JPH04191418A - Carbon dioxide (co2) recovering power generation plant - Google Patents

Carbon dioxide (co2) recovering power generation plant

Info

Publication number
JPH04191418A
JPH04191418A JP2321673A JP32167390A JPH04191418A JP H04191418 A JPH04191418 A JP H04191418A JP 2321673 A JP2321673 A JP 2321673A JP 32167390 A JP32167390 A JP 32167390A JP H04191418 A JPH04191418 A JP H04191418A
Authority
JP
Japan
Prior art keywords
gas
compressor
combustor
carbon dioxide
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2321673A
Other languages
Japanese (ja)
Inventor
Satoshi Tanimura
聡 谷村
Hidetaka Mori
森 秀隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2321673A priority Critical patent/JPH04191418A/en
Publication of JPH04191418A publication Critical patent/JPH04191418A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To reduce power loss of an oxygen (O2) producing device and prevent generation of poisonous gas by supplying pure O2 produced by the oxygen (O2) producing device directly to a combustor by means of a pressing compressor, and thereby improving recovery ratio of carbon dioxide (CO2) gas. CONSTITUTION:A pressing compressor 12 is provided on a rear step of an O2 producing device 11. The thus compressed O2 is supplied directly to a combustor 3. The carbon dioxide (CO2) suctioned into a compressor 1 is compressed, and a part thereof is supplied to a gas turbine 2 through a turbine blade cooling gas extracting line 9, and the remainder is introduced to the combustor 3. Pure oxygen (O2) produced by the producing device 11 is compressed by the pressing compressor 12 and introduced to the combustor 3, mixed with fuel and carbon dioxide (CO2) for combustion, bringing about high temperature gas. The high temperature gas is sent to the gas turbine 2 for expansion, and to be a power source of a generator 4 and the compressor 1. Exhaust gas of the gas turbine 2 is thermally utilized for steam production in a heat-recovery boiler 5, cooled by an exhaust gas condenser 8, and circulated to the compressor 1 as suction gas.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、発電プラントの02の補充位置の改善を図っ
たCO!回収発電プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention aims at improving the replenishment position of CO! Regarding recovery power generation plants.

従来の技術 第2図〜第4図は、従来より用いられている3っの異な
るガスタービンコンバインドサイクルプラントのCO2
回収発電プラントの系統を示す。
Conventional technology Figures 2 to 4 show CO2 emissions from three different gas turbine combined cycle plants that have been used in the past.
The system of the recovery power generation plant is shown.

まず第2図において、1は圧縮機、2はガスタービン、
3は燃焼器、4は発電機、5は排熱回収ボイラ、6は煙
突である。
First, in Fig. 2, 1 is a compressor, 2 is a gas turbine,
3 is a combustor, 4 is a generator, 5 is an exhaust heat recovery boiler, and 6 is a chimney.

上記の構成において、圧縮機1に吸込まれた空気は圧縮
され、その一部はガスタービン2の翼冷却用に供される
ために抽出ライン7を介して抽出され、残りは燃焼器3
に人′うて燃焼を助は高温ガスとなってガスタービン2
に入り、膨張して発電機4および圧縮機1の駆動動力と
なる。
In the above configuration, the air sucked into the compressor 1 is compressed, a part of which is extracted via the extraction line 7 for cooling the blades of the gas turbine 2, and the rest is extracted from the combustor 3.
The combustion process is assisted by the combustion process, which becomes high-temperature gas and is passed through the gas turbine 2.
It expands and becomes the driving power for the generator 4 and compressor 1.

そして、ガスタービン2から排出されたガスは、排熱回
収ガスボイラ5で蒸気発生の熱源に供された後、回収す
ることなく煙突6から大気中に放出される。この場合、
放出されるガス成分は窒素ガス(以下Ntという)とC
O,で、CO,濃度は5%程度である。
The gas discharged from the gas turbine 2 is used as a heat source for steam generation in the exhaust heat recovery gas boiler 5, and then is discharged into the atmosphere from the chimney 6 without being recovered. in this case,
The released gas components are nitrogen gas (hereinafter referred to as Nt) and C.
The concentration of O and CO is about 5%.

次に、第3図に示すものは酸素富化燃焼方式と呼ばれる
CO!回収発電システムで、第2図と同一要素には同一
符号を付して璽複する説明は省略するが、8は排熱回収
ボイラ5の後段に配置された凝縮器(コンデンサ)、9
は凝縮器8の後段に配置されたC Otガス分離回収装
置である。また、10は凝縮器8からのCo2+N、ガ
スを圧縮機1に注入する循環系統であり、この循環系統
10を介して02製造装置11で製造された02が圧縮
機lに注入される。
Next, the one shown in Figure 3 is called the oxygen-enriched combustion method, CO! In the recovery power generation system, the same elements as in FIG.
is a C Ot gas separation and recovery device placed after the condenser 8. Further, 10 is a circulation system for injecting Co2+N and gas from the condenser 8 into the compressor 1, and 02 produced by the 02 production apparatus 11 is injected into the compressor 1 through this circulation system 10.

上記の構成によれば、ガスタービン2から排出されたガ
スは、排熱回収ボイラ5で蒸気発生に供された後、排ガ
ス凝縮器8で冷却されて水分を取り除かれ、循環系統l
Oを通って再び圧縮機1に注入される。
According to the above configuration, the gas discharged from the gas turbine 2 is used to generate steam in the exhaust heat recovery boiler 5, and then is cooled in the exhaust gas condenser 8 to remove moisture, and the gas is used in the circulation system.
It passes through O and is injected into the compressor 1 again.

この酸素富化燃焼方式では、ガスタービン2から排出さ
れるガスは燃焼器3で燃焼した際に02を消費しており
、その後排ガス凝縮器8で水分を取り除かれるため、C
O2とN2を主成分とするガスが循環する。そして、圧
縮機1の入口には02製造装置(酸素富化装置)11が
設けられているため、0.の濃い空気を補給して燃焼で
消費された02を補い、常に圧縮機1の吸込みガスを平
行状態に保っている。
In this oxygen-enriched combustion method, the gas discharged from the gas turbine 2 consumes 02 when burned in the combustor 3, and then water is removed in the exhaust gas condenser 8, so that
A gas whose main components are O2 and N2 circulates. Since the 02 production device (oxygen enrichment device) 11 is provided at the inlet of the compressor 1, the 0.02. The compressor 1 constantly maintains the suction gas of the compressor 1 in a parallel state by replenishing the dense air to compensate for the 02 consumed by combustion.

この02製造装置11は、02濃度が低くて良いため動
力は比較的に小さくて済む。また、02を補給し燃焼を
続けると系内圧力は上昇するので、余剰ガスとしてCO
2を分離回収装置9で回収する。この余剰ガス濃度は供
給02濃度70%にて約50%濃度となっていて、分離
回収に比較的大きな動力を必要とする。
This 02 manufacturing apparatus 11 requires relatively low power because the 02 concentration may be low. In addition, if 02 is replenished and combustion continues, the system pressure will rise, so CO will be released as surplus gas.
2 is recovered by a separation and recovery device 9. The concentration of this surplus gas is about 50% when the supply 02 concentration is 70%, and requires relatively large power for separation and recovery.

また、熱化合によりN2成分が硝酸化合物(以下NOx
という)を発生する。
In addition, due to thermal combination, the N2 component becomes a nitrate compound (hereinafter referred to as NOx
) occurs.

次に、第4図に示すものはアルゴンヌ方式と呼ばれるC
O2回収発電システムで、循環系統に配列される機器は
上記酸素富化燃焼方式と全く同一であるが、この方式に
おいては、燃焼で消費される02の補給方式として02
製造装置11の純02を圧縮機1の入口に補給する点が
異なっている。
Next, what is shown in Figure 4 is the C
In the O2 recovery power generation system, the equipment arranged in the circulation system is exactly the same as the oxygen-enriched combustion method described above, but in this method, O2 is used as a replenishment method for O2 consumed in combustion.
The difference is that pure 02 from the manufacturing device 11 is supplied to the inlet of the compressor 1.

そして、この方式においては、02製造装置11の動力
の消費が大きく、また燃焼後のガスタービンの作動流体
はCO2が主体であり、余剰ガス2のCO2濃度は約8
3%程度である。
In this method, the power consumption of the 02 manufacturing device 11 is large, and the working fluid of the gas turbine after combustion is mainly CO2, and the CO2 concentration of the surplus gas 2 is approximately 8.
It is about 3%.

発明が解決しようとする課題 しかしながら、上記の従来例においては、次のような欠
点がある。
Problems to be Solved by the Invention However, the above conventional example has the following drawbacks.

即ち、第2図に示すガスタービンコンバインドシステム
によれば、排気のCO2濃度は5%程度であることから
、CO2の分離回収には大きな動力を必要とする。
That is, according to the gas turbine combined system shown in FIG. 2, since the CO2 concentration of the exhaust gas is about 5%, a large amount of power is required to separate and recover CO2.

また、第3図に示す酸素富化燃焼方式によれば、補充ガ
スがO!の濃度の高い空気であるため、燃焼後のガスタ
ービン2の作動流体はCO2とN2が主成分であり、余
剰ガスのCO2濃度が約50%と低く、CO2分離回収
装置9を必要とする。
Furthermore, according to the oxygen-enriched combustion method shown in Fig. 3, the supplementary gas is O! Since the air has a high concentration, the working fluid of the gas turbine 2 after combustion is mainly composed of CO2 and N2, and the CO2 concentration of the surplus gas is as low as about 50%, requiring the CO2 separation and recovery device 9.

また、熱化合によりNOxが発生するのでNOx対策が
必要となる。
Further, since NOx is generated due to thermal combination, measures against NOx are required.

さらに、第4図に示すアルゴンヌ方式によれば、純0□
の補充を圧縮機1の吸込み側で行うので、ガスタービン
2の翼冷却用ガスを圧縮機1の吐出口から抽出する際、
燃焼に供されない0.も抽出されるので、O1製造装置
11の動力損失となる。
Furthermore, according to the Argonne method shown in Figure 4, pure 0□
Since the replenishment is performed on the suction side of the compressor 1, when extracting the blade cooling gas of the gas turbine 2 from the discharge port of the compressor 1,
0. Not subjected to combustion. Also extracted, this results in a power loss for the O1 production device 11.

また、排気ガスの中に02が入るので、それだけ余剰ガ
スのCO2濃度が低下する。
Furthermore, since 02 enters the exhaust gas, the CO2 concentration of the surplus gas decreases accordingly.

本発明は、このような従来技術の課題を解決するために
なされたもので、CO2ガスの回収率を上げ、02製造
装置の動力損失を減らすと共に、有害なガスの発生のな
いco2回収発電プラントを提供することを目的とする
The present invention was made to solve the problems of the conventional technology, and is designed to increase the recovery rate of CO2 gas, reduce the power loss of the 02 production equipment, and create a CO2 recovery power generation plant that does not generate harmful gases. The purpose is to provide

課題を解決するための手段 上記の課題を解決するために、本発明は、co2回収発
電プラントにおいて、o2製造装置により製造されたo
2を圧縮する押込用圧縮機と、該押込用圧縮機からの0
2と燃料を供給されて加圧ガス中で燃焼させる燃焼器と
、該燃焼器がらの高温ガスが供給されて回転するガスタ
ービンと、該ガスタービンがらの排ガスが供給される排
熱回収ボイラと、該排熱回収ボイラからの排ガスを凝縮
する凝縮器と、該凝縮器からの排ガスの一部が供給され
、その排ガスを圧縮して前記ガスタービンに供給する圧
縮器とを具備したものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides an o
A pushing compressor that compresses 2, and a pushing compressor that compresses 0.
2, a combustor that is supplied with fuel and burns it in pressurized gas; a gas turbine that is supplied with high-temperature gas from the combustor and rotates; and an exhaust heat recovery boiler that is supplied with exhaust gas from the gas turbine. , comprising a condenser that condenses exhaust gas from the exhaust heat recovery boiler, and a compressor to which a portion of the exhaust gas from the condenser is supplied, compresses the exhaust gas, and supplies it to the gas turbine. .

作用 上記の手段によれば、o2製造装置で製造された純02
を押込用圧縮機で燃焼器に直接供給する。
According to the above-mentioned means, the pure O2 produced by the O2 production equipment
is directly supplied to the combustor using a forced compressor.

このため、圧縮機に吸い込まれるガスはCO2のみとな
り、圧縮機の吐出口から抽出されてガスタービン翼冷却
用に供されるガスもCO2のみとなり、ガスタービンへ
の02の混入がない。そして、残りは燃焼器に入り、0
2製造装貨から送られる純02と混合し燃焼する。従っ
て、製造された純02は全て燃焼のために供される。
Therefore, the gas sucked into the compressor is only CO2, and the gas extracted from the discharge port of the compressor and used for cooling the gas turbine blades is also only CO2, and no 02 is mixed into the gas turbine. Then, the rest goes into the combustor and becomes 0.
It is mixed with pure 02 sent from 2 manufacturing cargo and burned. Therefore, all of the pure 02 produced is provided for combustion.

実施例 以下第1図を参照して本発明の一実施例について詳述す
る。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to FIG.

第1図において、第2図〜第4図と同一要素には同一符
号を付して重複する説明は省略するが、本発明において
は、0!製造装璽11の後段に押込用圧縮機12を設け
、この押込圧縮機12により圧縮されたO!を燃焼器3
に直接供給するようにしている。
In FIG. 1, the same elements as in FIGS. 2 to 4 are given the same reference numerals and redundant explanations are omitted, but in the present invention, 0! A compression compressor 12 is provided at the rear stage of the manufacturing unit 11, and O! compressed by this compression compressor 12! The combustor 3
We are trying to supply directly to

上記の構成によれば、圧縮機1に吸い込まれたCO7は
圧縮されて一部がタービン翼冷却用ガス抽出ライン9を
通ってガスタービン2に入り、残りのCO2は燃焼器3
に入る。また、02製造装置11で製造された純02が
、押込用圧縮機12で圧縮されて燃焼器3に入り、燃料
及びCO3と混合して燃焼し、高温ガス(Cow)とな
る。この高温ガスは、ガスタービン2に送られ1脹して
発電機4及び圧縮機1の動力源となる。
According to the above configuration, the CO7 sucked into the compressor 1 is compressed and a part of it passes through the turbine blade cooling gas extraction line 9 and enters the gas turbine 2, and the remaining CO2 is transferred to the combustor 3.
to go into. Further, the pure 02 manufactured by the 02 manufacturing apparatus 11 is compressed by the forcing compressor 12 and enters the combustor 3, where it is mixed with fuel and CO3 and combusted to become high-temperature gas (Cow). This high-temperature gas is sent to the gas turbine 2 and expanded to become a power source for the generator 4 and compressor 1.

そして、ガスタービン2の排気ガスは、排熱回収ボイラ
5で蒸気製造に熱利用された後、排ガス凝縮器8で冷却
されて水分を除去され循環ガスとなり、再び圧縮機1の
吸い込みガスとして循環する。循環ガス(Cot)とし
て循環する際、0゜補充により余剰となったCO!は余
剰ガスとして回収される。
The exhaust gas of the gas turbine 2 is heat-utilized for steam production in the exhaust heat recovery boiler 5, and then cooled in the exhaust gas condenser 8 to remove moisture and become circulating gas, which is then circulated again as the suction gas of the compressor 1. do. When circulating as circulating gas (Cot), surplus CO due to 0° replenishment! is recovered as surplus gas.

なお、本発明においては、油、メタノール、天然ガス、
LPG等、水素と炭素の化合物から成る燃料及びCOと
H!を主成分とするガス(高炉ガス、転炉ガス、石油化
学プラントの副生ガス等)などの広範囲の燃料を使用す
ることができるものである。
In addition, in the present invention, oil, methanol, natural gas,
Fuels made of compounds of hydrogen and carbon, such as LPG, and CO and H! A wide range of fuels can be used, including gases whose main components are (blast furnace gas, converter gas, by-product gas from petrochemical plants, etc.).

発明の効果 以上、述べたように本発明によれば、 (1)ガスタービンの排気ガス中に02の混入がなく、
濃度の高いCO,(約94%)であるため、余剰ガスと
して回収する際、CO2分離回収装置を必要としない上
に、回収率が高い: (2)燃焼以外に02を消費しないので、0.製造装置
の動力損失を軽減することができる:(3)補充ガスが
純0□であるため、N2成分がなく、NOxなど有害な
ガスを発生しない:等の顕著な効果を奏する。
Effects of the Invention As described above, according to the present invention, (1) 02 is not mixed in the exhaust gas of the gas turbine;
Since the concentration of CO2 is high (approximately 94%), when recovering it as surplus gas, there is no need for a CO2 separation and recovery device, and the recovery rate is high: (2) Since 02 is not consumed other than combustion, .. The power loss of the manufacturing equipment can be reduced; and (3) since the supplementary gas is pure 0□, there is no N2 component and no harmful gases such as NOx are generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すC02回収発電プラン
トの構成図、第2図、第3図及び第4図はそれぞれ3つ
の異なる従来例を示す構成図である。 1・・圧縮機、2・・ガスタービン、3・・燃焼器、4
・・発電機、5・・排熱回収ボイラ、7・・抽出ライン
、8・・凝縮器、10・・循環系統、11・・0□製造
装置、12・・押込用圧縮機。
FIG. 1 is a block diagram of a CO2 recovery power generation plant showing one embodiment of the present invention, and FIGS. 2, 3, and 4 are block diagrams showing three different conventional examples. 1.Compressor, 2.Gas turbine, 3.Combustor, 4
... Generator, 5. Exhaust heat recovery boiler, 7. Extraction line, 8. Condenser, 10. Circulation system, 11. 0□ manufacturing equipment, 12. Compressor for forcing.

Claims (1)

【特許請求の範囲】[Claims] O_2製造装置により製造されたO_2を圧縮する押込
用圧縮機と、該押込用圧縮機からのO_2と燃料を供給
されて加圧ガス中で燃焼させる燃焼器と、該燃焼器から
の高温ガスが供給されて回転するガスタービンと、該ガ
スタービンからの排ガスが供給される排熱回収ボイラと
、該排熱回収ボイラからの排ガスを凝縮する凝縮器と、
該凝縮器からの排ガスの一部が供給され、その排ガスを
圧縮して前記ガスタービンに供給する圧縮器とを具備し
たことを特徴とするCO_2回収発電プラント。
A forced compressor that compresses O_2 produced by the O_2 production equipment, a combustor that is supplied with O_2 and fuel from the forced compressor and burns it in pressurized gas, and a high-temperature gas from the combustor. A gas turbine that is supplied and rotates, an exhaust heat recovery boiler that is supplied with exhaust gas from the gas turbine, and a condenser that condenses the exhaust gas from the exhaust heat recovery boiler.
A CO_2 recovery power generation plant characterized by comprising a compressor to which a portion of the exhaust gas from the condenser is supplied, compresses the exhaust gas, and supplies the compressor to the gas turbine.
JP2321673A 1990-11-26 1990-11-26 Carbon dioxide (co2) recovering power generation plant Pending JPH04191418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2321673A JPH04191418A (en) 1990-11-26 1990-11-26 Carbon dioxide (co2) recovering power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2321673A JPH04191418A (en) 1990-11-26 1990-11-26 Carbon dioxide (co2) recovering power generation plant

Publications (1)

Publication Number Publication Date
JPH04191418A true JPH04191418A (en) 1992-07-09

Family

ID=18135139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2321673A Pending JPH04191418A (en) 1990-11-26 1990-11-26 Carbon dioxide (co2) recovering power generation plant

Country Status (1)

Country Link
JP (1) JPH04191418A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19716721A1 (en) * 1997-04-21 1998-11-12 Siemens Ag Method of operating a gas turbine and gas turbine operating thereafter
DE19728151A1 (en) * 1997-07-03 1999-01-07 Linde Ag Power production method using gas turbine principle
EP0949405A2 (en) * 1998-04-07 1999-10-13 Mitsubishi Heavy Industries, Ltd. Turbine plant
EP1091095A2 (en) * 1999-10-05 2001-04-11 Mitsubishi Heavy Industries, Ltd. Gas turbine system and combined plant comprising the same
JP2010164051A (en) * 2009-01-16 2010-07-29 General Electric Co <Ge> Method for increasing carbon dioxide content in gas turbine exhaust and system for achieving the same
EP2248999A1 (en) * 2008-12-24 2010-11-10 Alstom Technology Ltd Power plant with CO2 capture
EP2562389A3 (en) * 2011-08-25 2018-01-03 General Electric Company Method of operating a power plant with exhaust gas recirculation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19716721A1 (en) * 1997-04-21 1998-11-12 Siemens Ag Method of operating a gas turbine and gas turbine operating thereafter
DE19728151C2 (en) * 1997-07-03 2000-06-08 Linde Ag Method and device for generating energy
DE19728151A1 (en) * 1997-07-03 1999-01-07 Linde Ag Power production method using gas turbine principle
US6430916B2 (en) 1998-04-07 2002-08-13 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant
EP0949405A3 (en) * 1998-04-07 2002-06-12 Mitsubishi Heavy Industries, Ltd. Turbine plant
EP0949405A2 (en) * 1998-04-07 1999-10-13 Mitsubishi Heavy Industries, Ltd. Turbine plant
US6536205B2 (en) 1998-04-07 2003-03-25 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant
EP1091095A2 (en) * 1999-10-05 2001-04-11 Mitsubishi Heavy Industries, Ltd. Gas turbine system and combined plant comprising the same
EP1091095A3 (en) * 1999-10-05 2003-02-26 Mitsubishi Heavy Industries, Ltd. Gas turbine system and combined plant comprising the same
EP2248999A1 (en) * 2008-12-24 2010-11-10 Alstom Technology Ltd Power plant with CO2 capture
WO2010072710A3 (en) * 2008-12-24 2011-05-05 Alstom Technology Ltd Power plant with co2 capture
JP2012514151A (en) * 2008-12-24 2012-06-21 アルストム テクノロジー リミテッド Power plant with CO2 recovery unit
US8408006B2 (en) 2008-12-24 2013-04-02 Alstom Technology Ltd Power plant with CO2 capture
JP2010164051A (en) * 2009-01-16 2010-07-29 General Electric Co <Ge> Method for increasing carbon dioxide content in gas turbine exhaust and system for achieving the same
EP2562389A3 (en) * 2011-08-25 2018-01-03 General Electric Company Method of operating a power plant with exhaust gas recirculation

Similar Documents

Publication Publication Date Title
US5644911A (en) Hydrogen-fueled semi-closed steam turbine power plant
JP5128243B2 (en) Power plants using gas turbines for power generation and methods for reducing CO2 emissions
JP4727949B2 (en) Method for generating energy in an energy generation facility having a gas turbine and energy generation facility for implementing the method
JPH08232684A (en) Generating method of mechanical power
CA2705543C (en) Membrane power plant and method for operating the same
US20080202123A1 (en) System and method for oxygen separation in an integrated gasification combined cycle system
US8833080B2 (en) Arrangement with a steam turbine and a condenser
JP4094185B2 (en) Cold power generation system
EP0150990A2 (en) Process for producing power
US10767855B2 (en) Method and equipment for combustion of ammonia
US20020043064A1 (en) Method for operating a power plant
US10767556B2 (en) Method and equipment for combustion of ammonia
JPH04191418A (en) Carbon dioxide (co2) recovering power generation plant
JPH08506873A (en) New power method
JPH04279729A (en) Carbon dioxide (co2) collecting gas turbine plant
KR20200046742A (en) System and Method for Direct-Fired Supercritical CO2 Power Generation
JPH0626362A (en) Co2 gas turbine cycle
US5067317A (en) Process for generating electricity in a pressurized fluidized-bed combustor system
JPH11200886A (en) Gasifying combined power generation equipment
JPH05141267A (en) Steam cooling method for gas turbine
JPS59191809A (en) Method for reducing production of nox in steam-gas composite cycle and device thereof
Kotowicz et al. Thermodynamic analysis of the advanced zero emission power plant
JPH11200885A (en) Gasifying combined power generation equipment
JPH04117159A (en) Generating system employing closed cycle mhd generator
JPH0466703A (en) Power generation plant