JPH0472047B2 - - Google Patents

Info

Publication number
JPH0472047B2
JPH0472047B2 JP58202269A JP20226983A JPH0472047B2 JP H0472047 B2 JPH0472047 B2 JP H0472047B2 JP 58202269 A JP58202269 A JP 58202269A JP 20226983 A JP20226983 A JP 20226983A JP H0472047 B2 JPH0472047 B2 JP H0472047B2
Authority
JP
Japan
Prior art keywords
compressed air
gas
multiphase mixture
air
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58202269A
Other languages
Japanese (ja)
Other versions
JPS6093132A (en
Inventor
Hiromi Nakamura
Takehiko Takahashi
Kazuo Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP20226983A priority Critical patent/JPS6093132A/en
Publication of JPS6093132A publication Critical patent/JPS6093132A/en
Publication of JPH0472047B2 publication Critical patent/JPH0472047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水注入ガスタービンサイクルに関す
るものであり、空気もしくは空気を主体とするガ
スを圧縮機で圧縮してなる圧縮空気の一部あるい
は全部に液相水を注入して得た圧縮空気/水/水
蒸気の混相混合物で熱回収する方法において、該
混相混合物を前記圧縮機の中間冷却と前記混相混
合物形成原料である圧縮空気の冷却のみ用いるこ
とを特徴とするもので、好ましい態様においては
タービン入口温度1000℃で49%(LHV基準)以
上の熱効率を達成できるガスタービンサイクルで
ある。 本発明者は、圧縮空気の一部あるいは全部に液
相水を注入して得た圧縮空気/水/水蒸気の混相
混合物でタービン排気の熱回収またはタービン排
気の熱回収と圧縮機の中間冷却とを行なうガスタ
ービンサイクルにおいて、該混相混合物の形成に
用いる圧縮空気を予め該混相混合物の一部で冷却
することにより、大きな熱効率を達成できること
を見出し、先に特許出願した(特願昭56−199363
号)。この特許による熱効率は、同等な操作条件
時に得られるガスタービン−蒸気タービン複合サ
イクルに比して3〜4%高い。 前記特許では燃料として硫黄含有量が全く含ま
れていないかまたは極めて少ないクリーンな天然
ガス、液化天然ガス、易揮発性液体燃料等を考え
てきた。 従つてガスタービン排ガスによる硫酸腐食等の
低温腐食は考慮する必要はなく廃ガス温度80℃前
後と極めて低い値となつていた。 その後、燃料の種類、性状等を考慮したガスタ
ービンサイクルの構成について検討を続けた結
果、ガスタービンブレード・ノズルが高温腐食を
起こさないおよびガスタービン廃ガス中の硫黄酸
化物が規制値を越えないとの制約から、燃料中の
含有硫黄量が0.8wt%程度以下であれば実用に供
し得ることが判明した。この時の廃ガスの酸露点
は廃ガス中の水蒸気分、酸素分にもよるが約130
℃である。 従つて前記特許のガスタービンサイクルに示さ
れているガスタービン排ガスの低温側熱回収器お
よび煙突は硫酸腐食に代表される酸腐食に対して
特別の配慮をする必要がでてくる。熱交換器の現
状技術では管材料として高価な耐食性金属・ガラ
ス等の非金属材料あるいは安価な鋼管に耐食性の
ある材料をライニングする等が考えられている
が、いずれにしても設備費の負担は避けられな
い。 そこで本発明の如くガスタービン排ガスの低温
側熱回収器を付加せず酸露点以上の廃ガスとする
サイクルでも前記特許に比して熱効率の低下は
1.5%前後に抑えることができる。このサイクル
の熱効率は前記複合サイクルよりなお1.5%以上
高く、燃料として硫黄分を含み本発明の如く酸露
点以上の廃ガスとする場合の複合サイクルより
2.5%以上高い。 すなわち、本発明は、燃料として硫黄分を含む
燃料を用い、且つ支燃剤ガス・作動媒体ガス等と
して用いる空気もしくは空気を主体とするガスを
圧縮機で圧縮してなる圧縮空気の一部あるいは全
部に液相水を注入して得た圧縮空気/水/水蒸気
の混相混合物で圧縮機の中間冷却と前記混相混合
物の形成に用いる圧縮空気の予冷却のみを行い、
且つ必要に応じて加圧水を前記混相混合物と併用
する如くしてなるガスタービンサイクルである。 本発明の混相混合物とは、圧縮空気に液相水が
霧や霞の如く理想状態で分散し搬送され受熱しと
いうものを必ずしも意味するものではなく、熱交
換器内を水が一部循環すること、熱交換器内で順
次液相水が注入分散されることなどの実用的態様
を含むものである。 以下添付図面により本発明のフローシートの一
例を説明する。 図面はタービン排熱回収器3、中間冷却器1、
混相混合物形成原料圧縮空気の冷却用熱交換器
(以下、自己熱交換器と記す)1、空気圧縮機2、
補助空気圧縮機1、タービン1の場合である。空
気圧縮機AC1により吸入された大気空気3は断熱
圧縮され、管4より中間冷却器ICに入る。中間
冷却器ICで冷却された中間段圧縮空気5は、空
気圧縮機AC2で再び断熱圧縮され管6より吐出さ
れる。管6からの圧縮空気の一部は、管7より自
己熱交換器SRに入り冷却され、更に管9を介し
て補助空気圧縮機AC3により熱回収器類等での圧
力損失分圧縮された後、管10から管11,12
に分割され、該管11,12の夫々に圧縮機の中
間冷却器ICの低温部の熱回収媒体として使用さ
れる加圧水導入管2からの加圧液相水が管13,
14より注入されて混相混合物となり、管15,
16よりそれぞれ自己熱交換器SR、中間冷却器
ICに導入さる。管6からの圧縮空気の残部は管
8より高温側熱回収器R1に導入される。自己熱
交換器SR、中間冷却器ICでは混相混合物中の液
相水が水蒸気に相変化する潜熱を主とした熱回収
がなされ、通常飽和〜やや乾いた圧縮空気/水蒸
気の混合物となり、中温側熱回収器R2に管17,
18を介して導入され、管8よりの圧縮空気と同
程度の温度となるまで熱回収されたのち、管8よ
りの圧縮空気とともに管19より高温側熱回収器
R1に導入され、熱回収されて管20より燃焼器
CCに導入される。 燃焼器CCには熱回収器R3で予熱された管1よ
りの燃料が加えられており、所定温度の燃焼ガス
となり管21よりタービンETに導入される。燃
焼ガスは断熱膨張し、空気圧縮機AC1,AC2およ
び負荷Lの駆動力を発生し、管22より排出さ
れ、一部は管23より燃料の予熱器R3に、他は
管24より高温側熱回収器R1、次いで中温側熱
回収器R2を経て熱回収され低温の廃ガス25と
なる。尚、空気圧縮機AC1,AC2およびタービン
ETに導入されるシール空気、タービンETに導入
される冷却空気については当然機械の設計上別途
必要とされる。 以上図面によつて本発明のフローシートの概略
の一例を示したが、本発明は圧縮空気/水/水蒸
気の混相混合物を、該混相混合物の形成に用いる
圧縮空気(液相水の温度が高い場合には液相水
も)を予め該混相混合物の一部で冷却することと
圧縮機の中間冷却とに用いるものであつて、この
操作を用いるかぎりにおいて種々の変更を加えう
るものである。例えば加圧液相水の低温部熱回収
媒体としての利用場所の変更あるいは不使用、中
間冷却に燃料を冷媒として併用すること、再熱サ
イクル化などがあり、圧縮比と熱効率との関係か
らは高圧縮比においても熱効率の低下率が従来の
ガスタービンサイクルに比べてより小さいという
特徴のあるものであり、高比出力化あるいは再熱
サイクル化したときのメリツトが大きい。 本発明のガスタービンサイクルの基本的なフロ
ーと、その適用の一例を上記に示したが、操作条
件の点からは、混相混合物中の液相水成分の水蒸
気への相変化条件をより有利に利用できる範囲と
しては、まず圧縮機の中間冷却、あるいは自己熱
交換に用いる混相混合物の原料となる圧縮空気量
は該混相混合物の熱媒で実現可能な熱交換媒体間
温度差などの条件から最適必要量が決定されるも
のであるが、熱効率の面からは必要十分な量(最
低必要量)が好ましい。また圧縮空気に注入する
液相水の量についても実施に当り好適な量を選定
する。 この好適操作範囲は、加圧液相水の低温部熱回
収媒体としての利用場所の変更あるいは不使用、
中間冷却に燃料を冷媒として併用すること、再熱
サイクル化など、あるいはタービン入口条件など
によつて当然変わるものである。たとえば、図面
のフローシートにおいて、タービン入口条件とし
て圧力6at、温度1000℃では、混相混合物中の液
相水成分の水蒸気への相変化条件をより有利に利
用できる範囲としては、まず圧縮機の中間冷却あ
るいは自己熱交換に用いる混相混合物の原料とな
る圧縮空気量は該混相混合物の熱媒で実現可能な
熱交換媒体間温度差などの条件から最適必要量が
決定されるものであるが、通常全吸入吸気量の
30mol%以上であり、熱効率の面からは必要十分
な量(最低必要量)が好ましい。圧縮空気に注入
する液相水の量は全吸入空気1Kgmolあたり0.07
〜0.13Kgmol。好ましくは0.08〜0.12Kgmolの範囲
である。 また圧縮機において、中間冷却を施す場合、段
前後の圧力配分は、中間冷却による圧縮動力の低
減効果をより大きくするとの点より判断されるべ
きものである。 本発明の効果をより具体的に示すため、第1表
に検討例を示す。尚、検討に用いた各要素の条件
は第2表に示す如くである。
The present invention relates to a water-injected gas turbine cycle, in which compressed air is obtained by injecting liquid phase water into part or all of the compressed air obtained by compressing air or a gas mainly composed of air using a compressor. A method for recovering heat using a multiphase mixture of water/steam, characterized in that the multiphase mixture is only used for intermediate cooling of the compressor and cooling of compressed air, which is a raw material for forming the multiphase mixture, and in a preferred embodiment, a turbine It is a gas turbine cycle that can achieve thermal efficiency of over 49% (LHV standard) at an inlet temperature of 1000℃. The present inventor has proposed that heat recovery from turbine exhaust gas or heat recovery from turbine exhaust gas and intermediate cooling of compressor can be achieved using a multiphase mixture of compressed air/water/steam obtained by injecting liquid phase water into part or all of the compressed air. In a gas turbine cycle that performs this process, we discovered that large thermal efficiency could be achieved by cooling the compressed air used to form the multiphase mixture with a portion of the multiphase mixture in advance, and we filed a patent application earlier (Japanese Patent Application No. 56-199363).
issue). The thermal efficiency according to this patent is 3-4% higher than that obtained with a combined gas turbine-steam turbine cycle under comparable operating conditions. The patents have considered clean natural gas, liquefied natural gas, easily volatile liquid fuel, etc. that contain no or very low sulfur content as fuel. Therefore, there was no need to consider low-temperature corrosion such as sulfuric acid corrosion caused by gas turbine exhaust gas, and the exhaust gas temperature was extremely low at around 80°C. Subsequently, we continued to consider the configuration of the gas turbine cycle, taking into account the type and properties of the fuel, and found that the gas turbine blades and nozzles would not suffer from high-temperature corrosion, and that the sulfur oxides in the gas turbine exhaust gas would not exceed regulatory values. Due to this restriction, it was found that fuel can be put to practical use if the amount of sulfur contained in the fuel is approximately 0.8wt% or less. The acid dew point of the waste gas at this time is approximately 130, depending on the water vapor and oxygen content of the waste gas.
It is ℃. Therefore, the low-temperature side heat recovery device and chimney for the gas turbine exhaust gas shown in the gas turbine cycle of the above-mentioned patent must take special consideration against acid corrosion, typified by sulfuric acid corrosion. Current technologies for heat exchangers include using expensive non-metallic materials such as corrosion-resistant metals and glass as tube materials, or lining inexpensive steel tubes with corrosion-resistant materials, but in any case, the burden of equipment costs is low. Inevitable. Therefore, even in the cycle of the present invention, which does not add a low-temperature side heat recovery device for gas turbine exhaust gas and generates waste gas with a temperature higher than the acid dew point, the thermal efficiency does not decrease compared to the above patent.
It can be kept to around 1.5%. The thermal efficiency of this cycle is still 1.5% higher than that of the above-mentioned combined cycle, and is higher than that of the combined cycle in which the fuel contains sulfur and the waste gas has a temperature higher than the acid dew point as in the present invention.
More than 2.5% higher. That is, the present invention uses a part or all of the compressed air obtained by using a fuel containing sulfur as a fuel and compressing air or a gas mainly composed of air, which is used as a combustion support gas, working medium gas, etc., with a compressor. A multiphase mixture of compressed air/water/steam obtained by injecting liquid phase water into the compressor is used to perform only intermediate cooling of the compressor and precooling of the compressed air used to form the multiphase mixture,
Moreover, the gas turbine cycle is such that pressurized water is used in combination with the multiphase mixture as necessary. The multiphase mixture of the present invention does not necessarily mean that liquid phase water is dispersed in compressed air in an ideal state like mist or mist, and is conveyed and receives heat, but that water partially circulates within a heat exchanger. This includes practical aspects such as sequential injection and dispersion of liquid phase water within a heat exchanger. An example of a flow sheet of the present invention will be explained below with reference to the accompanying drawings. The drawing shows a turbine exhaust heat recovery unit 3, an intercooler 1,
A heat exchanger for cooling compressed air as a raw material for forming a multiphase mixture (hereinafter referred to as a self-heat exchanger) 1, an air compressor 2,
This is the case of the auxiliary air compressor 1 and the turbine 1. Atmospheric air 3 taken in by the air compressor AC 1 is adiabatically compressed and enters the intercooler IC through the pipe 4. The intermediate stage compressed air 5 cooled by the intercooler IC is adiabatically compressed again by the air compressor AC 2 and discharged from the pipe 6. A part of the compressed air from pipe 6 enters the self-heat exchanger SR through pipe 7, is cooled, and is further compressed by the auxiliary air compressor AC 3 via pipe 9 to compensate for the pressure loss caused by heat recovery equipment, etc. After that, from tube 10 to tubes 11 and 12
The pressurized liquid phase water from the pressurized water introduction pipe 2, which is used as a heat recovery medium in the low temperature section of the intercooler IC of the compressor, is supplied to the pipes 11 and 12, respectively.
It is injected from tube 14 to form a multiphase mixture, and
16 respectively self-heat exchanger SR and intercooler
Introduced to IC. The remainder of the compressed air from pipe 6 is introduced into high temperature side heat recovery device R1 via pipe 8. In the self-heat exchanger SR and intercooler IC, heat is recovered mainly from the latent heat when the liquid phase water in the multiphase mixture undergoes a phase change to water vapor, resulting in a normally saturated to slightly dry compressed air/steam mixture, and the intermediate temperature side Pipe 17 to heat recovery device R 2 ,
After the heat is recovered until the temperature reaches the same temperature as the compressed air from pipe 8, the compressed air from pipe 8 is transferred to the high temperature side heat recovery device from pipe 19.
The heat is introduced into R 1 , is recovered and sent to the combustor through pipe 20.
Introduced to CC. The fuel from the tube 1 that has been preheated by the heat recovery device R3 is added to the combustor CC, and becomes combustion gas at a predetermined temperature, which is introduced into the turbine ET through the tube 21. The combustion gas expands adiabatically, generates driving force for the air compressors AC 1 and AC 2 and the load L, and is discharged from the pipe 22. Part of it is sent to the fuel preheater R 3 through the pipe 23, and the other part is sent through the pipe 24. The heat is recovered through the high-temperature side heat recovery device R 1 and then the medium-temperature side heat recovery device R 2 to become low-temperature waste gas 25 . In addition, air compressors AC 1 , AC 2 and turbine
Seal air introduced into the ET and cooling air introduced into the turbine ET are of course required separately due to the design of the machine. Although an example of the outline of the flow sheet of the present invention has been shown above with reference to the drawings, the present invention is capable of converting a multiphase mixture of compressed air/water/steam into compressed air (where the temperature of the liquid phase water is high) used to form the multiphase mixture. It is used for pre-cooling part of the multiphase mixture (including liquid phase water in some cases) and for intermediate cooling of the compressor, and various modifications can be made as long as this operation is used. Examples include changing the location or not using pressurized liquid-phase water as a low-temperature heat recovery medium, using fuel as a refrigerant for intercooling, and creating a reheat cycle. Even at high compression ratios, the rate of decrease in thermal efficiency is smaller than that of conventional gas turbine cycles, which is a great advantage when increasing specific output or using a reheat cycle. The basic flow of the gas turbine cycle of the present invention and an example of its application have been shown above, but from the point of view of operating conditions, the conditions for the phase change of the liquid phase water component in the multiphase mixture to steam are more advantageous. As for the usable range, first, the amount of compressed air that is the raw material for the multiphase mixture used for intermediate cooling of the compressor or self-heat exchange should be optimized based on conditions such as the temperature difference between the heat exchange media that can be realized with the heat medium of the multiphase mixture. Although the required amount is determined, a necessary and sufficient amount (minimum required amount) is preferable from the standpoint of thermal efficiency. Also, the amount of liquid phase water to be injected into the compressed air is selected to be suitable for implementation. This preferred operating range includes changing the location where pressurized liquid phase water is used as a low-temperature heat recovery medium or not using it.
Naturally, this will vary depending on the use of fuel as a refrigerant for intercooling, reheat cycle, etc., or turbine inlet conditions. For example, in the flow sheet of the drawing, if the turbine inlet conditions are 6 at a pressure and a temperature of 1000°C, the range where the phase change conditions of the liquid phase water component to steam in the multiphase mixture can be more advantageously utilized is first The optimal amount of compressed air, which is the raw material for the multiphase mixture used for cooling or self-heat exchange, is determined based on conditions such as the temperature difference between the heat exchange media that can be realized with the heat medium of the multiphase mixture, but usually Total intake air volume
It is preferably 30 mol% or more, and a necessary and sufficient amount (minimum required amount) from the viewpoint of thermal efficiency. The amount of liquid phase water injected into compressed air is 0.07 per kgmol of total intake air.
~0.13Kgmol. Preferably it is in the range of 0.08 to 0.12 Kgmol. In addition, when intercooling is applied to a compressor, the pressure distribution before and after the stages should be determined from the viewpoint of increasing the compression power reduction effect due to interstage cooling. In order to more specifically demonstrate the effects of the present invention, Table 1 shows examples of investigation. The conditions for each element used in the study are as shown in Table 2.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一例を示すフローシートであ
る。 2は加圧水導入管、3は大気空気、5は中間段
圧縮空気、6,7,8,9,10,11,12,
13,14,15,16,17,18は管、R1
は高温側熱回収器、R2は中温側熱回収器、R3
熱回収器、ICは中間冷却器、SRは自己熱交換器、
AC1,AC2は空気圧縮機、AC3は補助空気圧縮
機、CCは燃焼器、ETはタービン、Lは負荷を示
す。
The drawing is a flow sheet showing an example of the present invention. 2 is a pressurized water introduction pipe, 3 is atmospheric air, 5 is intermediate stage compressed air, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18 are tubes, R 1
is a high-temperature side heat recovery device, R2 is a medium-temperature side heat recovery device, R3 is a heat recovery device, IC is an intercooler, SR is a self-heat exchanger,
AC 1 and AC 2 are air compressors, AC 3 is an auxiliary air compressor, CC is a combustor, ET is a turbine, and L is a load.

Claims (1)

【特許請求の範囲】 1 水注入ガスタービンサイクルにおいて、燃料
として硫黄分を含む燃料を用い、且つ支燃剤ガ
ス・作動媒体ガス等として用いる空気もしくは空
気を主体とするガスを圧縮機で圧縮してなる圧縮
空気の一部あるいは全部に液相水を注入して得た
圧縮空気/水/水蒸気の混相混合物を、前記圧縮
機の中間冷却と、前記混相混合物の形成に用いる
圧縮空気の予冷却に導くよう構成したことを特徴
とするガスタービンサイクル。 2 加圧水を必要に応じ前記混相混合物と併用す
ることを特徴とする特許請求の範囲第1項記載の
ガスタービンサイクル。
[Claims] 1. In a water-injected gas turbine cycle, a fuel containing sulfur is used as fuel, and air or a gas mainly composed of air is compressed by a compressor to be used as combustion support gas, working medium gas, etc. A multiphase mixture of compressed air/water/steam obtained by injecting liquid phase water into part or all of the compressed air is used for intermediate cooling of the compressor and for precooling of the compressed air used to form the multiphase mixture. A gas turbine cycle characterized in that the gas turbine cycle is configured to 2. The gas turbine cycle according to claim 1, wherein pressurized water is used in combination with the multiphase mixture as necessary.
JP20226983A 1983-10-28 1983-10-28 Gas turbine cycle Granted JPS6093132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20226983A JPS6093132A (en) 1983-10-28 1983-10-28 Gas turbine cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20226983A JPS6093132A (en) 1983-10-28 1983-10-28 Gas turbine cycle

Publications (2)

Publication Number Publication Date
JPS6093132A JPS6093132A (en) 1985-05-24
JPH0472047B2 true JPH0472047B2 (en) 1992-11-17

Family

ID=16454739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20226983A Granted JPS6093132A (en) 1983-10-28 1983-10-28 Gas turbine cycle

Country Status (1)

Country Link
JP (1) JPS6093132A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490377A (en) * 1993-10-19 1996-02-13 California Energy Commission Performance enhanced gas turbine powerplants
US5535584A (en) * 1993-10-19 1996-07-16 California Energy Commission Performance enhanced gas turbine powerplants
US5881549A (en) * 1993-10-19 1999-03-16 California Energy Commission Reheat enhanced gas turbine powerplants
WO1995011376A1 (en) * 1993-10-19 1995-04-27 State Of California Energy Resources Conservation And Development Commission Performance enhanced gas turbine powerplants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101227A (en) * 1981-12-10 1983-06-16 Mitsubishi Gas Chem Co Inc Gas turbine cycle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101227A (en) * 1981-12-10 1983-06-16 Mitsubishi Gas Chem Co Inc Gas turbine cycle

Also Published As

Publication number Publication date
JPS6093132A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
US4829763A (en) Process for producing power
US4537023A (en) Regenerative gas turbine cycle
US5664411A (en) S cycle electric power system
JP4727949B2 (en) Method for generating energy in an energy generation facility having a gas turbine and energy generation facility for implementing the method
EP0551876B1 (en) Process for removing carbon dioxide from combustion exhaust gas
EP0150990B1 (en) Process for producing power
US3757517A (en) Power-generating plant using a combined gas- and steam-turbine cycle
US7637109B2 (en) Power generation system including a gas generator combined with a liquified natural gas supply
US20060037337A1 (en) Combined cooling and power plant with water extraction
US4653268A (en) Regenerative gas turbine cycle
CN109173558B (en) Low-energy-consumption carbon dioxide capturing and sealing technology and system
CN102536468B (en) Carbon dioxide compression systems
US5165239A (en) Water augmented indirectly-fired gas turbine systems and method
US20020053196A1 (en) Gas pipeline compressor stations with kalina cycles
WO2007030263A2 (en) Air-staged reheat power generation, method and system
CN101529055A (en) A heat engine system
US4261169A (en) Method for converting thermal energy into mechanical energy and a machine for carrying out said method
EP2508721B1 (en) Integrated gasification combined cycle system with vapor absorption chilling
JPS595761B2 (en) A device that converts heat into work
JPH0472047B2 (en)
JPH09264158A (en) Gas turbine cycle
JP2004150685A (en) Nitrogen producing equipment and turbine power generation equipment
JPS61201831A (en) Power generation method
RU96416U1 (en) COMPLEX FOR AUTONOMOUS PRODUCTION OF LIQUID LOW-TEMPERATURE CARBON DIOXIDE AND GAS-NITROGEN, AND ALSO LIQUID OXYGEN OR NITROGEN
JPH0119053B2 (en)