JPH11200885A - Gasifying combined power generation equipment - Google Patents

Gasifying combined power generation equipment

Info

Publication number
JPH11200885A
JPH11200885A JP7498A JP7498A JPH11200885A JP H11200885 A JPH11200885 A JP H11200885A JP 7498 A JP7498 A JP 7498A JP 7498 A JP7498 A JP 7498A JP H11200885 A JPH11200885 A JP H11200885A
Authority
JP
Japan
Prior art keywords
gas
equipment
facility
air
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7498A
Other languages
Japanese (ja)
Inventor
Fumihiko Tamamushi
文彦 玉蟲
Sanemitsu Yanome
銑三 矢野目
Akira Amaike
瑛 天池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7498A priority Critical patent/JPH11200885A/en
Publication of JPH11200885A publication Critical patent/JPH11200885A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gasifying combined power generation equipment whereby kept energy of extraction air supplied to a low pressure type air separator can be effectively applied without reducing residual oxygen concentration of exhaust gas supplied to a boiler equipment, in the case of providing the boiler equipment with high temperature exhaust gas of a gas turbine serving as an oxidizing agent. SOLUTION: In this gasifying combined power generation equipment provided with a gasifying equipment 1, gas turbine equipment 6, and a boiler equipment 10 to burn fuel in the boiler equipment 10 with exhaust gas in the gas turbine equipment 6 serving as an oxidizing agent, a low pressure type air separator 7 liquefying pressure air separated in low pressure oxygen gas and nitrogen gas and an oxygen gas compressor 16 (for instance, turbine compressor) further pressurizing oxygen gas separated by high pressure extraction air from the gas turbine equipment 6 are provided. The high pressure extraction air, after its temperature is increased to a high value (for instance, about 500 to 600 deg.C), is supplied to the oxygen gas compressor 16, and oxygen gas is further pressurized therein, to be supplied to the gasifying equipment 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン設備
の排ガスを酸化剤としてボイラ設備で燃料を燃焼させる
ガス化複合発電設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated gasification combined cycle system in which exhaust gas from a gas turbine facility is used as an oxidant to burn fuel in a boiler facility.

【0002】[0002]

【従来の技術】図3は、従来のガス化複合発電設備(I
GCC:Integrated Gasification Combined Cycle)の
フロー図である。石炭,重質油等の炭化水素系燃料をガ
ス化設備1で水蒸気と酸素ガスを用いてガス化して粗製
ガスにし、これを脱塵装置2で脱塵し、粗ガスクーラ3
で冷却し湿式脱硫設備4で脱硫してサチュレーション設
備5に供給し、更に加湿された燃料ガスをガスタービン
発電機6の燃焼器6aに供給する。一方、ガスタービン
発電機6の過剰空気を抽気して空気分離器7(ASU:
Air Separation Unit )に供給し、ここで抽気空気及び
導入空気から酸素と窒素を分離し、この酸素を酸素圧縮
機9bで加圧してガス化設備1に供給しガス化用に供
し、分離された窒素をガスタービンの燃焼器に供給する
ようになっている。なお、サチュレーション設備は必ず
しも必要ではない。
2. Description of the Related Art FIG. 3 shows a conventional integrated gasification combined cycle facility (I).
It is a flowchart of GCC: Integrated Gasification Combined Cycle. A hydrocarbon-based fuel such as coal or heavy oil is gasified in a gasification facility 1 using steam and oxygen gas to produce a crude gas, which is then dedusted by a dedusting device 2, and a crude gas cooler 3.
, And is desulfurized by the wet desulfurization facility 4 and supplied to the saturation facility 5, and the humidified fuel gas is supplied to the combustor 6 a of the gas turbine generator 6. On the other hand, the excess air of the gas turbine generator 6 is extracted and the air separator 7 (ASU:
Air separation unit), where oxygen and nitrogen are separated from the bleed air and the introduced air, and this oxygen is pressurized by the oxygen compressor 9b and supplied to the gasification equipment 1 for gasification and separated. Nitrogen is supplied to a combustor of a gas turbine. In addition, saturation equipment is not necessarily required.

【0003】ガスタービン発電設備6では、圧縮器6b
で加圧された圧縮空気により燃料ガスを燃焼し、加湿水
蒸気と窒素ガスで増量された燃焼ガスによりガスタービ
ン6cを駆動して発電機6dで発電し、排ガスを排熱回
収ボイラ8(HRSG:HeatRecovery Steam Generator
)に供給して排ガスより熱回収して給水加熱し、加熱
された給水の一部をサチュレーション設備5に供給して
加湿に用いる。
In the gas turbine power generation facility 6, a compressor 6b
The fuel gas is burned by the compressed air pressurized by the above, the gas turbine 6c is driven by the combustion gas increased by the humidified steam and the nitrogen gas to generate power by the generator 6d, and the exhaust gas is discharged into the exhaust heat recovery boiler 8 (HRSG: HeatRecovery Steam Generator
), Heat is recovered from the exhaust gas, and the feed water is heated. A part of the heated feed water is supplied to the saturation equipment 5 and used for humidification.

【0004】サチュレーション設備5は、ガスと水が接
触する多段接触塔5aと熱水を循環させるポンプ5bか
らなり、低温(例えば約40℃)で流入する燃料ガスを
約150℃前後の熱水を用いて約140℃前後まで加熱
するとともに、この温度における飽和点まで水蒸気を加
湿している。
The saturation equipment 5 comprises a multi-stage contact tower 5a in which gas and water come into contact with each other and a pump 5b for circulating hot water. To about 140 ° C., and humidify the steam to the saturation point at this temperature.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
のガス化複合発電設備(IGCC)において、空気分離
装置7で分離した窒素ガスを窒素圧縮機9cで加圧して
ガスタービン発電設備6の燃焼器6aへ送り、ガスター
ビン6cの出力アップやNOx低減が図られていた。ま
た、これと併用して、ガスタービン発電設備6の空気圧
縮機6bで圧縮された空気の余剰分を抽気して高圧式の
空気分離装置7に送り、空気分離装置7に圧縮空気を供
給する空気圧縮機9aの動力低減が図られていた。
As described above, in the conventional integrated gasification combined cycle system (IGCC), the nitrogen gas separated by the air separation unit 7 is pressurized by the nitrogen compressor 9c to form the gas turbine The gas was sent to the combustor 6a to increase the output of the gas turbine 6c and reduce NOx. In combination with this, the excess air compressed by the air compressor 6b of the gas turbine power generation equipment 6 is extracted and sent to the high-pressure air separation device 7 to supply compressed air to the air separation device 7. The power of the air compressor 9a was reduced.

【0006】しかし、従来のガス化複合発電設備におけ
る排熱回収ボイラ8は、ガスタービン6cの高温排ガス
(例えば500℃〜600℃)から顕熱を熱回収するだ
けであるため、熱効率が低い。そこで、特に既設のボイ
ラ設備がある場合に、排熱回収ボイラ8の代わりに既設
のボイラ設備を用い、ガスタービンの排ガスを酸化剤と
して燃料を燃焼させることにより、既設のボイラ設備を
有効活用すると共に、ガス化複合発電設備の全体の発電
量を増加させること(リパワリングという)が提案され
ている。
However, the waste heat recovery boiler 8 in the conventional integrated gasification combined cycle facility only recovers sensible heat from the high temperature exhaust gas (for example, 500 ° C. to 600 ° C.) of the gas turbine 6c, and therefore has low thermal efficiency. Therefore, especially when there is an existing boiler facility, the existing boiler facility is used effectively by using the existing boiler facility instead of the exhaust heat recovery boiler 8 and burning the fuel using the exhaust gas of the gas turbine as an oxidant. At the same time, it has been proposed to increase the total power generation amount of the integrated gasification combined cycle facility (referred to as repowering).

【0007】リパワリングを行う場合、従来のように、
高圧式の空気分離装置7からの窒素ガスをガスタービン
発電設備6へ送るとガスタービン排気中の酸素濃度が必
要濃度(1〜4%)を下回ってしまう場合がある。この
場合に、空気分離装置7の窒素をガスタービンへ送らず
に大気に放出せざるを得ず、特に、空気分離装置7が高
圧式の場合には、分離された窒素ガスの圧力が3〜4a
taもあり、その保有エネルギーを無駄に捨てることに
なる。
When performing repowering, as in the prior art,
When the nitrogen gas from the high-pressure type air separation device 7 is sent to the gas turbine power generation equipment 6, the oxygen concentration in the gas turbine exhaust gas may fall below the required concentration (1 to 4%). In this case, the nitrogen in the air separation device 7 must be discharged to the atmosphere without being sent to the gas turbine. In particular, when the air separation device 7 is of a high pressure type, the pressure of the separated nitrogen gas is 3 to 4a
There is also ta, and the stored energy is wasted.

【0008】一方、空気分離装置7には高圧式の他に低
圧式があり、低圧式の空気分離装置7は、高圧式よりも
分離効率が高く、かつ分離された窒素ガスの圧力は1〜
2ataであり、そのまま放出しても損失が少ない特徴
がある。しかし、低圧式の空気分離装置7を用いる場合
には、空気圧縮機6bからの抽気空気の圧力が高い(例
えば約15ata)ため、低圧式の最大運転圧力である
約4〜5ataまで膨張させる必要があり、その分の保
有エネルギーを無駄に捨てることになる。
On the other hand, the air separation device 7 is of a low pressure type in addition to the high pressure type, and the low pressure type air separation device 7 has a higher separation efficiency than the high pressure type, and the pressure of the separated nitrogen gas is 1 to 1.
2ata, which is characterized by little loss even if released as it is. However, when the low-pressure air separation device 7 is used, since the pressure of the bleed air from the air compressor 6b is high (for example, about 15 ata), it is necessary to expand the pressure to about 4 to 5 ata, which is the low-pressure maximum operating pressure. Energy is wasted.

【0009】本発明はかかる問題点を解決するために創
案されたものである。すなわち本発明の目的は、ガスタ
ービンの高温排ガスを酸化剤とするボイラ設備を備える
場合に、ボイラ設備へ供給する排ガスの残存酸素濃度を
低減することなく、低圧式の空気分離装置へ供給される
抽気空気の保有エネルギーを有効活用することができる
ガス化複合発電設備を提供することにある。
The present invention has been made in order to solve such a problem. That is, an object of the present invention is to provide a low-pressure type air separation device without reducing the residual oxygen concentration of exhaust gas supplied to the boiler equipment when a boiler equipment using high-temperature exhaust gas of a gas turbine as an oxidant is provided. It is an object of the present invention to provide a combined gasification and power generation facility that can effectively utilize the energy possessed by bleed air.

【0010】[0010]

【課題を解決するための手段】本発明によれば、ガス化
設備、ガスタービン設備及びボイラ設備を備え、ガスタ
ービン設備の排ガスを酸化剤としてボイラ設備で燃料を
燃焼させるガス化複合発電設備において、加圧空気を液
化分離して低圧の酸素ガスと窒素ガスに分離する低圧式
の空気分離装置と、ガスタービン設備からの高圧抽気空
気で分離された酸素ガスを更に加圧する酸素ガス圧縮装
置とを備える、ことを特徴とするガス化複合発電設備が
提供される。
According to the present invention, there is provided a gasification combined cycle power plant comprising a gasification facility, a gas turbine facility and a boiler facility, wherein the exhaust gas from the gas turbine facility is used as an oxidant to burn fuel in the boiler facility. A low-pressure air separation device that liquefies and separates pressurized air into low-pressure oxygen gas and nitrogen gas, and an oxygen gas compression device that further pressurizes the oxygen gas separated by high-pressure bleed air from gas turbine equipment. The combined gasification combined cycle equipment provided with these is provided.

【0011】本発明の好ましい実施形態によれば、前記
高圧抽気空気をガス化設備のガス化ガスで加熱する空気
加熱器を備える。
According to a preferred embodiment of the present invention, there is provided an air heater for heating the high-pressure bleed air with gasification gas of a gasification facility.

【0012】上記本発明の構成によれば、ガスタービン
発電設備から供給される高圧の抽気空気を、好ましくは
ガス化設備のガス化ガスにより、高温(例えば約500
〜600℃)まで昇温した後、酸素ガス圧縮装置(好ま
しくは、タービンコンプレッサ)に供給し、この圧縮装
置で酸素ガスを更に加圧し、ガス化設備に供給する高圧
酸素として用いることができる。
According to the configuration of the present invention, the high-pressure bleed air supplied from the gas turbine power generation facility is preferably heated to a high temperature (for example, about 500
After the temperature is raised to about 600 ° C.), the oxygen gas is supplied to an oxygen gas compression device (preferably, a turbine compressor), and the oxygen gas is further pressurized by the compression device and can be used as high-pressure oxygen supplied to a gasification facility.

【0013】従って、低圧式の空気分離装置を用いる場
合に、その運転圧力まで膨張させて無駄に捨てていた保
有エネルギーを、酸素ガス圧縮装置で回収して有効に利
用することが可能となり、これにより従来必要であった
酸素圧縮機とエキスパンダーをなくすことができ、それ
らの設備費及び運転動力費を低減することができる。ま
た、この構成により、空気分離装置で発生した窒素が、
ガスタービンの排ガスに混入されないので、高温排ガス
の残存酸素濃度を高く維持することができ、この排ガス
を酸化剤としてボイラ設備のリパワリングを有効に行う
ことができる。
Therefore, when a low-pressure air separation device is used, the stored energy that has been expanded to its operating pressure and wasted can be recovered and effectively used by the oxygen gas compression device. Thereby, the oxygen compressor and the expander which have been conventionally required can be eliminated, and the equipment cost and the operating power cost thereof can be reduced. Also, with this configuration, nitrogen generated in the air separation device is
Since it is not mixed with the exhaust gas of the gas turbine, the residual oxygen concentration of the high-temperature exhaust gas can be kept high, and the re-powering of the boiler equipment can be effectively performed using the exhaust gas as an oxidant.

【0014】[0014]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付し重複した説明を省略する。
図2は、従来の低圧式空気分離装置の全体構成図であ
る。この図に示す低圧式空気分離装置7は、モレキュラ
ーシーブ方式であり、モレキュラーシーブ吸着器7a、
膨張器(エキスパンダー)7b、蒸留塔7c、空気冷却
器7d、主熱交換器7e、等を備えている。空気圧縮機
(図2の空気圧縮機9a又は6b、等)で加圧された4
〜5ataの圧縮空気がモレキュラーシーブ吸着器7a
に入り、空気中に含まれる水分、炭酸ガス、炭化水素等
の不純物が吸着により除去される。次いで、加圧空気の
一部が、膨張器7bで断熱膨張して極低温を発生させ、
空気冷却器7dで残りの加圧空気が極低温まで冷却液化
され蒸留塔7cの下塔に供給される。蒸留塔7cの下塔
は、液化空気は4〜5ataまで減圧されており、気化
したガス化窒素(GN)と液化空気(LA)が別々に主
熱交換器7eで冷却され、蒸留塔7cの上塔に供給され
る。蒸留塔7cの上塔は2〜3ataに減圧されてお
り、ここで、液化空気(LA)の全てがガス化窒素(G
N)と液化酸素(LO)に分離され、それぞれ空気冷却
器7d又は主熱交換器7eで加熱されて、約1〜2at
aの圧力で外部に取り出される。なお、低圧式空気分離
装置7は、モレキュラーシーブ方式に限定されず、例え
ば、周知のリバーシング熱交換器方式、その他であって
もよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common portions are denoted by the same reference numerals, and redundant description is omitted.
FIG. 2 is an overall configuration diagram of a conventional low-pressure air separation device. The low-pressure air separation device 7 shown in this figure is of a molecular sieve type, and a molecular sieve adsorber 7a,
It is provided with an expander (expander) 7b, a distillation column 7c, an air cooler 7d, a main heat exchanger 7e, and the like. 4 compressed by an air compressor (such as the air compressor 9a or 6b in FIG. 2).
Compressed air of ~ 5ata is molecular sieve adsorber 7a
And impurities such as moisture, carbon dioxide, and hydrocarbons contained in the air are removed by adsorption. Next, a part of the pressurized air is adiabatically expanded in the expander 7b to generate an extremely low temperature,
The remaining pressurized air is cooled and liquefied to an extremely low temperature by the air cooler 7d and supplied to the lower column of the distillation column 7c. In the lower column of the distillation column 7c, the liquefied air is reduced in pressure to 4 to 5 ata, and the gasified nitrogen (GN) and the liquefied air (LA) are separately cooled in the main heat exchanger 7e. It is supplied to the upper tower. The upper column of the distillation column 7c is decompressed to 2-3 ata, where all of the liquefied air (LA) is gasified nitrogen (G
N) and liquefied oxygen (LO), and are heated by an air cooler 7d or a main heat exchanger 7e, respectively, to about 1-2 at.
It is taken out at the pressure of a. The low-pressure air separation device 7 is not limited to the molecular sieve type, but may be, for example, a well-known reversing heat exchanger type or the like.

【0015】図1は、本発明によるガス化複合発電設備
の全体フロー図である。この図において、本発明のガス
化複合発電設備は、ガス化設備1、ガスタービン設備6
及びボイラ設備10を備え、ガスタービン設備6の排ガ
スを酸化剤としてボイラ設備10で燃料を燃焼させるよ
うになっている。ボイラ設備10は、既設のボイラ設備
であり、これを有効活用するリパワリングであるのが最
も適しているが、別個に新設してもよい。また、このボ
イラ設備10は、蒸気発電設備を併設した発電設備であ
っても、その他の用途のものであってもよい。
FIG. 1 is an overall flow chart of an integrated gasification combined cycle system according to the present invention. In this figure, the integrated gasification combined cycle system of the present invention includes a gasification facility 1, a gas turbine facility 6
And boiler equipment 10, and the boiler equipment 10 burns fuel using the exhaust gas of the gas turbine equipment 6 as an oxidant. The boiler facility 10 is an existing boiler facility, and is most suitably repowering that makes effective use of the boiler facility, but may be newly provided separately. Further, the boiler facility 10 may be a power generation facility provided with a steam power generation facility, or may be for other purposes.

【0016】図1に示すように、本発明のガス化複合発
電設備は、加圧空気を液化分離して低圧(例えば1〜2
ata)の酸素ガスと窒素ガスに分離する低圧式の空気
分離装置7と、ガスタービン設備6からの高圧抽気空気
で分離された酸素ガスを更に加圧する酸素ガス圧縮装置
16とを備えている。また、この設備では更に、高圧抽
気空気をガス化設備1のガス化ガスで加熱する空気加熱
器14を備えている。
As shown in FIG. 1, in the integrated gasification combined cycle system of the present invention, the pressurized air is liquefied and separated to a low pressure (for example, 1 to 2).
The apparatus is provided with a low-pressure air separation device 7 for separating oxygen gas and nitrogen gas of ata) and an oxygen gas compression device 16 for further pressurizing the oxygen gas separated by high-pressure bleed air from the gas turbine equipment 6. Further, this facility further includes an air heater 14 for heating the high-pressure bleed air with the gasification gas of the gasification facility 1.

【0017】この例において、酸素ガス圧縮装置16
は、タービンコンプレッサであり、高圧抽気空気でター
ビンを駆動し、タービンと直結された酸素ガス用のコン
プレッサを駆動するようになっている。なお、本発明は
この構成に限定されず、例えば、タービンとコンプレッ
サを別々に設置し、タービンで発電機を駆動し、発電し
た電力でコンプレッサを駆動するようにしてもよい。
In this example, the oxygen gas compressor 16
Is a turbine compressor, which drives a turbine with high-pressure bleed air to drive a compressor for oxygen gas directly connected to the turbine. The present invention is not limited to this configuration. For example, a turbine and a compressor may be separately installed, a generator may be driven by the turbine, and the compressor may be driven by the generated power.

【0018】すなわち、図1のガス化複合発電設備で
は、図3の従来のガス化複合発電設備と比較すると、2
台の圧縮機9b,9cがなくなり、その代わりにタービ
ンコンプレッサ16が設けられている。また、ガスター
ビン発電設備6からの高圧抽気空気が加熱後にタービン
コンプレッサ16の膨張タービンに供給されて動力を発
生させるようになっている。更に、従来の排熱回収ボイ
ラ8の代わりにボイラ設備10が用いられている。ま
た、空気分離装置7で分離された窒素ガスは、ガスター
ビン設備6には供給されずに、低圧のためそのまま放出
され、或いは他の設備に供給されるようになっている。
その他の構成は、図3と同様である。
That is, in the integrated gasification combined cycle system shown in FIG. 1, compared with the conventional integrated gasification combined cycle installation shown in FIG.
The compressors 9b and 9c are eliminated, and a turbine compressor 16 is provided instead. The high-pressure bleed air from the gas turbine power generation facility 6 is supplied to the expansion turbine of the turbine compressor 16 after heating to generate power. Further, a boiler facility 10 is used instead of the conventional exhaust heat recovery boiler 8. Further, the nitrogen gas separated by the air separation device 7 is not supplied to the gas turbine equipment 6, but is discharged as it is because of the low pressure, or supplied to other equipment.
Other configurations are the same as those in FIG.

【0019】上述した本発明の構成によれば、ガスター
ビン発電設備6から供給される高圧の抽気空気を、高温
(例えば約500〜600℃)まで昇温した後、酸素ガ
ス圧縮装置16(タービンコンプレッサ)に供給して、
この圧縮装置16で酸素ガスを更に加圧し、ガス化設備
1に供給する高圧酸素として用いることができる。従っ
て、低圧式の空気分離装置を用いる場合に、その運転圧
力まで膨張させて無駄に捨てていた保有エネルギーを、
酸素ガス圧縮装置16で回収して有効に利用することが
可能となり、これにより従来必要であった酸素圧縮機と
エキスパンダーをなくすことができ、それらの設備費及
び運転動力費を低減することができる。また、この構成
により、空気分離装置で発生した窒素が、ガスタービン
の排ガスに混入されないので、高温排ガスの残存酸素濃
度を高く維持することができ、この排ガスを酸化剤とし
てボイラ設備のリパワリングを有効に行うことができ
る。
According to the configuration of the present invention described above, after the high-pressure bleed air supplied from the gas turbine power plant 6 is heated to a high temperature (for example, about 500 to 600 ° C.), the oxygen gas compression device 16 (turbine Compressor)
The oxygen gas can be further pressurized by the compression device 16 and used as high-pressure oxygen supplied to the gasification facility 1. Therefore, when using a low-pressure air separation device, the retained energy that was expanded to its operating pressure and wasted wastefully,
The oxygen gas can be recovered and effectively used by the oxygen gas compression device 16, thereby eliminating the need for an oxygen compressor and an expander, which are conventionally required, and reducing the equipment cost and operating power cost thereof. . In addition, with this configuration, since the nitrogen generated in the air separation device is not mixed into the exhaust gas of the gas turbine, the residual oxygen concentration of the high-temperature exhaust gas can be kept high, and this exhaust gas is used as an oxidizing agent to effectively repower the boiler equipment. Can be done.

【0020】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々に変更でき
ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0021】[0021]

【発明の効果】上述したように、本発明のガス化複合発
電設備は、ガスタービンの高温排ガスを酸化剤とするボ
イラ設備を備える場合に、ボイラ設備へ供給する排ガス
の残存酸素濃度を低減することなく、低圧式の空気分離
装置へ供給される抽気空気の保有エネルギーを有効活用
することができる、等の優れた効果を有する。
As described above, the integrated gasification combined cycle system of the present invention reduces the residual oxygen concentration of the exhaust gas supplied to the boiler facility when the boiler facility uses the high-temperature exhaust gas of the gas turbine as an oxidant. Without having such an advantage, it is possible to effectively utilize the energy possessed by the extracted air supplied to the low-pressure air separation device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるガス化複合発電設備の全体フロー
図である。
FIG. 1 is an overall flowchart of an integrated gasification combined cycle facility according to the present invention.

【図2】従来の空気分離装置の全体構成図である。FIG. 2 is an overall configuration diagram of a conventional air separation device.

【図3】従来のガス化複合発電設備のフロー図である。FIG. 3 is a flowchart of a conventional integrated gasification combined cycle facility.

【符号の説明】[Explanation of symbols]

1 ガス化設備 2 脱塵装置 3 粗ガスクーラ 4 湿式脱硫設備 5 サチュレーション設備 5a 多段接触塔 5b ポンプ 6 ガスタービン発電機 6a 燃焼器 6b 圧縮器 6c ガスタービン 6d 発電機 7 空気分離器 7a モレキュラーシーブ吸着器 7b 膨張器(エキスパンダー) 7c 蒸留塔 7d 空気冷却器 7e 主熱交換器 8 排熱回収ボイラ 9a,9b,9c 圧縮機 10 ボイラ設備 14 空気加熱器 16 酸素ガス圧縮装置(タービンコンプレッサ) DESCRIPTION OF SYMBOLS 1 Gasification equipment 2 Dust removal device 3 Crude gas cooler 4 Wet desulfurization equipment 5 Saturation equipment 5a Multi-stage contact tower 5b Pump 6 Gas turbine generator 6a Combustor 6b Compressor 6c Gas turbine 6d Generator 7 Air separator 7a Molecular sieve adsorber 7b Expander (expander) 7c Distillation tower 7d Air cooler 7e Main heat exchanger 8 Waste heat recovery boiler 9a, 9b, 9c Compressor 10 Boiler equipment 14 Air heater 16 Oxygen gas compressor (turbine compressor)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02C 6/18 F02C 6/18 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02C 6/18 F02C 6/18 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス化設備、ガスタービン設備及びボイ
ラ設備を備え、ガスタービン設備の排ガスを酸化剤とし
てボイラ設備で燃料を燃焼させるガス化複合発電設備に
おいて、 加圧空気を液化分離して低圧の酸素ガスと窒素ガスに分
離する低圧式の空気分離装置と、ガスタービン設備から
の高圧抽気空気で分離された酸素ガスを更に加圧する酸
素ガス圧縮装置とを備える、ことを特徴とするガス化複
合発電設備。
1. A gasification combined cycle power plant comprising a gasification facility, a gas turbine facility and a boiler facility, wherein the exhaust gas of the gas turbine facility is used as an oxidant to burn fuel in the boiler facility. Gasification characterized by comprising: a low-pressure air separation device for separating oxygen gas and nitrogen gas from each other; and an oxygen gas compression device for further pressurizing the oxygen gas separated by high-pressure bleed air from gas turbine equipment. Combined power generation facility.
【請求項2】 前記高圧抽気空気をガス化設備のガス化
ガスで加熱する空気加熱器を備える、ことを特徴とする
請求項1に記載のガス化複合発電設備。
2. The integrated gasification combined cycle system according to claim 1, further comprising an air heater for heating the high-pressure bleed air with a gasification gas from a gasification facility.
JP7498A 1998-01-05 1998-01-05 Gasifying combined power generation equipment Pending JPH11200885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7498A JPH11200885A (en) 1998-01-05 1998-01-05 Gasifying combined power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7498A JPH11200885A (en) 1998-01-05 1998-01-05 Gasifying combined power generation equipment

Publications (1)

Publication Number Publication Date
JPH11200885A true JPH11200885A (en) 1999-07-27

Family

ID=11464035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7498A Pending JPH11200885A (en) 1998-01-05 1998-01-05 Gasifying combined power generation equipment

Country Status (1)

Country Link
JP (1) JPH11200885A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047170A (en) * 2007-08-22 2009-03-05 General Electric Co <Ge> Combustion turbine cooling medium supply method
JP2011032926A (en) * 2009-07-31 2011-02-17 Mitsubishi Heavy Ind Ltd Gas turbine plant and gasification fuel power generation facility including the same
US8752391B2 (en) 2010-11-08 2014-06-17 General Electric Company Integrated turbomachine oxygen plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047170A (en) * 2007-08-22 2009-03-05 General Electric Co <Ge> Combustion turbine cooling medium supply method
JP2011032926A (en) * 2009-07-31 2011-02-17 Mitsubishi Heavy Ind Ltd Gas turbine plant and gasification fuel power generation facility including the same
US8752391B2 (en) 2010-11-08 2014-06-17 General Electric Company Integrated turbomachine oxygen plant

Similar Documents

Publication Publication Date Title
AU2008304752B2 (en) Turbine facility and power generating apparatus
US4785622A (en) Integrated coal gasification plant and combined cycle system with air bleed and steam injection
US7191587B2 (en) Hybrid oxygen-fired power generation system
US6684643B2 (en) Process for the operation of a gas turbine plant
JP2649013B2 (en) Method of generating energy by using gas turbine
JP5043602B2 (en) System and method for power generation with carbon dioxide isolation
US20050028529A1 (en) Method of generating energy in a power plant comprising a gas turbine, and power plant for carrying out the method
US20080010967A1 (en) Method for Generating Energy in an Energy Generating Installation Having a Gas Turbine, and Energy Generating Installation Useful for Carrying Out the Method
JP2012062897A (en) Method for capturing co2 from exhaust gas
JP2008115864A (en) Power generation system having carbon dioxide isolation
AU2012200096B2 (en) Carbon dioxide liquefaction system
KR101586105B1 (en) Thermal power plant with CO2 sequestration
JPS61155493A (en) Synthetic composite cycle system
JPH11315727A (en) Gasification combined cycle power generation plant for removal of carbon dioxide
JPH08506873A (en) New power method
JPH11200886A (en) Gasifying combined power generation equipment
JPH1082306A (en) Gasification compound power generating installation
JP2008151121A (en) System and method for low emissions combustion
JPH11200885A (en) Gasifying combined power generation equipment
JPH11264325A (en) Carbon dioxide recovery type power generation plant
JP3787820B2 (en) Gasification combined power generation facility
JP7025310B2 (en) Gas turbine combined cycle power generation system, gas turbine combined cycle power generation method
JP2870913B2 (en) Gas turbine power generation method using poorly fueled gasified gas as fuel
JPH10231736A (en) Gasification composite power plant
JPH07279621A (en) Coal burning compound power generation facility