JPH11200886A - Gasifying combined power generation equipment - Google Patents

Gasifying combined power generation equipment

Info

Publication number
JPH11200886A
JPH11200886A JP7598A JP7598A JPH11200886A JP H11200886 A JPH11200886 A JP H11200886A JP 7598 A JP7598 A JP 7598A JP 7598 A JP7598 A JP 7598A JP H11200886 A JPH11200886 A JP H11200886A
Authority
JP
Japan
Prior art keywords
gas
nitrogen
facility
turbine
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7598A
Other languages
Japanese (ja)
Inventor
Fumihiko Tamamushi
文彦 玉蟲
Sanemitsu Yanome
銑三 矢野目
Akira Amaike
瑛 天池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7598A priority Critical patent/JPH11200886A/en
Publication of JPH11200886A publication Critical patent/JPH11200886A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gasifying combined power generation equipment whereby kept energy of high pressure nitrogen from an air separator can be effectively applied without reducing residual oxygen concentration of exhaust gas supplied to a boiler equipment with high temperature exhaust gas of a gas turbine serving as an oxidizing agent. SOLUTION: In this gasifying combined power generation equipment provided with a gasifying equipment 1, gas turbine equipment 6, and a boiler equipment 10 to burn fuel in the boiler equipment with exhaust gas in the gas turbine equipment 6 serving as an oxidizing agent, a high pressure type air separator 7 liquefying pressure air separated into pressurized oxygen gas and nitrogen gas, nitrogen gas heaters 12, 14 heating separated nitrogen gas, and an oxygen gas compressing turbine compressor 16 further pressurizing separated oxygen gas by heated nitrogen gas are provided. In a nitrogen/air heat exchanger 12, by extraction air, and/or in a nitrogen/gasified gas heat exchanger 14, by gasified gas, separated nitrogen gas is heated to a high temperature (for instance, about 400 to 500 deg.C), and an expansion turbine of the turbine compressor 16 is driven.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン設備
の排ガスを酸化剤としてボイラ設備で燃料を燃焼させる
ガス化複合発電設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated gasification combined cycle system in which exhaust gas from a gas turbine facility is used as an oxidant to burn fuel in a boiler facility.

【0002】[0002]

【従来の技術】図3は、従来のガス化複合発電設備(I
GCC:Integrated Gasification Combined Cycle)の
フロー図である。石炭,重質油等の炭化水素系燃料をガ
ス化設備1で水蒸気と酸素ガスを用いてガス化して粗製
ガスにし、これを脱塵装置2で脱塵し、粗ガスクーラ3
で冷却し湿式脱硫設備4で脱硫してサチュレーション設
備5に供給し、更に加湿された燃料ガスをガスタービン
発電機6の燃焼器6aに供給する。一方、ガスタービン
発電機6の過剰空気を抽気して空気分離器7(ASU:
Air Separation Unit )に供給し、ここで抽気空気及び
導入空気から酸素と窒素を分離し、この酸素を酸素圧縮
機9bで加圧してガス化設備1に供給しガス化用に供
し、分離された窒素をガスタービンの燃焼器に供給する
ようになっている。
2. Description of the Related Art FIG. 3 shows a conventional integrated gasification combined cycle facility (I).
It is a flowchart of GCC: Integrated Gasification Combined Cycle. A hydrocarbon-based fuel such as coal or heavy oil is gasified in a gasification facility 1 using steam and oxygen gas to produce a crude gas, which is then dedusted by a dedusting device 2, and a crude gas cooler 3.
, And is desulfurized by the wet desulfurization facility 4 and supplied to the saturation facility 5, and the humidified fuel gas is supplied to the combustor 6 a of the gas turbine generator 6. On the other hand, the excess air of the gas turbine generator 6 is extracted and the air separator 7 (ASU:
Air separation unit), where oxygen and nitrogen are separated from the bleed air and the introduced air, and this oxygen is pressurized by the oxygen compressor 9b and supplied to the gasification equipment 1 for gasification and separated. Nitrogen is supplied to a combustor of a gas turbine.

【0003】ガスタービン発電設備6では、圧縮器6b
で加圧された圧縮空気により燃料ガスを燃焼し、加湿水
蒸気と窒素ガスで増量された燃焼ガスによりガスタービ
ン6cを駆動して発電機6dで発電し、排ガスを排熱回
収ボイラ8(HRSG:HeatRecovery Steam Generator
)に供給して排ガスより熱回収して給水加熱し、加熱
された給水の一部をサチュレーション設備5に供給して
加湿に用いる。
In the gas turbine power generation facility 6, a compressor 6b
The fuel gas is burned by the compressed air pressurized by the above, the gas turbine 6c is driven by the combustion gas increased by the humidified steam and the nitrogen gas to generate power by the generator 6d, and the exhaust gas is discharged into the exhaust heat recovery boiler 8 (HRSG: HeatRecovery Steam Generator
), Heat is recovered from the exhaust gas, and the feed water is heated. A part of the heated feed water is supplied to the saturation equipment 5 and used for humidification.

【0004】サチュレーション設備5は、ガスと水が接
触する多段接触塔5aと熱水を循環させるポンプ5bか
らなり、低温(例えば約40℃)で流入する燃料ガスを
約150℃前後の熱水を用いて約140℃前後まで加熱
するとともに、この温度における飽和点まで水蒸気を加
湿している。なお、サチュレーション設備は必ずしも必
要ではない。
The saturation equipment 5 comprises a multi-stage contact tower 5a in which gas and water come into contact with each other and a pump 5b for circulating hot water. To about 140 ° C., and humidify the steam to the saturation point at this temperature. In addition, saturation equipment is not necessarily required.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
のガス化複合発電設備(IGCC)において、空気分離
装置7で分離した窒素ガスを窒素圧縮機9cで加圧して
ガスタービン発電設備6の燃焼器6aへ送り、ガスター
ビン6cの出力アップやNOx低減が図られていた。ま
た、これと併用して、ガスタービン発電設備6の空気圧
縮機6bで圧縮された空気の余剰分を抽気して空気分離
装置7に送り、空気分離装置7に圧縮空気を供給する空
気圧縮機9aの動力低減が図られていた。
As described above, in the conventional integrated gasification combined cycle system (IGCC), the nitrogen gas separated by the air separation unit 7 is pressurized by the nitrogen compressor 9c to form the gas turbine The gas was sent to the combustor 6a to increase the output of the gas turbine 6c and reduce NOx. Further, in combination with this, an air compressor that extracts excess surplus air compressed by the air compressor 6 b of the gas turbine power generation facility 6, sends it to the air separation device 7, and supplies compressed air to the air separation device 7 The power of 9a was reduced.

【0006】しかし、従来のガス化複合発電設備におけ
る排熱回収ボイラ8は、ガスタービン6cの高温排ガス
(例えば500℃〜600℃)から顕熱を熱回収するだ
けであるため、熱効率が低い。そこで、特に既設のボイ
ラ設備がある場合に、排熱回収ボイラ8の代わりに既設
のボイラ設備を用い、ガスタービンの排ガスを酸化剤と
して燃料を燃焼させることにより、既設のボイラ設備を
有効活用すると共に、ガス化複合発電設備の全体の発電
量を増加させること(リパワリングという)が提案され
ている。
However, the waste heat recovery boiler 8 in the conventional integrated gasification combined cycle facility only recovers sensible heat from the high temperature exhaust gas (for example, 500 ° C. to 600 ° C.) of the gas turbine 6c, and therefore has low thermal efficiency. Therefore, especially when there is an existing boiler facility, the existing boiler facility is used effectively by using the existing boiler facility instead of the exhaust heat recovery boiler 8 and burning the fuel using the exhaust gas of the gas turbine as an oxidant. At the same time, it has been proposed to increase the total power generation amount of the integrated gasification combined cycle facility (referred to as repowering).

【0007】リパワリングを行う場合、従来のように、
空気分離装置7からの窒素ガスをガスタービン発電設備
6へ送るとガスタービン排気中の酸素濃度が必要濃度
(1〜4%)を下回ってしまう場合がある。この場合
に、空気分離装置7の窒素をガスタービンへ送らずに大
気に放出せざるを得ず、特に、空気分離装置7が高圧式
の場合には、分離された窒素ガスの圧力が3〜4ata
もあり、その保有エネルギーを無駄に捨てることにな
る。
When performing repowering, as in the prior art,
When the nitrogen gas from the air separation device 7 is sent to the gas turbine power generation equipment 6, the oxygen concentration in the exhaust gas of the gas turbine may fall below a required concentration (1 to 4%). In this case, the nitrogen in the air separation device 7 must be discharged to the atmosphere without being sent to the gas turbine. In particular, when the air separation device 7 is of a high pressure type, the pressure of the separated nitrogen gas is 3 to 4ata
And waste that energy.

【0008】本発明はかかる問題点を解決するために創
案されたものである。すなわち本発明の目的は、ガスタ
ービンの高温排ガスを酸化剤とするボイラ設備へ供給す
る排ガスの残存酸素濃度を低減することなく、空気分離
装置からの高圧窒素の保有エネルギーを有効活用するこ
とができるガス化複合発電設備を提供することにある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to effectively utilize the high-pressure nitrogen retained energy from an air separation device without reducing the residual oxygen concentration of exhaust gas supplied to a boiler facility using high-temperature exhaust gas of a gas turbine as an oxidant. An object of the present invention is to provide an integrated gasification combined cycle facility.

【0009】[0009]

【課題を解決するための手段】本発明によれば、ガス化
設備、ガスタービン設備及びボイラ設備を備え、ガスタ
ービン設備の排ガスを酸化剤としてボイラ設備で燃料を
燃焼させるガス化複合発電設備において、加圧空気を液
化分離して加圧された酸素ガスと窒素ガスに分離する高
圧式の空気分離装置と、分離された窒素ガスを加熱する
窒素ガス加熱器と、加熱された窒素ガスで分離された酸
素ガスを更に加圧する酸素ガス圧縮用のタービンコンプ
レッサとを備える、ことを特徴とするガス化複合発電設
備が提供される。
According to the present invention, there is provided a gasification combined cycle power plant comprising a gasification facility, a gas turbine facility and a boiler facility, wherein the exhaust gas from the gas turbine facility is used as an oxidant to burn fuel in the boiler facility. A high-pressure air separation device that liquefies and separates pressurized air into oxygen gas and nitrogen gas that is pressurized, a nitrogen gas heater that heats the separated nitrogen gas, and a separation using heated nitrogen gas And a turbine compressor for compressing oxygen gas that further pressurizes the supplied oxygen gas.

【0010】本発明の好ましい実施形態によれば、前記
窒素ガス加熱器は、ガスタービン設備の抽気空気、及び
/又は、ガス化設備のガス化ガスを加熱源とする。
According to a preferred embodiment of the present invention, the nitrogen gas heater uses bleed air from a gas turbine facility and / or gasified gas from a gasification facility as a heating source.

【0011】上記本発明の構成によれば、高圧式の空気
分離装置で発生する高圧(3ata以上)に加圧された
窒素ガスを抽気空気、及び/又は、ガス化ガスで高温
(例えば約400〜500℃)まで昇温した後、酸素ガ
ス圧縮用タービンコンプレッサの膨張タービンをまわし
て酸素ガスを更に加圧し、ガス化設備に供給する高圧酸
素として用いることができる。
According to the configuration of the present invention, the nitrogen gas generated by the high-pressure air separation apparatus and pressurized to a high pressure (3 at least) is extracted with the extracted air and / or gasified gas at a high temperature (for example, about 400 After the temperature is raised to about 500 ° C.), the oxygen gas can be further pressurized by turning an expansion turbine of a turbine compressor for oxygen gas compression and used as high-pressure oxygen supplied to gasification equipment.

【0012】従って、膨張タービンで空気分離装置で発
生した高圧窒素のエネルギーを回収して、従来大気に放
出していたエネルギーを有効に利用することが可能とな
り、これにより従来必要であった酸素圧縮機9b、窒素
圧縮機9cをなくすことができ、それらの設備費及び運
転動力費を低減することができる。また、この構成によ
り、空気分離装置で発生した窒素が、ガスタービンの排
ガスに混入されないので、高温排ガスの残存酸素濃度を
高く維持することができ、この排ガスを酸化剤としてボ
イラ設備のリパワリングを有効に行うことができる。
Therefore, the energy of the high-pressure nitrogen generated in the air separation device by the expansion turbine can be recovered, and the energy that has been conventionally released to the atmosphere can be effectively used. The compressor 9b and the nitrogen compressor 9c can be eliminated, and their equipment costs and operating power costs can be reduced. In addition, with this configuration, since the nitrogen generated in the air separation device is not mixed into the exhaust gas of the gas turbine, the residual oxygen concentration of the high-temperature exhaust gas can be kept high, and this exhaust gas is used as an oxidizing agent to effectively repower the boiler equipment. Can be done.

【0013】[0013]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付し重複した説明を省略する。
図2は、従来の高圧式空気分離装置の全体構成図であ
る。この図に示す高圧式空気分離装置7は、モレキュラ
ーシーブ方式であり、モレキュラーシーブ吸着器7a、
膨張器(エキスパンダー)7b、蒸留塔7c、空気冷却
器7d、主熱交換器7e、等を備えている。空気圧縮機
(図2の空気圧縮機9a又は6b、等)で加圧された圧
縮空気がモレキュラーシーブ吸着器7aに入り、空気中
に含まれる水分、炭酸ガス、炭化水素等の不純物が吸着
により除去される。次いで、加圧空気の一部が、膨張器
7bで断熱膨張して極低温を発生させ、空気冷却器7d
で残りの加圧空気が極低温まで冷却液化され蒸留塔7c
の下塔に供給される。蒸留塔7cの下塔は、液化空気は
12〜13ataまで減圧されており(温度約−160
℃)、気化したガス化窒素(GN)と液化空気(LA)
が別々に主熱交換器7eで冷却され、蒸留塔7cの上塔
に供給される。蒸留塔7cの上塔は4〜5ataに減圧
されており(温度約−170℃)、ここで、液化空気
(LA)の全てがガス化窒素(GN)と液化酸素(L
O)に分離され、それぞれ空気冷却器7d又は主熱交換
器7eで加熱されて、約3〜4ataの圧力,約150
℃の温度で外部に取り出される。なお、高圧式空気分離
装置7は、モレキュラーシーブ方式に限定されず、例え
ば、周知のリバーシング熱交換器方式、その他であって
もよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common portions are denoted by the same reference numerals, and redundant description is omitted.
FIG. 2 is an overall configuration diagram of a conventional high-pressure air separation device. The high-pressure air separation device 7 shown in this figure is of a molecular sieve type, and has a molecular sieve adsorber 7a,
It is provided with an expander (expander) 7b, a distillation column 7c, an air cooler 7d, a main heat exchanger 7e, and the like. Compressed air pressurized by an air compressor (such as the air compressor 9a or 6b in FIG. 2) enters the molecular sieve adsorber 7a, and impurities such as moisture, carbon dioxide, and hydrocarbons contained in the air are adsorbed. Removed. Next, a part of the pressurized air is adiabatically expanded in the expander 7b to generate a cryogenic temperature, and the air cooler 7d
The remaining pressurized air is cooled and liquefied to a cryogenic temperature in the distillation column 7c.
To the lower tower. In the lower column of the distillation column 7c, the liquefied air is reduced in pressure to 12 to 13 ata (temperature of about -160
° C), vaporized nitrogen gas (GN) and liquefied air (LA)
Are separately cooled in the main heat exchanger 7e and supplied to the upper column of the distillation column 7c. The upper column of the distillation column 7c is decompressed to 4 to 5 data (temperature of about -170 ° C), and all of the liquefied air (LA) is gasified nitrogen (GN) and liquefied oxygen (L).
O) and heated by an air cooler 7d or a main heat exchanger 7e, respectively, to a pressure of about 3 to 4 ata, about 150
It is taken out at a temperature of ° C. The high-pressure air separation device 7 is not limited to the molecular sieve type, and may be, for example, a well-known reversing heat exchanger type or the like.

【0014】図1は、本発明によるガス化複合発電設備
の全体フロー図である。この図において、本発明のガス
化複合発電設備は、ガス化設備1、ガスタービン設備6
及びボイラ設備10を備え、ガスタービン設備6の排ガ
スを酸化剤としてボイラ設備10で燃料を燃焼させるよ
うになっている。ボイラ設備10は、既設のボイラ設備
であり、これを有効活用するリパワリングであるのが最
も適しているが、別個に新設してもよい。また、このボ
イラ設備10は、蒸気発電設備を併設した発電設備であ
っても、その他の用途のものであってもよい。
FIG. 1 is an overall flowchart of an integrated gasification combined cycle power plant according to the present invention. In this figure, the integrated gasification combined cycle system of the present invention includes a gasification facility 1, a gas turbine facility 6
And boiler equipment 10, and the boiler equipment 10 burns fuel using the exhaust gas of the gas turbine equipment 6 as an oxidant. The boiler facility 10 is an existing boiler facility, and is most suitably repowering that makes effective use of the boiler facility, but may be newly provided separately. Further, the boiler facility 10 may be a power generation facility provided with a steam power generation facility, or may be for other purposes.

【0015】図1に示すように、本発明のガス化複合発
電設備は、加圧空気を液化分離して加圧された酸素ガス
と窒素ガスに分離する高圧式の空気分離装置7と、分離
された窒素ガスを加熱する窒素ガス加熱器と、加熱され
た窒素ガスで分離された酸素ガスを更に加圧する酸素ガ
ス圧縮用のタービンコンプレッサ16とを備えている。
As shown in FIG. 1, the combined gasification combined cycle system of the present invention comprises a high-pressure air separation device 7 for liquefying and separating pressurized air into pressurized oxygen gas and nitrogen gas. A nitrogen gas heater for heating the heated nitrogen gas; and a turbine compressor 16 for compressing the oxygen gas, which further pressurizes the oxygen gas separated by the heated nitrogen gas.

【0016】この例において、窒素ガス加熱器は、ガス
タービン設備6の抽気空気を加熱源とする窒素/空気熱
交換器12と、ガス化設備1のガス化ガスを加熱源とす
る窒素/ガス化ガス熱交換器14とからなる。この構成
により、図2に示した高圧式空気分離装置7で分離され
た低温高圧(例えば、約15℃,約3〜4ata)の窒
素ガスを、窒素/空気熱交換器12及び窒素/ガス化ガ
ス熱交換器14において再加熱して高温高圧(例えば、
約400℃,約3〜4ata)とすることができる。な
お、窒素/空気熱交換器12と窒素/ガス化ガス熱交換
器14は、いずれか一方のみを備えてもよい。
In this example, the nitrogen gas heater includes a nitrogen / air heat exchanger 12 using the extracted air of the gas turbine facility 6 as a heating source, and a nitrogen / gas heat source using the gasification gas of the gasification facility 1 as a heating source. Gas heat exchanger 14. With this configuration, the low-temperature and high-pressure (for example, about 15 ° C., about 3 to 4 ata) nitrogen gas separated by the high-pressure air separation device 7 shown in FIG. Reheat in the gas heat exchanger 14 to perform high temperature and high pressure (for example,
About 400 ° C., about 3 to 4 data). The nitrogen / air heat exchanger 12 and the nitrogen / gasification gas heat exchanger 14 may include only one of them.

【0017】すなわち、図1のガス化複合発電設備で
は、図3の従来のガス化複合発電設備と比較すると、2
台の圧縮機9b,9cがなくなり、その代わりにタービ
ンコンプレッサ16が設けられている。また、空気分離
装置7で分離された窒素ガスは、ガスタービン設備6に
は供給されずに、加熱後にタービンコンプレッサ16の
膨張タービンに供給されて動力を発生させるようになっ
ている。更に、従来の排熱回収ボイラ8の代わりにボイ
ラ設備10が用いられている。その他の構成は、図3と
同様である。
That is, in the integrated gasification combined cycle system shown in FIG. 1, compared with the conventional integrated gasification combined cycle installation shown in FIG.
The compressors 9b and 9c are eliminated, and a turbine compressor 16 is provided instead. The nitrogen gas separated by the air separation device 7 is not supplied to the gas turbine equipment 6 but is supplied to the expansion turbine of the turbine compressor 16 after heating to generate power. Further, a boiler facility 10 is used instead of the conventional exhaust heat recovery boiler 8. Other configurations are the same as those in FIG.

【0018】上述した本発明の構成によれば、高圧式の
空気分離装置7で発生する高圧(3ata以上)に加圧
された窒素ガスを窒素/空気熱交換器12において抽気
空気で、及び/又は、窒素/ガス化ガス熱交換器14に
おいてガス化ガスで、高温(例えば約400〜500
℃)まで昇温した後、酸素ガス圧縮用タービンコンプレ
ッサ16の膨張タービンを駆動して酸素ガスを更に加圧
し、ガス化設備に供給する高圧酸素として用いることが
できる。
According to the configuration of the present invention described above, the nitrogen gas generated in the high-pressure type air separation device 7 and pressurized to a high pressure (3 at least) is extracted air in the nitrogen / air heat exchanger 12 and / or Alternatively, the gasification gas in the nitrogen / gasification gas heat exchanger 14 is heated to a high temperature (for example, about 400 to 500
C.), the expansion turbine of the oxygen gas compression turbine compressor 16 is driven to further pressurize the oxygen gas, which can be used as high-pressure oxygen supplied to gasification equipment.

【0019】従って、膨張タービンで空気分離装置7で
発生した高圧窒素のエネルギーを回収して、従来大気に
放出していたエネルギーを有効に利用することが可能と
なり、これにより従来必要であった酸素圧縮機9b、窒
素圧縮機9cをなくすことができ、それらの設備費及び
運転動力費を低減することができる。また、この構成に
より、空気分離装置7で発生した窒素が、ガスタービン
の排ガスに混入されないので、高温排ガスの残存酸素濃
度を高く維持することができ、この排ガスを酸化剤とし
てボイラ設備のリパワリングを有効に行うことができ
る。
Therefore, the energy of the high-pressure nitrogen generated in the air separation device 7 by the expansion turbine can be recovered, and the energy that has been conventionally released to the atmosphere can be effectively used. The compressor 9b and the nitrogen compressor 9c can be eliminated, and their equipment costs and operating power costs can be reduced. Further, according to this configuration, since the nitrogen generated in the air separation device 7 is not mixed into the exhaust gas of the gas turbine, the residual oxygen concentration of the high-temperature exhaust gas can be kept high, and this exhaust gas is used as an oxidant to repower the boiler equipment. Can be done effectively.

【0020】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々に変更でき
ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0021】[0021]

【発明の効果】上述したように、本発明のガス化複合発
電設備は、ガスタービンの高温排ガスを酸化剤とするボ
イラ設備へ供給する排ガスの残存酸素濃度を低減するこ
となく、空気分離装置からの高圧窒素の保有エネルギー
を有効活用することができる、等の優れた効果を有す
る。
As described above, the integrated gasification combined cycle power plant of the present invention can be used in an air separation device without reducing the residual oxygen concentration of exhaust gas supplied to a boiler facility using hot exhaust gas from a gas turbine as an oxidant. Of the high pressure nitrogen can be effectively utilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるガス化複合発電設備の全体フロー
図である。
FIG. 1 is an overall flowchart of an integrated gasification combined cycle facility according to the present invention.

【図2】従来の空気分離装置の全体構成図である。FIG. 2 is an overall configuration diagram of a conventional air separation device.

【図3】従来のガス化複合発電設備のフロー図である。FIG. 3 is a flowchart of a conventional integrated gasification combined cycle facility.

【符号の説明】[Explanation of symbols]

1 ガス化設備 2 脱塵装置 3 粗ガスクーラ 4 湿式脱硫設備 5 サチュレーション設備 5a 多段接触塔 5b ポンプ 6 ガスタービン発電機 6a 燃焼器 6b 圧縮器 6c ガスタービン 6d 発電機 7 空気分離器 7a モレキュラーシーブ吸着器 7b 膨張器(エキスパンダー) 7c 蒸留塔 7d 空気冷却器 7e 主熱交換器 8 排熱回収ボイラ 9a,9b,9c 圧縮機 10 ボイラ設備 12 窒素/空気熱交換器 14 窒素/ガス化ガス熱交換器 16 タービンコンプレッサ DESCRIPTION OF SYMBOLS 1 Gasification equipment 2 Dust removal device 3 Crude gas cooler 4 Wet desulfurization equipment 5 Saturation equipment 5a Multi-stage contact tower 5b Pump 6 Gas turbine generator 6a Combustor 6b Compressor 6c Gas turbine 6d Generator 7 Air separator 7a Molecular sieve adsorber 7b Expander (expander) 7c Distillation tower 7d Air cooler 7e Main heat exchanger 8 Waste heat recovery boiler 9a, 9b, 9c Compressor 10 Boiler equipment 12 Nitrogen / air heat exchanger 14 Nitrogen / gasification gas heat exchanger 16 Turbine compressor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02C 6/18 F02C 6/18 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02C 6/18 F02C 6/18 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス化設備、ガスタービン設備及びボイ
ラ設備を備え、ガスタービン設備の排ガスを酸化剤とし
てボイラ設備で燃料を燃焼させるガス化複合発電設備に
おいて、 加圧空気を液化分離して加圧された酸素ガスと窒素ガス
に分離する高圧式の空気分離装置と、分離された窒素ガ
スを加熱する窒素ガス加熱器と、加熱された窒素ガスで
分離された酸素ガスを更に加圧する酸素ガス圧縮用のタ
ービンコンプレッサとを備える、ことを特徴とするガス
化複合発電設備。
A gasification combined cycle power plant comprising a gasification facility, a gas turbine facility, and a boiler facility, wherein the exhaust gas from the gas turbine facility is used as an oxidant to burn fuel in the boiler facility. A high-pressure air separation device that separates the separated oxygen gas and nitrogen gas, a nitrogen gas heater that heats the separated nitrogen gas, and an oxygen gas that further pressurizes the separated oxygen gas with the heated nitrogen gas An integrated gasification combined cycle facility comprising a turbine compressor for compression.
【請求項2】 前記窒素ガス加熱器は、ガスタービン設
備の抽気空気、及び/又は、ガス化設備のガス化ガスを
加熱源とする、ことを特徴とする請求項1に記載のガス
化複合発電設備。
2. The gasification complex according to claim 1, wherein the nitrogen gas heater uses a bleed air of a gas turbine facility and / or a gasification gas of a gasification facility as a heating source. Power generation equipment.
JP7598A 1998-01-05 1998-01-05 Gasifying combined power generation equipment Pending JPH11200886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7598A JPH11200886A (en) 1998-01-05 1998-01-05 Gasifying combined power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7598A JPH11200886A (en) 1998-01-05 1998-01-05 Gasifying combined power generation equipment

Publications (1)

Publication Number Publication Date
JPH11200886A true JPH11200886A (en) 1999-07-27

Family

ID=11464062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7598A Pending JPH11200886A (en) 1998-01-05 1998-01-05 Gasifying combined power generation equipment

Country Status (1)

Country Link
JP (1) JPH11200886A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077419A1 (en) * 2001-03-23 2002-10-03 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated air separation and power generation process
JP2007231949A (en) * 2006-02-28 2007-09-13 General Electric Co <Ge> Variable extraction method for control of gas turbine
US8752391B2 (en) 2010-11-08 2014-06-17 General Electric Company Integrated turbomachine oxygen plant
JP2014136790A (en) * 2013-01-18 2014-07-28 Mitsubishi Heavy Ind Ltd Gasification furnace and gasification method
CN104334838A (en) * 2012-06-05 2015-02-04 通用电气公司 Heat recovery using organic rankine cycle
JP2015113113A (en) * 2013-12-06 2015-06-22 イートン リミテッドEaton Limited Onboard inert gas generation system and onboard inert gas generation method
CN105733684A (en) * 2016-03-03 2016-07-06 中石化南京工程有限公司 Start-up oxygen introduction method for gasification furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077419A1 (en) * 2001-03-23 2002-10-03 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated air separation and power generation process
US6745573B2 (en) 2001-03-23 2004-06-08 American Air Liquide, Inc. Integrated air separation and power generation process
JP2007231949A (en) * 2006-02-28 2007-09-13 General Electric Co <Ge> Variable extraction method for control of gas turbine
US8752391B2 (en) 2010-11-08 2014-06-17 General Electric Company Integrated turbomachine oxygen plant
CN104334838A (en) * 2012-06-05 2015-02-04 通用电气公司 Heat recovery using organic rankine cycle
JP2014136790A (en) * 2013-01-18 2014-07-28 Mitsubishi Heavy Ind Ltd Gasification furnace and gasification method
JP2015113113A (en) * 2013-12-06 2015-06-22 イートン リミテッドEaton Limited Onboard inert gas generation system and onboard inert gas generation method
CN105733684A (en) * 2016-03-03 2016-07-06 中石化南京工程有限公司 Start-up oxygen introduction method for gasification furnace

Similar Documents

Publication Publication Date Title
JP2649013B2 (en) Method of generating energy by using gas turbine
AU2008304752B2 (en) Turbine facility and power generating apparatus
US7191587B2 (en) Hybrid oxygen-fired power generation system
US4785622A (en) Integrated coal gasification plant and combined cycle system with air bleed and steam injection
US6684643B2 (en) Process for the operation of a gas turbine plant
JP2601631B2 (en) How to integrate air separation and gas turbine power generation
US20050028529A1 (en) Method of generating energy in a power plant comprising a gas turbine, and power plant for carrying out the method
US20080010967A1 (en) Method for Generating Energy in an Energy Generating Installation Having a Gas Turbine, and Energy Generating Installation Useful for Carrying Out the Method
US20040011057A1 (en) Ultra-low emission power plant
US5572861A (en) S cycle electric power system
KR102004700B1 (en) Supercritical carbon dioxide power generation system of oxy fuel combustion
WO1997007329A1 (en) Power plant with carbon dioxide capture
JP2012062897A (en) Method for capturing co2 from exhaust gas
AU2012200096B2 (en) Carbon dioxide liquefaction system
CN101566104B (en) Method and device for zero emission of carbon dioxide by utilizing liquid hydrogen condensation
JP2024119798A (en) Turbine system and method
JPS61155493A (en) Synthetic composite cycle system
JPH09501750A (en) Utilization method of waste heat energy in power plant
US20120285176A1 (en) Integration of coal fired steam plants with integrated gasification combined cycle power plants
JPH11315727A (en) Gasification combined cycle power generation plant for removal of carbon dioxide
JPH11200886A (en) Gasifying combined power generation equipment
JPH08506873A (en) New power method
JPH10184388A (en) Method and device for obtaining work from high-pressure gas flow abundant in nitrogen
JPH11200885A (en) Gasifying combined power generation equipment
JP3787820B2 (en) Gasification combined power generation facility