JPS6093132A - Gas turbine cycle - Google Patents

Gas turbine cycle

Info

Publication number
JPS6093132A
JPS6093132A JP20226983A JP20226983A JPS6093132A JP S6093132 A JPS6093132 A JP S6093132A JP 20226983 A JP20226983 A JP 20226983A JP 20226983 A JP20226983 A JP 20226983A JP S6093132 A JPS6093132 A JP S6093132A
Authority
JP
Japan
Prior art keywords
compressed air
pipe
compressor
air
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20226983A
Other languages
Japanese (ja)
Other versions
JPH0472047B2 (en
Inventor
Hiromi Nakamura
弘巳 中村
Takehiko Takahashi
武彦 高橋
Kazuo Yamamoto
和夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP20226983A priority Critical patent/JPS6093132A/en
Publication of JPS6093132A publication Critical patent/JPS6093132A/en
Publication of JPH0472047B2 publication Critical patent/JPH0472047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To promote the improvement of thermal efficiency, by using a mixed phase mixture, obtained by injecting liquid phase water into compressed air, as the intermediate cooling of a compressor and the preliminary cooling of compressed air. CONSTITUTION:The atmospheric air 3 sucked by a compressor AC1 is allowed to flow into an intermediate cooler IC from a pipe 4, and the air, after it is adiabatically compressed again by a compressor AC2, is delivered from a pipe 6. A part of the compressed air from the pipe 6, after it is compressed by an auxiliary compressor AC3, is divided to flow into pipes 11, 12 from a pipe 10, and liquid phase water from a pressurized water introducing pipe 2 is injected from pipes 13, 14 into the compressed air in the respective pipes 11, 12. In such way, a produced mixed phase mixture, after its heat is recovered by being introduced respectively into a self heat exchanger SR and the intermediate cooler IC, is introduced into a combustor CC through an intermediate temperature side heat recovery device R1 and a high temperature side heat recovery device R2. In this way, thermal efficiency of a gas turbine cycle can be improved 1.5% or more.

Description

【発明の詳細な説明】 本発明は、水注入ガスタービンサイクルに関するもので
あり、空気もしくは空気を主体とするガスを圧縮機で圧
縮してなる圧縮空気の一部あるいは全部に液相水を注入
して得た圧縮空気/水/水蒸気の混和混合物で熱回収す
る方法において、該混相混合物を前記圧縮機の中間冷却
と前記混和混合物形成原料である圧縮空気の冷却のみ用
いることを特徴とするもので、好ましい態様においては
タービン入口温度1000Cで49%(LHV基準)以
上の熱効率を達成できるガスタービンサイクルである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water injection gas turbine cycle, in which liquid phase water is injected into part or all of the compressed air obtained by compressing air or a gas mainly composed of air using a compressor. A method of recovering heat using a mixed mixture of compressed air/water/steam obtained by using a mixed mixture of compressed air/water/steam, characterized in that the multiphase mixture is only used for intermediate cooling of the compressor and cooling of the compressed air that is the raw material for forming the mixed mixture. In a preferred embodiment, it is a gas turbine cycle that can achieve a thermal efficiency of 49% or more (LHV standard) at a turbine inlet temperature of 1000C.

本発明者は、圧縮空気の一部あるいは全部に液相水を注
入して得た圧縮空気/水/水蒸気の混相混合物でタービ
ン排気の熱回収またはタービン排気の熱回収と圧縮機の
中間冷却とを行なうガスタービンサイクルにおいて、該
混和U合物の形成に用いる圧縮空気を予め該混相混合物
の一部で冷却することにより、大きな熱効率を達成でき
ることを見出し、先に特許出願した(特願昭56−19
9363号)。この特許による熱効率は、同等な操作条
件時に得られるガスタービン−蒸気タービン複合サイク
ルに比して3〜4%高い。
The present inventor has proposed that heat recovery from turbine exhaust gas or heat recovery from turbine exhaust gas and intermediate cooling of compressor can be achieved using a multiphase mixture of compressed air/water/steam obtained by injecting liquid phase water into part or all of the compressed air. In a gas turbine cycle that performs this process, it was discovered that a large thermal efficiency could be achieved by cooling the compressed air used to form the mixed U mixture with a portion of the multiphase mixture in advance. -19
No. 9363). The thermal efficiency according to this patent is 3-4% higher than that obtained with a combined gas turbine-steam turbine cycle under comparable operating conditions.

前記時Δ1:では廃ガス温度が約80Cと極めて低い値
となっていた。
At the time Δ1:, the exhaust gas temperature was approximately 80C, which was an extremely low value.

その後廃ガス温度が低下できないケース、例えば廃ガス
の酸露点あるいは白煙公害等についてガスタービンのサ
イクル構成について検討を続けた結果、本発明のη11
<、ガスタービン排ガスの低濡側熱回’L′!、器を伺
加しないサイクルでも1)11記特許に比して熱効率の
低下は1.5%前後に抑え得ることがゝl”41明した
。このサイクルの熱効率は前記複合サイクルよりなお1
.5%以上高く、本発明と同じ温度の廃ガスとする複合
サイクル31す2.5%l以I−高い。
After that, as a result of continuing to study the gas turbine cycle configuration for cases where the exhaust gas temperature cannot be lowered, such as the acid dew point of the exhaust gas or white smoke pollution, we found that the η11 of the present invention
<, Low wet side heat cycle 'L' of gas turbine exhaust gas! It has been found that even in a cycle without the addition of a vessel, the decrease in thermal efficiency can be suppressed to around 1.5% compared to 1) Patent No. 11.The thermal efficiency of this cycle is still 1.5% lower than that of the combined cycle.
.. Combined cycle 31 with waste gas at the same temperature as the present invention is more than 5% higher than 2.5% l-higher.

すなわち、本発明は、支燃剤ガス・作動媒体ガス等とし
て用いる空気もしくは空気を主体とするガスを圧縮機で
圧縮1.てなる圧縮空気の一部あるいは全部に液相水を
注入して得た圧縮空気/水/水蒸気の混相混合物で圧縮
機の中間冷却と前記混和混合物の形成に用いる圧縮空気
の予冷却のみを行い、丁1つ必要に応(して加圧水を前
記混相混合物と併用する如くしてなるガスタービンサイ
クルである。
That is, the present invention compresses air or a gas mainly composed of air, which is used as a combustion-supporting gas, working medium gas, etc., using a compressor. A multiphase mixture of compressed air/water/steam obtained by injecting liquid phase water into part or all of the compressed air formed by the process is used for only intermediate cooling of the compressor and precooling of the compressed air used to form the miscible mixture. , a gas turbine cycle in which pressurized water is optionally used in combination with the multiphase mixture.

本発明の混相混合物とは、圧縮空気に液相水が霧や霞の
如く理想状態で分散し搬送され受熱しというものを必ず
しも意味するものではなく、熱交換器内を水が一部循環
すること、熱交換器内で順次液相水が注入分散されるこ
となどの実用的態様を含むものである。
The multiphase mixture of the present invention does not necessarily mean that liquid phase water is dispersed in compressed air in an ideal state like mist or mist, and is conveyed and receives heat, but that water partially circulates within a heat exchanger. This includes practical aspects such as sequential injection and dispersion of liquid phase water within a heat exchanger.

以下添付図面により本発明のフローシートの一例を説明
する。
An example of a flow sheet of the present invention will be explained below with reference to the accompanying drawings.

図面はタービン排熱回収器3、中間冷却器1、混和混合
物形成原料圧縮空気の冷却用熱交換器(以下、自己熱交
換器と記す)11空気圧縮機2、補助空気圧縮機11タ
ービン1の場合である。空気圧縮機(Act)により吸
入された大気空気(3)は断熱圧縮され、管(4)より
中間冷却器(IC)に入る。中間冷却器(IC)で冷却
された中間段圧縮空気(5)は、空気圧縮機(AC2)
で再び断熱圧縮され管(6)より吐出される。管(6)
からの圧縮空気の一部は、W(7)より自己熱交換器(
sR)に入り冷却され、更に管(9)を介し補助空気用
縮機(AC3)により熱回収器類等での圧力損失分圧縮
された後、管(圃から管圓、(12に分割され、骸骨(
11)、(+21の夫々に圧縮機の中間冷却器(IC)
の低温部の熱回収媒体として使用される加圧水導入管(
2)からの加圧液相水が管(13)、(14)より注入
されて混和混合物となり、管(151、(+6)よりそ
れぞれ自己熱交換器(SFI)、中間冷却器(IC)に
導入される。管(6)からの圧縮空気の残部は管(8)
より高温側熱回収器(RI)に導入される。自己熱交換
器(SR)、中間冷却器(IC)では混用混合物中の液
相水が水蒸気に相変化する潜熱を主とした熱回収がなさ
れ、通常飽和〜やや乾いた圧縮空気/水蒸気の混合物と
なり、中温側熱回収器(R2)に管(1η(国を介して
導入され、管(8)よりの圧縮空気と同程度の温度とな
るまで熱回収されたのち、管(8)よりの圧縮空気とと
もに管(191J:り高温側熱回収器(R8)に導入さ
れ、熱回収されて管(20)より燃焼器(cc>に導入
される。
The drawing shows a turbine exhaust heat recovery device 3, an intercooler 1, a heat exchanger for cooling the raw material compressed air for forming an admixture (hereinafter referred to as a self-heat exchanger) 11, an air compressor 2, an auxiliary air compressor 11, and a turbine 1. This is the case. Atmospheric air (3) taken in by the air compressor (Act) is adiabatically compressed and enters the intercooler (IC) through the pipe (4). The intermediate stage compressed air (5) cooled by the intercooler (IC) is transferred to the air compressor (AC2)
Then it is adiabatically compressed again and discharged from the pipe (6). pipe (6)
A part of the compressed air from W(7) is transferred to the self-heat exchanger (
sR) and is further compressed by the auxiliary air compressor (AC3) through the pipe (9) to compensate for the pressure loss caused by the heat recovery equipment. ,skeleton(
11), (+21 each has a compressor intercooler (IC)
Pressurized water inlet pipe used as a heat recovery medium in the low temperature section of
The pressurized liquid phase water from 2) is injected through pipes (13) and (14) to form a miscible mixture, which is then sent to the self-heat exchanger (SFI) and intercooler (IC) through pipes (151 and (+6)), respectively. The remainder of the compressed air from pipe (6) is introduced into pipe (8).
The heat is introduced into the higher temperature side heat recovery unit (RI). In the self-heat exchanger (SR) and intercooler (IC), heat recovery is performed mainly through the latent heat when the liquid phase water in the mixed mixture undergoes a phase change to water vapor, and usually a saturated to slightly dry compressed air/steam mixture is recovered. The pipe (1η) is introduced into the medium-temperature side heat recovery unit (R2) via the country, and after the heat is recovered until the temperature reaches the same level as the compressed air from pipe (8), the heat from pipe (8) is Together with the compressed air, it is introduced into the high temperature side heat recovery device (R8) through the pipe (191J), where the heat is recovered and introduced into the combustor (cc) through the pipe (20).

燃焼n(CG)には熱回収器(R3)で予熱された管(
1)よりの燃料が加えられており、所定温度の燃焼ガス
となり’PF(21)よりタービン(ET)に導入され
る。燃焼ガスは断熱膨張し、空気圧縮機(Act)、(
AC2)および負荷σ・)の駆動力を発生し、管(22
)より排出され、一部は管(23)より燃料の予熱器(
R3)−に、他は管(24)より高温側熱回収器(R1
)、次いで中温側熱回収器(R2)を経て熱回収され低
温の廃ガス(251となる。尚、空気圧縮機(Act 
)、(AC2)およびタービン(ET)に導入されるシ
ール空気、タービン(ET)に導入される冷却空気につ
いては当然機械の設計」−別途必要とされる。
Combustion n (CG) is equipped with a tube (
The fuel from 1) is added and becomes combustion gas at a predetermined temperature, which is introduced into the turbine (ET) through the 'PF (21). The combustion gas expands adiabatically, and the air compressor (Act), (
AC2) and load σ・) are generated, and the pipe (22
), and some of it is discharged from the fuel preheater (23) through the pipe (23).
R3)-, and the other is a heat recovery device (R1) on the higher temperature side than the pipe (24).
), then the heat is recovered through the medium temperature side heat recovery device (R2) and becomes low temperature waste gas (251).The air compressor (Act
), (AC2), the sealing air introduced into the turbine (ET), and the cooling air introduced into the turbine (ET) are of course required separately in the mechanical design.

以上図面によって本発明の70−シートの概略の一例を
示したが、本発明は圧縮空気/水/水蒸気の混相混合物
を、該混相混合物の形成に用いる圧縮空気(液相水の温
度が高い場合には液相水も)を予め該混相混合物の一部
で冷却することと圧縮機の中間冷却とに用いるものであ
って、この操作を用いるかぎりにおいて種々の変更を加
えつるものである。例えば加圧液相水の低温部熱回収媒
体としての利用場所の変更あるいは不使用、中間冷却に
燃料を冷媒として併用すること、再熱ザイクル化などが
あり、圧縮比と熱効率との関係からは高圧縮比において
も熱効率の低下率が従来のガスタービンサイクルに比べ
て31;り小さいという特徴のあるものであり、高比出
力化あるいはilT熱サイクル化したときのメリットが
大きい。
Although an example of the outline of the 70-sheet of the present invention has been shown above with reference to the drawings, the present invention provides a method for converting a multiphase mixture of compressed air/water/steam into the compressed air used to form the multiphase mixture (if the temperature of the liquid water is high). (liquid phase water is also used) in advance as a part of the multiphase mixture and for intermediate cooling of the compressor, and as long as this operation is used, various modifications can be made. Examples include changing the location or not using pressurized liquid-phase water as a low-temperature heat recovery medium, using fuel as a refrigerant for intercooling, and reheat cycling. Even at high compression ratios, the rate of decrease in thermal efficiency is 31 times smaller than that of conventional gas turbine cycles, which is a great advantage when increasing specific output or implementing an ILT heat cycle.

イク発明のガスタービンサイクルの基本的なフローと、
その適用の一例をに記に示したが、操作条件の点からは
、混相混合物中の液相水成分の水蒸気への相変化条件を
より有利に利用できる範囲としては、まず圧縮機の中間
冷却、あるいは自己熱交換に用いる混相混合物の原料と
なる圧縮空気mは該混相混合物の熱媒で実現可能な熱交
換媒体量温度差などの条件から最適必要量が決定される
ものであるが、熱効率の面からは必要十分な計(最低必
要if )が好ましい。また圧縮空気に注入する液相水
の計についても実姉に当り好適な■を選定する。
The basic flow of the gas turbine cycle invented by Iku,
An example of its application is shown below, but from the point of view of operating conditions, the range in which the phase change conditions for the liquid phase water component to water vapor in the multiphase mixture can be more advantageously utilized is firstly the intermediate cooling of the compressor. Alternatively, the optimum required amount of compressed air m, which is the raw material of the multiphase mixture used for self-heat exchange, is determined from conditions such as the amount of heat exchange medium that can be realized with the heat medium of the multiphase mixture, but the thermal efficiency From the point of view, a necessary and sufficient total (minimum necessary if) is preferable. Also, regarding the meter for liquid phase water injected into the compressed air, we will select the most suitable option (■).

この好適操作範囲は、加圧液相水の低温部熱回収媒体と
しての利用場所の変更あるいは不使用、中間冷却に燃料
を冷媒として併用すること、再熱サイクル化など、ある
いはタービン入口条件などによって当然変わるものであ
る。たとえば、図面のフローシートにおいて、タービン
入口条件として圧力6at、温度1000 Cでは、混
相混合物中の液相水成分の水蒸気への相変化条件をより
有利に利用できる範囲としては、まず圧縮機の中間冷却
あるいは自己熱交換に用いる混相混合物の原料となる圧
縮空気量は該混相混合物の熱媒で実現可能な熱交換媒体
量温度差などの条件から最適必要量が決定されるもので
あるが、通常全吸入吸気量の30mo1%以]二であり
、熱効率の面からは必要十分な量(最低必要量)が好ま
しい。圧縮空気に注入する液相水の量は全吸入空気1 
kymolあたり0.07〜0.13 kymol。好
ましくは0.08〜0.12kgmol tT)範囲テ
アル。
This preferred operating range depends on changes in the location or non-use of pressurized liquid-phase water as a low-temperature heat recovery medium, use of fuel as a refrigerant in intercooling, reheat cycle, or turbine inlet conditions. Of course things change. For example, in the flow sheet of the drawing, if the turbine inlet conditions are a pressure of 6 at and a temperature of 1000 C, the range in which the phase change conditions for the liquid phase water component to steam in the multiphase mixture can be more advantageously utilized is first The amount of compressed air that is the raw material for the multiphase mixture used for cooling or self-heat exchange is determined by the amount of heat exchange medium that can be achieved with the heat medium of the multiphase mixture, and the optimum required amount based on conditions such as the temperature difference. 30 mo1% or more of the total intake air amount]2, and from the standpoint of thermal efficiency, a necessary and sufficient amount (minimum required amount) is preferable. The amount of liquid phase water injected into compressed air is the total intake air 1
0.07-0.13 kymol per kymol. Preferably in the range 0.08-0.12 kgmol tT).

また圧縮機において、中間冷却を施す場合、没前後の圧
力配分は、中間冷却による圧縮動力の低減効果をより大
きくするとの点より判断されるべきものである。
Furthermore, when intercooling is applied to a compressor, the pressure distribution before and after cooling should be determined from the viewpoint of increasing the compression power reduction effect due to intercooling.

本発明の効果なJ:り具体的に示すため、第1表に検J
J例を示す。尚、検討に用いた各要素の条件は第2表に
示す如くである。
In order to specifically show the effect of the present invention, Table 1 shows the effect of the present invention.
J example is shown. The conditions for each element used in the study are as shown in Table 2.

第1表 本発明によるガスタービンサイクルの性能例(
注1)ガスタービン用補機動力池所内勤力等を発生出力
の03%として考慮した。
Table 1 Performance examples of the gas turbine cycle according to the present invention (
Note 1) In-house labor in the gas turbine auxiliary power pond was considered as 0.3% of the generated output.

(注2) タービン冷却空気の必要量は本サイクルにて
は温度の低い圧縮空気が得られることを考慮して設定し
た。
(Note 2) The required amount of turbine cooling air was set considering that low temperature compressed air can be obtained in this cycle.

第2表 第1表の計算に用いた各要素の条件Table 2 Conditions for each element used in the calculations in Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一例を示す70−シートである。 (2)は加用水導入管、(3)は大気空気、(5)は中
間段圧縮空気、(61(7) (8) f91 (In
)的) (12) (13) (141(15) (1
6)(17) (18)は管、(R1)は高温側熱回収
器、(R2)は中温側熱回収器、(R3)は熱回収器、
(IC)は中間冷却器、(SR)は自己熱交換器、(A
c1 )(AC2)は空気圧縮機、(AC3)は補助空
気圧縮機、(CC)は燃焼器、(ET )はタービン、
向は負荷を示す。 特許用願人 三菱瓦斯化学株式会社 特許川願人代理人
The drawing is a 70-sheet showing an example of the invention. (2) is added water introduction pipe, (3) is atmospheric air, (5) is intermediate stage compressed air, (61 (7) (8) f91 (In
) (12) (13) (141(15) (1
6) (17) (18) is a pipe, (R1) is a high temperature side heat recovery device, (R2) is a medium temperature side heat recovery device, (R3) is a heat recovery device,
(IC) is an intercooler, (SR) is a self-heat exchanger, (A
c1) (AC2) is the air compressor, (AC3) is the auxiliary air compressor, (CC) is the combustor, (ET) is the turbine,
The direction indicates the load. Patent applicant Mitsubishi Gas Chemical Co., Ltd. Patent applicant agent

Claims (1)

【特許請求の範囲】 1)水注入ガスタービンサイクルにおいて、支燃剤ガス
・作動媒体ガス等として用いる空気もしくは空気を主体
とするガスを圧縮機で圧縮してなる圧縮空気の一部ある
いは全部に液相水を注入して得た圧縮空気/水/水蒸気
の混相混合物を、前記圧縮機の中間冷却と、前記混相混
合物の形成に用いる圧縮空気の予冷却に導くよう構成し
たことを特徴とするガスタービンサイクル。 2)加圧水を必要に応じ前記混和混合物と併用すること
を特徴とする特許請求の範囲第1項記載のガスタービン
サイクル。
[Claims] 1) In a water-injected gas turbine cycle, a part or all of the compressed air obtained by compressing air or a gas mainly composed of air used as a combustion support gas, working medium gas, etc. by a compressor is added. A gas characterized in that the multiphase mixture of compressed air/water/steam obtained by injecting phase water is guided to intermediate cooling of the compressor and precooling of the compressed air used to form the multiphase mixture. turbine cycle. 2) The gas turbine cycle according to claim 1, characterized in that pressurized water is used in combination with the miscible mixture as required.
JP20226983A 1983-10-28 1983-10-28 Gas turbine cycle Granted JPS6093132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20226983A JPS6093132A (en) 1983-10-28 1983-10-28 Gas turbine cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20226983A JPS6093132A (en) 1983-10-28 1983-10-28 Gas turbine cycle

Publications (2)

Publication Number Publication Date
JPS6093132A true JPS6093132A (en) 1985-05-24
JPH0472047B2 JPH0472047B2 (en) 1992-11-17

Family

ID=16454739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20226983A Granted JPS6093132A (en) 1983-10-28 1983-10-28 Gas turbine cycle

Country Status (1)

Country Link
JP (1) JPS6093132A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490377A (en) * 1993-10-19 1996-02-13 California Energy Commission Performance enhanced gas turbine powerplants
US5581997A (en) * 1993-10-19 1996-12-10 California Energy Commission Performance enhanced gas turbine powerplants
US5678408A (en) * 1993-10-19 1997-10-21 California Energy Commission Performance enhanced gas turbine powerplants
US5881549A (en) * 1993-10-19 1999-03-16 California Energy Commission Reheat enhanced gas turbine powerplants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101227A (en) * 1981-12-10 1983-06-16 Mitsubishi Gas Chem Co Inc Gas turbine cycle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101227A (en) * 1981-12-10 1983-06-16 Mitsubishi Gas Chem Co Inc Gas turbine cycle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490377A (en) * 1993-10-19 1996-02-13 California Energy Commission Performance enhanced gas turbine powerplants
US5581997A (en) * 1993-10-19 1996-12-10 California Energy Commission Performance enhanced gas turbine powerplants
US5590518A (en) * 1993-10-19 1997-01-07 California Energy Commission Hydrogen-rich fuel, closed-loop cooled, and reheat enhanced gas turbine powerplants
US5678408A (en) * 1993-10-19 1997-10-21 California Energy Commission Performance enhanced gas turbine powerplants
US5687560A (en) * 1993-10-19 1997-11-18 California Energy Commission Steam raising apparatus for performance enhanced gas turbine powerplants
US5881549A (en) * 1993-10-19 1999-03-16 California Energy Commission Reheat enhanced gas turbine powerplants

Also Published As

Publication number Publication date
JPH0472047B2 (en) 1992-11-17

Similar Documents

Publication Publication Date Title
US4537023A (en) Regenerative gas turbine cycle
US5513488A (en) Power process utilizing humidified combusted air to gas turbine
EP0444913A1 (en) A gas turbine
EP0949405A3 (en) Turbine plant
WO1995011375A3 (en) Performance enhanced gas turbine powerplants
US5165239A (en) Water augmented indirectly-fired gas turbine systems and method
EP0081995A2 (en) Regenerative gas turbine cycle
JPS6329091B2 (en)
US4261169A (en) Method for converting thermal energy into mechanical energy and a machine for carrying out said method
EP1091095A2 (en) Gas turbine system and combined plant comprising the same
EP0041873B1 (en) A heat exchanging system for a heat engine
JPS6093132A (en) Gas turbine cycle
JPS5882006A (en) Device for converting heat into work
JPH09264158A (en) Gas turbine cycle
JPH0131012B2 (en)
JPH0626362A (en) Co2 gas turbine cycle
CN108167086A (en) A kind of high-pressure oxygen-enriched combustion Stirling electricity generation system and its control method
JPS58101227A (en) Gas turbine cycle
JPH0131013B2 (en)
RU2044906C1 (en) Method of converting heat into mechanical work in gas- turbine engine and gas-turbine engine
JPH04191418A (en) Carbon dioxide (co2) recovering power generation plant
JPS58101225A (en) Gas turbine cycle
JPH0472048B2 (en)
JPS5596326A (en) Improvement of gas turbine using water/gas mixture
JPS61106924A (en) Power recovery method of process waste heat