JPH0472048B2 - - Google Patents

Info

Publication number
JPH0472048B2
JPH0472048B2 JP58202270A JP20227083A JPH0472048B2 JP H0472048 B2 JPH0472048 B2 JP H0472048B2 JP 58202270 A JP58202270 A JP 58202270A JP 20227083 A JP20227083 A JP 20227083A JP H0472048 B2 JPH0472048 B2 JP H0472048B2
Authority
JP
Japan
Prior art keywords
air
compressed air
heat recovery
gas
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58202270A
Other languages
Japanese (ja)
Other versions
JPS6093133A (en
Inventor
Hiromi Nakamura
Takehiko Takahashi
Kazuo Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP20227083A priority Critical patent/JPS6093133A/en
Publication of JPS6093133A publication Critical patent/JPS6093133A/en
Publication of JPH0472048B2 publication Critical patent/JPH0472048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 本発明は、水注入ガスタービンサイクルに関
し、空気もしくは空気を主体とするガスを圧縮機
で圧縮してなる圧縮空気の一部もしくは全部に予
め熱回収媒体として用い加熱された液相水を接触
させて得た空気/水蒸気の混合物でタービン排気
の熱回収を行なうとともに、該接触操作にて得ら
れる冷却された液相水を熱回収媒体として圧縮機
の中間冷却と前記接触操作に用いる圧縮空気の冷
却にのみ用いることを特徴とするもので、好まし
い態様においてはタービン入力温度1000℃で48%
(燃料天然ガス、LHV基準)以上の熱効率を達成
できるガスタービンサイクルである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water-injected gas turbine cycle, in which air or a gas mainly composed of air is compressed by a compressor, and part or all of the compressed air is heated using a heat recovery medium in advance. The air/steam mixture obtained by contacting the liquid phase water is used to recover heat from the turbine exhaust gas, and the cooled liquid phase water obtained by the contact operation is used as a heat recovery medium to perform intermediate cooling of the compressor and the above-mentioned It is characterized by being used only for cooling compressed air used in contact operations, and in a preferred embodiment, the cooling rate is 48% at a turbine input temperature of 1000°C.
It is a gas turbine cycle that can achieve thermal efficiency higher than (fuel natural gas, LHV standard).

本発明者は、圧縮空気の一部もしくは全部に液
相水に接触させて得た空気/水蒸気の混合物でダ
ービン排気の熱回収を行なうガスタービンサイク
ルにおいて、圧縮空気と熱回収媒体として用い加
熱された液相水とを接触させて空気/水蒸気の混
合物を得るとともに、該接触操作で得られる冷却
された液相水を熱回収媒体として該接触操作に用
いる圧縮空気の冷却とタービン排気の熱回収およ
び必要に応じて圧縮機の中間冷却とに用いること
により大きな熱効率を達成できることを見出し、
先に特許出願した(特願昭56−199364号)。この
特許による熱効率は、同等な操作条件時に得られ
るガスタービン−蒸気タービン複合サイクルに比
して3〜4%高い。
The present inventor has proposed that in a gas turbine cycle in which heat recovery is performed from the Durbin exhaust air with an air/steam mixture obtained by contacting part or all of the compressed air with liquid water, the compressed air and the heated heat recovery medium are used as a heat recovery medium. A mixture of air/steam is obtained by contacting the liquid phase water obtained in the contact operation, and the cooled liquid phase water obtained in the contact operation is used as a heat recovery medium to cool the compressed air used in the contact operation and to recover heat from the turbine exhaust gas. We have discovered that large thermal efficiency can be achieved by using it for intermediate cooling of compressors as needed.
A patent application was filed earlier (Japanese Patent Application No. 199364-1983). The thermal efficiency according to this patent is 3-4% higher than that obtained with a combined gas turbine-steam turbine cycle under comparable operating conditions.

前記特許では燃料として硫黄含有量が全く含ま
れていないかまたは極めて少ないクリーンな天然
ガス、液化天然ガス、易揮発性液体燃料等を考え
てきた。
The patents have considered clean natural gas, liquefied natural gas, easily volatile liquid fuel, etc. that contain no or very low sulfur content as fuel.

従つてガスタービン排ガスによる硫酸腐食等の
低温腐食は考慮する必要はなく廃ガス温度80℃前
後と極めて低い値となつていた。
Therefore, there was no need to consider low-temperature corrosion such as sulfuric acid corrosion caused by gas turbine exhaust gas, and the exhaust gas temperature was extremely low at around 80°C.

その後、燃料の種類、性状等を考慮したガスタ
ービンサイクルの構成について検討を続けた結
果、ガスタービンブレード・ノズルが高温腐食を
起こさないおよびガスタービン廃ガス中の硫黄酸
化物が規制値を越えないとの制約から、燃料中の
含有硫黄量が0.8wt%程度以下であれば実用に供
し得ることが判明した。この時の廃ガスの酸露点
は廃ガス中の水蒸気分、酸素分にもよるが約130
℃である。
Subsequently, we continued to consider the configuration of the gas turbine cycle, taking into account the type and properties of the fuel, and found that the gas turbine blades and nozzles would not suffer from high-temperature corrosion, and that the sulfur oxides in the gas turbine exhaust gas would not exceed regulatory values. Due to this restriction, it was found that fuel can be put to practical use if the amount of sulfur contained in the fuel is approximately 0.8wt% or less. The acid dew point of the waste gas at this time is approximately 130, depending on the water vapor and oxygen content of the waste gas.
It is ℃.

従つて前記特許のガスタービンサイクルに示さ
れているガスタービン排ガスの低温側熱回収器お
よび煙突は硫酸腐食に代表される酸腐食に対して
特別の配慮をする必要がでてくる。熱交換器の現
状技術では管材料として高価な耐食性金属・ガラ
ス等の非金属材料あるいは安価な鋼管に耐食性の
ある材料をライニングする等が考えられている
が、いずれにしても設備費の負担は避けられな
い。
Therefore, the low-temperature side heat recovery device and chimney for the gas turbine exhaust gas shown in the gas turbine cycle of the above-mentioned patent must take special consideration against acid corrosion, typified by sulfuric acid corrosion. Current technologies for heat exchangers include using expensive non-metallic materials such as corrosion-resistant metals and glass as tube materials, or lining inexpensive steel tubes with corrosion-resistant materials, but in any case, the burden of equipment costs is low. Inevitable.

そこで本発明の如くガスタービン排ガスの低温
側熱回収器を付加せず酸露点以上の廃ガスとする
サイクルでも前記特許に比して熱効率の低下は
1.5%前後に抑えることができる。このサイクル
の熱効率は前記複合サイクルよりなお1.5%以上
高く、燃料として硫黄分を含み本発明の如く酸露
点以上の廃ガスとする場合の複合サイクルより
2.5%以上高い。
Therefore, even in a cycle like the present invention, which does not add a low-temperature side heat recovery device for gas turbine exhaust gas and generates waste gas with a temperature higher than the acid dew point, the thermal efficiency does not decrease compared to the above patent.
It can be kept to around 1.5%. The thermal efficiency of this cycle is still 1.5% higher than that of the above-mentioned combined cycle, and is higher than that of the combined cycle in which the fuel contains sulfur and the waste gas has a temperature higher than the acid dew point as in the present invention.
More than 2.5% higher.

すなわち、本発明は、燃料として硫黄分を含む
燃料を用い、かつ支燃剤ガス・作動媒体ガス等と
して用いる空気もしくは空気を主体とするガスを
圧縮機で圧縮してなる圧縮空気の一部もしくは全
部に液相水を接触させて得た空気/水蒸気の混合
物でタービン排気の熱回収を行なうガスタービン
サイクルにおいて、圧縮空気と熱回収媒体として
用い加熱された液相水とを接触させて空気/水蒸
気の混合物を得るとともに、該接触操作で得られ
る冷却された液相水を熱回収媒体として該接触操
作に用いる圧縮空気の冷却と圧縮機の中間冷却に
のみ用い前記圧縮空気との接触操作に供し、かつ
該接触操作で蒸発し空気との混合物として圧縮空
気中に移行した量に当る液相水を必要に応じ熱回
収媒体として使用して該接触操作および該熱回収
操作に供せられる液相水中に補給するごとくして
なるガスタービンサイクルである。
That is, the present invention uses a fuel containing sulfur as a fuel, and uses a compressor to compress air or a gas mainly composed of air, which is used as a combustion support gas, a working medium gas, etc., to produce some or all of the compressed air. In a gas turbine cycle, heat is recovered from turbine exhaust gas using an air/steam mixture obtained by contacting liquid phase water with air/steam. At the same time, the cooled liquid phase water obtained in the contact operation is used as a heat recovery medium only for cooling the compressed air used in the contact operation and for intermediate cooling of the compressor, and is subjected to the contact operation with the compressed air. , and a liquid phase that is subjected to the contact operation and the heat recovery operation, using as necessary a heat recovery medium of liquid phase water corresponding to the amount of liquid phase water that is evaporated in the contact operation and transferred into the compressed air as a mixture with air. This is a gas turbine cycle that is refueled underwater.

以下、添付図面により本発明のフローシートの
一例を説明する。
Hereinafter, an example of a flow sheet of the present invention will be explained with reference to the accompanying drawings.

図面は、圧縮空気と液相水とを接触させる接触
交換塔(以下、交換塔と記す)1、熱回収記、接
触操作に用いる圧縮空気の冷却に用いる熱交換器
(以下、自己熱交換器と記す)1、中間冷却器1、
空気圧縮機2、タービン1の場合である。
The drawing shows a contact exchange tower (hereinafter referred to as an exchange tower) 1 that brings compressed air and liquid water into contact, a heat recovery section, and a heat exchanger used for cooling the compressed air used in the contact operation (hereinafter referred to as a self-heat exchanger). ) 1, intercooler 1,
This is the case of the air compressor 2 and the turbine 1.

図面において、空気圧縮機AC1に吸入された大
気空気3は断熱圧縮され管4より中間冷却器IC
に入り、ここで交換塔EXTよりの管24内液相
水と加圧水導入管2からの補給液相水とからなる
液相水17により冷却され管5より空気圧縮機
AC2で再び断熱圧縮され圧縮空気6とされる。圧
縮空気6の一部は必要に応じて管8より高温側熱
回収器R1に導かれ、残部は管7より自己熱交換
器SRに入り冷却され管9より交換塔EXTに導入
される。交換塔EXTには自己熱交換器SRおよび
中間冷却器ICにてそれぞれ熱回収媒体として用
い加熱された液相水が管19,18より導入され
ており、ここで圧縮空気と該液相水とが向流形の
直接接触を行ない、管10より水蒸気分圧を高め
られた圧縮空気/水蒸気の混合物として高温側熱
回収器R1に導入される。また、該接触操作で冷
却された液相水は管20からそれぞれ自己熱交換
器SR、中間冷却器ICへ管23,24を経て送ら
れ熱回収され加熱された液相水となつて交換塔
EXTへ還流される。高温側熱回収器R1に導入さ
れた圧縮空気/水蒸気の混合物は必要に応じて空
気圧縮機AC2より直接8から導入される圧縮空気
とともに熱回収を行なつた後、管11より燃焼器
CCに導入される。燃焼器CCには熱回収器R2にて
熱回収を行なつた燃料1が管21より導入されて
おり、所定温度の燃焼ガスとなり管12よりター
ビンETに導入される。燃焼ガスはタービンETに
て断熱膨張し、空気圧縮機AC1,AC2、および負
荷Lの駆動力を発生した管13より排出され、一
部は管22より燃料の熱回収器R2に、残部は1
4より高温側熱回収器R1で回収されて、管15
を介し廃ガス16としてサイクル外に排出され
る。尚、空気圧縮機AC1,AC2およびタービン
ETに導入されるシール空気およびタービンETに
導入される冷却空気は当然機械の設計上別途必要
とされる。但し、本発明の操作の過程において
は、低温の圧縮空気が得られるため、タービン冷
却用圧縮空気の必要量は従来のガスタービンサイ
クルより少なくすることが可能であり、本効果は
一層の熱効率の向上に寄与するものである。
In the drawing, atmospheric air 3 taken into air compressor AC 1 is adiabatically compressed and sent to intercooler IC via pipe 4.
It is cooled by liquid phase water 17 consisting of the liquid phase water in the pipe 24 from the exchange tower EXT and the make-up liquid phase water from the pressurized water introduction pipe 2.
It is adiabatically compressed again at AC 2 and becomes compressed air 6. A part of the compressed air 6 is guided to the high-temperature side heat recovery unit R 1 through a pipe 8 as required, and the remaining part enters the self-heat exchanger SR through a pipe 7 and is cooled, and then introduced through a pipe 9 to an exchange tower EXT. Liquid phase water heated as a heat recovery medium in the self-heat exchanger SR and intercooler IC, respectively, is introduced into the exchange tower EXT through pipes 19 and 18, where the compressed air and the liquid phase water are combined. is introduced into the high-temperature side heat recovery device R 1 through a pipe 10 as a compressed air/steam mixture with an increased partial pressure of water vapor through countercurrent direct contact. In addition, the liquid phase water cooled by the contact operation is sent from the pipe 20 to the self-heat exchanger SR and the intercooler IC via the tubes 23 and 24, where the heat is recovered and becomes heated liquid phase water to the exchange tower.
Returned to EXT. The compressed air/steam mixture introduced into the high-temperature side heat recovery device R 1 undergoes heat recovery together with the compressed air introduced directly from the air compressor AC 2 from the air compressor AC 2 to the combustor 8 through the pipe 11 as needed.
Introduced to CC. The fuel 1 whose heat has been recovered in the heat recovery device R 2 is introduced into the combustor CC through a pipe 21, and becomes combustion gas at a predetermined temperature and is introduced into the turbine ET through the pipe 12. The combustion gas expands adiabatically in the turbine ET, and is discharged from the pipe 13 that generates the driving force for the air compressors AC 1 , AC 2 and the load L, and a portion is sent to the fuel heat recovery device R 2 from the pipe 22. The remainder is 1
4, the heat is recovered by the higher temperature side heat recovery device R1 , and the heat is recovered by the pipe 15.
It is discharged outside the cycle as waste gas 16 through. In addition, air compressors AC 1 , AC 2 and turbine
Seal air introduced into the ET and cooling air introduced into the turbine ET are of course required separately due to the design of the machine. However, in the process of operation of the present invention, because low-temperature compressed air is obtained, the required amount of compressed air for turbine cooling can be reduced compared to conventional gas turbine cycles, and this effect results in further improvements in thermal efficiency. This contributes to improvement.

以上、図面によつて本発明のフローの一例を示
したが、本発明は圧縮空気の一部もしくは全部に
液相水を接触させて得られる液相水で該接触操作
に用いる圧縮空気の冷却と圧縮機の中間冷却のみ
を行うものであつて、この操作を用いるかぎりに
おいて種々の変更を加えうるものである。例え
ば、中間冷却に更に燃料を併用すること、再熱サ
イクル化などがあり、圧縮比と熱効率との関係か
らは高圧縮比においても熱効率の低下率が従来の
ガスタービンサイクルに比べてより小さいという
特徴のあるものであり、高比出力化あるいは再熱
サイクル化したときのメリツトが大きい。
An example of the flow of the present invention has been shown above with reference to the drawings, but the present invention cools the compressed air used in the contact operation with liquid phase water obtained by contacting part or all of the compressed air with liquid phase water. This method only performs intermediate cooling of the compressor, and various changes can be made as long as this operation is used. For example, there are methods such as using fuel for intercooling and reheating cycles, and the relationship between compression ratio and thermal efficiency shows that even at high compression ratios, the rate of decrease in thermal efficiency is smaller than in conventional gas turbine cycles. It has a unique feature and has great benefits when used for high specific output or reheat cycle.

本発明のガスタービンサイクルの基本的なフロ
ーとその適用の一例を上記に示したが、操作条件
の点からは、圧縮空気と液相水との直接接触によ
る熱および物質(水)移動がより有利に利用でき
る範囲としてまず、該接触操作に用いる圧縮空気
量は熱回収率の面からは通常全量用いることが好
ましいが、自己熱交換器、中間冷却などで使用さ
れる前記接触操作で得られる冷却された液相水を
得るための所望量および接触操作の実用的条件か
ら用いる機器の大きさなどから適宜高温側熱回収
器に分流させるものである。また圧縮空気との接
触操作で蒸発し圧縮空気/水蒸気の混合物として
圧縮空気中に移行させる水量についても実施に当
り好適な量を選定する。
Although the basic flow of the gas turbine cycle of the present invention and an example of its application have been shown above, from the point of view of operating conditions, heat and mass (water) transfer through direct contact between compressed air and liquid water is more efficient. As for the range that can be advantageously used, first of all, the amount of compressed air used in the contact operation is usually preferably used in full from the perspective of heat recovery rate, but the amount of compressed air used in the contact operation is preferably used in the contact operation used in self-heat exchangers, intercooling, etc. The flow is diverted to the high-temperature side heat recovery device as appropriate based on the desired amount of cooled liquid phase water, the practical conditions of the contact operation, the size of the equipment used, etc. Also, the amount of water that is evaporated by contact with compressed air and transferred into the compressed air as a mixture of compressed air/steam is selected in accordance with the implementation.

この好適操作範囲は、中間冷却に更に燃料を併
用すること、再熱サイクル化など、あるいはター
ビン入口条件などによつて当然変わるものであ
る。たとえば、第1図のフローシートにおいて、
タービン入口条件として圧力6at、温度1000℃で
は圧縮空気/水蒸気の混合物として圧縮空気中に
移行させる水量は、全吸入空気1Kgmolあたり
0.06〜0.12Kgmol、好ましくは0.07〜0.11Kgmolの
範囲である。また、圧縮機において、中間冷却を
施す場合の段前後の圧力配分は、中間冷却による
圧縮動力の低減効果をより大きくするとの点より
判断されるべきものである。
This suitable operating range naturally changes depending on the use of fuel for intercooling, the use of a reheat cycle, or the conditions at the turbine inlet. For example, in the flow sheet shown in Figure 1,
Under the turbine inlet conditions of 6at pressure and 1000℃ temperature, the amount of water transferred into the compressed air as a compressed air/steam mixture is per 1 kgmol of total intake air.
It ranges from 0.06 to 0.12 Kgmol, preferably from 0.07 to 0.11 Kgmol. In addition, in a compressor, the pressure distribution before and after stages when performing intercooling should be determined from the viewpoint of increasing the compression power reduction effect due to intercooling.

以下に本発明の効果をより具体的に説明するた
めに検討例を示す。
Below, a study example will be shown to more specifically explain the effects of the present invention.

検討例 () 条件 (a) 効率 圧縮機断熱効率 ηC=0.89 タービン断熱効率 ηT=0.91 機械効率 ηn=0.99 発電機効率 ηG=0.985 燃焼効率 ηB=0.999 (b) 大気吸入条件 温 度 15℃ 圧 力 1.033at 湿 度 60% 流 量Dry Air 1Kgmol/s H2O 0.0101Kgmol/s (c) 燃料 種 類 天然ガス 温 度 15℃ 高位発熱量(0℃) 245200Kcal/Kgmol 低位発熱量(0℃) 221600Kcal/Kgmol (d) 総圧力損失率 0.149 (e) 補給水 温 度 15℃ 流 量 0.091Kgmol/s (f) タービン入口条件 圧 力 6at 温 度 1000℃ (g) 熱交換器最小温度差 高温側熱回収器R1 30℃ 燃料予熱器R2 30℃ 中間冷却器IC 20℃ 自己熱交換器SR 20℃ (h) その他 燃料、補給水および交換塔底部水の圧縮動
力は無視したが、所内動力として発電端出力
の0.3%を考慮した。また、タービン冷却空
気の必要量は本サイクルにては低温の圧縮空
気が得られることを考慮して設定した。
Study example () Conditions (a) Efficiency Compressor adiabatic efficiency η C =0.89 Turbine adiabatic efficiency η T =0.91 Mechanical efficiency η n =0.99 Generator efficiency η G =0.985 Combustion efficiency η B =0.999 (b) Air intake condition temperature Temperature 15℃ Pressure 1.033at Humidity 60% Flow rate Dry Air 1Kgmol/s H 2 O 0.0101Kgmol/s (c) Fuel type Natural gas Temperature 15℃ Higher calorific value (0℃) 245200Kcal/Kgmol Lower calorific value (0℃) 221600Kcal/Kgmol (d) Total pressure loss rate 0.149 (e) Make-up water temperature 15℃ Flow rate 0.091Kgmol/s (f) Turbine inlet condition pressure 6at Temperature 1000℃ (g) Heat exchanger minimum temperature Differential high temperature side heat recovery device R 1 30℃ Fuel preheater R 2 30℃ Intercooler IC 20℃ Self-heat exchanger SR 20℃ (h) Others Compression power of fuel, make-up water and exchange tower bottom water is ignored. , 0.3% of the generating end output was considered as the in-house power. In addition, the required amount of turbine cooling air was set taking into consideration that low-temperature compressed air can be obtained in this cycle.

() 結果 (a) 廃ガス 温 度 138.5℃ 流 量 1.11Kgmol/s (b) 圧縮機AC2出口温度 150℃ (c) 送電端出力 8090KW (d) 送電端熱効率 48.6%() Results (a) Waste gas temperature 138.5℃ Flow rate 1.11Kgmol/s (b) Compressor AC 2 outlet temperature 150℃ (c) Sending end output 8090KW (d) Sending end thermal efficiency 48.6%

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一例を示すフローシートであ
る。 2は加圧水導入管、3は大気空気、6は圧縮空
気、7,8,9,10,18,19,20,2
3,24は管、R1は高温側熱回収器、R2は熱回
収器、ICは中間冷却器、SRは自己熱交換器、
EXTは交換塔、AC1,AC2は空気圧縮機、CCは
燃焼器、ETはタービン、Lは負荷を示す。
The drawing is a flow sheet showing an example of the present invention. 2 is a pressurized water introduction pipe, 3 is atmospheric air, 6 is compressed air, 7, 8, 9, 10, 18, 19, 20, 2
3 and 24 are tubes, R 1 is a high temperature side heat recovery device, R 2 is a heat recovery device, IC is an intercooler, SR is a self-heat exchanger,
EXT is an exchange tower, AC 1 and AC 2 are air compressors, CC is a combustor, ET is a turbine, and L is a load.

Claims (1)

【特許請求の範囲】[Claims] 1 燃料として硫黄分を含む燃料を用い、かつ支
燃剤ガス・作動媒体ガス等として用いる空気もし
くは空気を主体とするガスを圧縮機で圧縮してな
る圧縮空気の一部もしくは全部に液相水を接触さ
せて得た空気/水蒸気の混合物でタービン排気の
熱回収を行なうガスタービンサイクルにおいて、
圧縮空気と熱回収媒体として用い加熱された液相
水とを接触させて空気/水蒸気の混合物を得ると
ともに、該接触操作で得られる冷却された液相水
を熱回収媒体として該接触操作に用いる圧縮空気
の冷却と圧縮機の中間冷却にのみ用い前記圧縮空
気との接触操作に供し、かつ該接触操作で蒸発し
空気との混合物として圧縮空気中に移行した量に
当たる液相水を必要に応じ熱回収媒体として使用
して該接触操作および該熱回収操作に供せられる
液相水中に補給するごとくしてなるガスタービン
サイクル。
1. Liquid phase water is added to part or all of the compressed air obtained by using fuel containing sulfur as fuel and compressing air or air-based gas used as combustion support gas, working medium gas, etc. using a compressor. In a gas turbine cycle in which heat recovery from the turbine exhaust is performed using an air/steam mixture obtained through contact,
Compressed air and heated liquid water used as a heat recovery medium are contacted to obtain an air/steam mixture, and the cooled liquid water obtained in the contacting operation is used as a heat recovery medium in the contacting operation. It is used only for cooling compressed air and intermediate cooling of the compressor, and is subjected to a contact operation with the compressed air, and as necessary, the amount of liquid phase water that evaporates during the contact operation and transfers into the compressed air as a mixture with air. A gas turbine cycle in which liquid phase water is used as a heat recovery medium and is supplied to the contact operation and the heat recovery operation.
JP20227083A 1983-10-28 1983-10-28 Gas turbine cycle Granted JPS6093133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20227083A JPS6093133A (en) 1983-10-28 1983-10-28 Gas turbine cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20227083A JPS6093133A (en) 1983-10-28 1983-10-28 Gas turbine cycle

Publications (2)

Publication Number Publication Date
JPS6093133A JPS6093133A (en) 1985-05-24
JPH0472048B2 true JPH0472048B2 (en) 1992-11-17

Family

ID=16454757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20227083A Granted JPS6093133A (en) 1983-10-28 1983-10-28 Gas turbine cycle

Country Status (1)

Country Link
JP (1) JPS6093133A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101228A (en) * 1981-12-10 1983-06-16 Mitsubishi Gas Chem Co Inc Gas turbine cycle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101228A (en) * 1981-12-10 1983-06-16 Mitsubishi Gas Chem Co Inc Gas turbine cycle

Also Published As

Publication number Publication date
JPS6093133A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
US4537023A (en) Regenerative gas turbine cycle
US4829763A (en) Process for producing power
US5664411A (en) S cycle electric power system
US3757517A (en) Power-generating plant using a combined gas- and steam-turbine cycle
JP4727949B2 (en) Method for generating energy in an energy generation facility having a gas turbine and energy generation facility for implementing the method
EP0150990B1 (en) Process for producing power
US2869324A (en) Gas turbine power-plant cycle with water evaporation
US7421835B2 (en) Air-staged reheat power generation system
WO1995011375A3 (en) Performance enhanced gas turbine powerplants
JP2002201959A (en) Gas turbine and method for operating the gas turbine
JPH0579755A (en) Air separation
EP0081995A2 (en) Regenerative gas turbine cycle
US5349810A (en) Humid air turbine (HAT) cycle power process
JPS6329091B2 (en)
JPS595761B2 (en) A device that converts heat into work
EP1532360B1 (en) A method and a device for production of mechanical work and cooling/heating in conjunction with a combustion machine
JPH09264158A (en) Gas turbine cycle
JPH0131012B2 (en)
JPH0472047B2 (en)
JPS61201831A (en) Power generation method
JPH0472048B2 (en)
JPH0131013B2 (en)
JP2004150685A (en) Nitrogen producing equipment and turbine power generation equipment
JPH0119053B2 (en)
JPS61106924A (en) Power recovery method of process waste heat