the multi-effect absorption refrigerator configured in this way, the refrigerant vapor generated in the high temperature regenerator 3 is transferred to the heating pipe 4a of the low temperature regenerator 4.
After being condensed, part of the refrigerant is sent to the condenser 5 and the other part is sent to the heat exchanger 40 via the refrigerant pipe 42. The liquid refrigerant sent to the heat exchanger 40 evaporates while cooling the burner 3a, and returns to the low temperature regenerator 4 together with the steam generated in the still temperature regenerator 3 via the refrigerant pipe 41. High temperature regenerator 3 is low temperature regenerator 4
Since it is located at a low position, the heat exchanger 4 is connected from the heating pipe 4a.
Circulation to zero is driven by thermosiphoning. The evaporation temperature of the refrigerant in the heat exchanger 40 is about 95C, and the burner temperature can be lowered by about 550C compared to cooling the burner with a solution at about 150C as in the conventional example. This solves the problem of burner heat resistance and fatigue failure caused by thermal stress. In addition, the heat dissipated from the high-temperature burner surface is recovered into the liquid refrigerant, which leads to energy savings.In addition, if the heat exchanger 40 and burner 3a are made in one piece, contact thermal resistance is eliminated, which further cools the burner. It is more effective and the energy saving effect is also improved.

次に、本発明の他の実施例を先の第4図に合わせて第5
図を参照して説明する。
Next, another embodiment of the present invention will be explained as shown in FIG.
This will be explained with reference to the figures.

第5図は、本発明の他の実施例に係る多重効用吸収式冷
凍機の高温再生器部の断面図である1図において、第4
図と同一符号のものは先の実施例と同等部分であるから
、その説明を省略する。
FIG. 5 is a sectional view of the high temperature regenerator section of a multi-effect absorption refrigerator according to another embodiment of the present invention.
Components with the same reference numerals as those in the drawings are the same parts as in the previous embodiment, so their explanation will be omitted.

第5図において、3Cはボイラ一部で、ボイラー3cは
螺旋状に巻いた溶液伝熱管37と外壁38からなる貫流
ボイラーとなっている。溶液はこの溶液伝熱管37内を
流れる間に加熱されて冷媒蒸気を分離し、低温再生器へ
送るようになっている。
In FIG. 5, 3C is a part of the boiler, and the boiler 3c is a once-through boiler consisting of a spirally wound solution heat transfer tube 37 and an outer wall 38. The solution is heated while flowing through the solution heat transfer tube 37 to separate the refrigerant vapor and send it to the low temperature regenerator.

バーナ部3aは第4図の実施例と同様である。The burner section 3a is similar to the embodiment shown in FIG.

43は冷媒管で、バーナ端板28に接触して配置され、
バーナからの熱を奪うように構成されている。この冷媒
管43は、バーナとの接触面を、とくに図示しないが平
面として接触面積を大きくすれば、熱交換部としての効
果がよp犬となる。
43 is a refrigerant pipe arranged in contact with the burner end plate 28;
It is configured to remove heat from the burner. This refrigerant pipe 43 will be more effective as a heat exchanger if the contact surface with the burner is made flat (not shown) to increase the contact area.

また、冷媒管43は、バーナ部と一体構造に形成して伝
熱をよくするようにしてもよい。
Further, the refrigerant pipe 43 may be formed integrally with the burner section to improve heat transfer.

このように構成した多重効用吸収式冷凍機では、先の実
施例と同様、低温再生器で凝縮した冷媒を冷媒管43に
導いてバーナからの熱を吸収したのち、再び低温再生器
へ戻すので、バーナの過熱を防ぐとともに熱回収も行う
ことができる。
In the multi-effect absorption refrigerator configured in this way, the refrigerant condensed in the low-temperature regenerator is guided to the refrigerant pipe 43 to absorb heat from the burner, and then returned to the low-temperature regenerator again, as in the previous embodiment. , it is possible to prevent overheating of the burner and also perform heat recovery.

また、本実施例では、ボイラー3cの構造を貫流形とし
たので耐圧構造にすぐれており、高温再生器での圧力お
よび温度が高くなる三重効用機への使用に適している。
Further, in this embodiment, the structure of the boiler 3c is a once-through type, so it has an excellent pressure-resistant structure, and is suitable for use in a triple-effect machine where the pressure and temperature in the high-temperature regenerator are high.

この場合、溶液温度は250Cと高温になるので、これ
によりバーナを冷却することはむずかしく、液冷媒を用
いてバーナを冷却する本実施例は非常に効果的である。
In this case, the solution temperature is as high as 250C, so it is difficult to cool the burner.This embodiment, in which the burner is cooled using a liquid refrigerant, is very effective.

また、貫流ボイラでは溶液封入量を低減でき、溶液の節
減を図れるとともに、吸収式冷凍機の立ち上がシ特性を
改善できるという効果もある。
Furthermore, the once-through boiler has the effect of reducing the amount of solution sealed, saving the amount of solution, and improving the start-up characteristics of an absorption chiller.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、溶液よシも沸点の低
い液冷媒を低温再生器から循環してバーナの冷却に使い
 蒸発した冷媒を再び低温再生器に戻すようにしたので
、バーナが過熱することを防ぎ、バーナ材質の過熱によ
る強度の低下や熱応力による疲労破壊を防止することが
できるともに、高温になったバーナ表面から失なわれて
いた熱を回収することにより省エネルギー化を図れると
いう効果がある。
As described above, according to the present invention, liquid refrigerant having a low boiling point, whether it is a solution or not, is circulated from the low-temperature regenerator and used to cool the burner, and the evaporated refrigerant is returned to the low-temperature regenerator, so that the burner It prevents overheating, prevents a decrease in strength due to overheating of the burner material, and prevents fatigue failure due to thermal stress. It also saves energy by recovering heat that would have been lost from the burner surface, which has reached a high temperature. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の多重効用吸収式冷凍機の構成図、第2
図は、その高温再生器部の断面図、第3図は、本発明の
一実施例に係る多重効用吸収式冷凍機の構成図、第4図
は、その高温再生器部の断面図、第5図は、本発明の他
の実施例に係る多重効用吸収式冷凍機の高温再生部の断
面図でるる。 1・・・蒸発器、2・・・吸収器、3・・・高温再生器
、3a・・・バーナ部、3b・・・ボイラ一部、3C・
・・貫流ボイラー、4・・・低温再生器、4a・・・加
熱管、5・・・凝縮器、37・・・溶液伝熱管、40・
・・熱交換器、40a。 41.42.43・・・冷媒管。 ■ 1 図 第2図 第4図 第5図
Figure 1 is a block diagram of a conventional multi-effect absorption chiller;
3 is a configuration diagram of a multi-effect absorption refrigerator according to an embodiment of the present invention. FIG. 4 is a sectional view of the high-temperature regenerator section. FIG. 5 is a sectional view of a high temperature regeneration section of a multi-effect absorption refrigerator according to another embodiment of the present invention. 1... Evaporator, 2... Absorber, 3... High temperature regenerator, 3a... Burner part, 3b... Boiler part, 3C.
... Once-through boiler, 4... Low temperature regenerator, 4a... Heating tube, 5... Condenser, 37... Solution heat transfer tube, 40...
...Heat exchanger, 40a. 41.42.43... Refrigerant pipe. ■ 1 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、冷媒を蒸発させて冷凍能力を発生する蒸発器と、蒸
発した冷媒全溶液に吸収させる吸収器と、冷媒を吸収し
た溶液な加熱して高温間圧の冷媒蒸気を発生させるよう
にバーナ部とボイラ一部とを備えた高温再生器と、高温
再生器からの冷媒蒸気で溶液を加熱して冷媒を発生させ
る加熱管を備えた低温再生器と、冷媒蒸気を凝縮させる
凝縮器とを連結してサイクルを構成する多重効用吸収式
冷凍機において、上記高温再生器の前記ボイラ一部を加
熱する前記バーナ部に接合して熱交換部を設け、当該熱
交換部に、上記低温再生器と接続して冷媒を循環させる
冷媒管を配設して構成したことを特徴とする多重効用吸
収式冷凍機。 2、特許請求の範囲第1項記載のものにおいて、高温再
生器のバーナ部とボイラ一部との間に、これらバーナ部
およびボイラ一部と対接する熱交換器を設け、当該熱交
換器内に冷媒管を配設し、当該冷媒管の両端を低温再生
器の加熱管の入口側と出口側にそれぞれ連通させたもの
である多重効用吸収式冷凍機。 3、特許請求の範囲第1項記載のものにおいて、高温再
生器のボイラ一部を、溶液伝熱管を内蔵した貫流ボイラ
ーとし、バーナ部と対接または接合するように冷媒管を
配設したものである多重効用吸収式冷凍機。
[Scope of Claims] 1. An evaporator that evaporates refrigerant to generate refrigeration capacity, an absorber that absorbs the entire solution of the evaporated refrigerant, and a solution that absorbs the refrigerant and heats it to generate refrigerant vapor at high temperature pressure. A high-temperature regenerator equipped with a burner section and a boiler section to generate refrigerant, a low-temperature regenerator equipped with a heating tube that heats a solution with refrigerant vapor from the high-temperature regenerator to generate refrigerant, and condenses the refrigerant vapor. In a multi-effect absorption refrigerator that is connected to a condenser to form a cycle, a heat exchange part is provided by joining to the burner part that heats a part of the boiler of the high temperature regenerator, and a heat exchange part is provided in the heat exchange part. A multi-effect absorption refrigerating machine, characterized in that it is configured by disposing a refrigerant pipe connected to the low-temperature regenerator to circulate refrigerant. 2. In the item described in claim 1, a heat exchanger is provided between the burner section of the high-temperature regenerator and a part of the boiler, and the heat exchanger is provided in contact with the burner section and the boiler section. A multi-effect absorption refrigerator in which a refrigerant pipe is installed in the refrigerant pipe, and both ends of the refrigerant pipe are communicated with the inlet and outlet sides of the heating pipe of the low-temperature regenerator. 3. In the item described in claim 1, a part of the boiler of the high-temperature regenerator is a once-through boiler with a built-in solution heat transfer tube, and a refrigerant tube is arranged so as to face or connect with the burner part. A multi-effect absorption refrigerator.
JP20091883A 1983-10-28 1983-10-28 Multiple effect absorption type refrigerator Pending JPS6093273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20091883A JPS6093273A (en) 1983-10-28 1983-10-28 Multiple effect absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20091883A JPS6093273A (en) 1983-10-28 1983-10-28 Multiple effect absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPS6093273A true JPS6093273A (en) 1985-05-25

Family

ID=16432435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20091883A Pending JPS6093273A (en) 1983-10-28 1983-10-28 Multiple effect absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPS6093273A (en)

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
KR100509775B1 (en) Heat exchanger for high stage generator of absorption chiller
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JP2627381B2 (en) Absorption refrigerator
JPS6093273A (en) Multiple effect absorption type refrigerator
US5216891A (en) Solution flows in direct expansion lithium bromide air conditioner/heater
JPH0350373Y2 (en)
JP3429906B2 (en) Absorption refrigerator
JPH0555787B2 (en)
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
KR100234062B1 (en) Ammonia absorber cycle
JPS6148064B2 (en)
JP2865305B2 (en) Absorption refrigerator
JPS602539Y2 (en) absorption refrigerator
JP2607037B2 (en) Regenerator for absorption refrigeration system
JPH0754772Y2 (en) Direct-fired double-effect absorption chiller / heater
JPS6248785B2 (en)
JPH0697127B2 (en) Air-cooled absorption heat pump
JPS60117065A (en) Heat recovery device for absorption cold and hot water machine
JPH11223408A (en) Absorption refrigerating device
JPS5825948B2 (en) Double effect absorption chiller
JPS60159570A (en) Multiple effect absorption type refrigerator
JPH05272831A (en) Absorption refrigerator
JPS61190271A (en) Air-cooled absorption type heat pump
JP2004132553A (en) Triple effect absorption refrigerator