JPS609185A - Semiconductor laser integrated circuit device - Google Patents

Semiconductor laser integrated circuit device

Info

Publication number
JPS609185A
JPS609185A JP11614183A JP11614183A JPS609185A JP S609185 A JPS609185 A JP S609185A JP 11614183 A JP11614183 A JP 11614183A JP 11614183 A JP11614183 A JP 11614183A JP S609185 A JPS609185 A JP S609185A
Authority
JP
Japan
Prior art keywords
layer
laser
semi
indentation
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11614183A
Other languages
Japanese (ja)
Inventor
Hideaki Matsueda
秀明 松枝
Michiharu Nakamura
中村 道治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11614183A priority Critical patent/JPS609185A/en
Publication of JPS609185A publication Critical patent/JPS609185A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

PURPOSE:To obtain a semiconductor laser integrated circuit device, the surface thereof is flat as a whole, by previously forming an indentation to a semi-insulating semiconductor substrate and fixing a BH type laser so as to be accommodated in said indentation through selective crystal growth technique. CONSTITUTION:An indentation, which has a section in the reverse mesa direction of a semi-insulating GaAs substrate 1 and depth thereof is 1mum-10mum, is formed. Double hetero-crystalline layers 3-6 are grown in the indentation. A Ga0.6Al0.4As layer as said crystalline layer 3 functions as a conductive layer on the N side, but a section under the overhang of SiO2 as a mask is buried when said layer selectively grows, and currents on the N side can be lead out of the section under the overhang. A laser stripe peculiar to a BH type having inverted mesa structure is formed by shaping indentations, width thereof is narrower and shallower than before, on both sides of a region constituting a laser left at the center through mesa etching. The indentations are filled with non-doped P<-> type Ga0.63Al0.37As layers 7 while a mask consisting of SiO2, etc. used for mesa etching is left as it is attached. An electronic circuit is fixed to the surface of the exposed semi-insulating substrate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体レーザと、増巾、変調、安定化、スイッ
チング等の機能を持つ電子回路とをモノリシックに形成
した半導体レーザ集積回路装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor laser integrated circuit device in which a semiconductor laser and an electronic circuit having functions such as amplification, modulation, stabilization, and switching are monolithically formed. be.

〔発明の背景〕[Background of the invention]

これまで、半導体レーザと成子回路とをモノリシックに
形成した例としてn型基板を用いた2階建構造にする方
法()(、Matsueda et al ;Japa
n JAP20(1981)820−1p193)と、
半絶縁性(SI)基板を用いる方法(A、Yarive
t al ; IEEE Spectrum、May(
1982)p。
Until now, as an example of monolithically forming a semiconductor laser and a Nariko circuit, a method of forming a two-story structure using an n-type substrate has been proposed () (Matsueda et al; Japan
n JAP20 (1981) 820-1 p193) and
Method using semi-insulating (SI) substrate (A, Yarive
t al; IEEE Spectrum, May (
1982) p.

38)とが提案されている。集積規模を上げるためには
、後者の方が大面積を利用出来る等の理由から有利であ
るが、素子表面に段差を生じるためHeterostw
cture)型の半導体レーザと、規模の大きい成子回
路とを、平面的に、同−半絶縁性基板の上にモノリシッ
クに集積化した平面型半導体集積回路装置を提供するも
のである。
38) has been proposed. In order to increase the integration scale, the latter is more advantageous because it can utilize a larger area, but because it creates a step on the element surface, the Heterostw
The present invention provides a planar semiconductor integrated circuit device in which a semiconductor laser of the present invention and a large-scale circuit are monolithically integrated on the same semi-insulating substrate.

〔発明の概要〕[Summary of the invention]

半絶縁性半導体基板にあらかじめ凹みをつけておき、選
択的結晶成長技術によって、この凹みの中におさまるよ
うに、BH型のレーザを作シ付ける事によって、全体的
に表面の平坦な半導体レーザ集積回路装置tを得るもの
である。ここで、半絶縁性半導体基板を用いることが重
要である。こうすることによって半導体レーザに対し、
電子回路部分を大面積なものとして集積化することが可
會「となる。
By making a recess in the semi-insulating semiconductor substrate in advance and using selective crystal growth technology to create a BH type laser so that it fits into the recess, it is possible to integrate a semiconductor laser with an overall flat surface. A circuit device t is obtained. Here, it is important to use a semi-insulating semiconductor substrate. By doing this, for semiconductor lasers,
It becomes possible to integrate the electronic circuit part into a large area.

更にMOCVD(Metalorganic Che虎
1calvaper :[)epositjon、別名
OMVPE (Organo −おける半絶縁性基板上
に電子回路を作シ付け、全体として段差のない平面的な
光・電子集積回路とんず。
Furthermore, MOCVD (Metalorganic Chemical Vapor: [) Epositjon, also known as OMVPE (organo-electronic integrated circuit), is a process in which electronic circuits are fabricated on a semi-insulating substrate, resulting in a planar optical/electronic integrated circuit with no steps as a whole.

〔発明の実施例〕[Embodiments of the invention]

Q a A Sの半絶縁性基板上に、GaAS/GaA
7ASのダブルへテロ型のBHレーザと電子回路を集積
化する例を示す。第1図(1)〜(5)に製造プロセス
を順を追って図示する。先ず第1図(1)のように、半
絶縁性GaAS基板1の逆メサ方向に、図に示すような
断面を持つ、深さ1μm〜10μmの凹みを形成する。
GaAS/GaA on semi-insulating substrate of QaAS
An example of integrating a 7AS double hetero type BH laser and an electronic circuit is shown. The manufacturing process is illustrated in order in FIGS. 1 (1) to (5). First, as shown in FIG. 1(1), a recess with a depth of 1 μm to 10 μm and having a cross section as shown in the figure is formed in the reverse mesa direction of the semi-insulating GaAS substrate 1.

特に3〜5μm深さが実用的である。In particular, a depth of 3 to 5 μm is practical.

巾は、10μm以上であれば大きい桿良いが〈50μm
程度が中に成長する結晶の質の点でも、また、とのレー
ザ部分の占める面積をあまシ大きくしないと言う点から
も適当である。この凹みは、CVD法あるいはスパッタ
法でっけた8i0.。
A large rod is good if the width is 10 μm or more, but <50 μm
The degree of irradiation is appropriate in terms of the quality of the crystal grown inside and also in terms of not increasing the area occupied by the laser part. This recess is made by CVD method or sputtering method. .

513N4等をマスク2として用いる。次にこのマスク
を付けたまま、MOCVD法によって、第1図(2)に
示すように凹みの中に、ダブルへテロ結晶層3.4,5
および6を成長させる。他に、LPE(液相エピタキシ
ャル)法、MBE(分子線エピタキシャル)法等によっ
ても同様の選択成長を行う事が可能である。各、層の仕
様は例えば次のものが良い。符号3は、Seをドープし
たI X 1018Iyn−”のキャリヤ濃度のn型G
ao、、At、、Asの2IXn厚さの層、4はレーザ
活性層でラシ、ノンドープでキャリヤ濃度1016cm
−3のGao、0.A/!、。、。4ASの0.1μm
厚さの層、5は、Znをドープした、3〜5 X 10
 ”cm−3のp型Gao7□Ato、28ASの1.
0μm厚さの層、6は、Znをドープした、IX 10
19cm−3のp型G a A Sの厚さ0.5μrr
l)層である。特に図中3で示したGa(16AAo4
AS層はn側の導電層となるが、この層が選択成長する
時に、マスクである8102のオーバノ・ングの下を埋
め、図に示すように、この部分からn側の電流取り出し
が出来るようにする。この目的のためには、MOCVD
法による結晶成長が適している。またこの層も厚さを十
分取る事が成流取出し口を確保する為に必要である。
513N4 or the like is used as the mask 2. Next, with this mask attached, double heterocrystalline layers 3.4, 5.
and grow 6. In addition, similar selective growth can also be performed by LPE (liquid phase epitaxial) method, MBE (molecular beam epitaxial) method, or the like. For example, the specifications for each layer are as follows. 3 is an n-type G with a carrier concentration of I x 1018Iyn-'' doped with Se.
2IXn thick layer of ao, At, As, 4 is a laser active layer, undoped, carrier concentration 1016 cm
-3 Gao, 0. A/! ,. ,. 0.1μm of 4AS
Thick layer, 5 doped with Zn, 3-5 X 10
"cm-3 p-type Gao7□Ato, 28AS 1.
0 μm thick layer, 6 doped with Zn, IX 10
19cm-3 p-type GaAs thickness 0.5μrr
l) It is a layer. In particular, Ga (16AAo4
The AS layer becomes a conductive layer on the n-side, and when this layer is selectively grown, it fills under the overhang of the mask 8102 so that current can be taken out on the n-side from this part, as shown in the figure. Make it. For this purpose, MOCVD
Crystal growth by method is suitable. This layer also needs to be sufficiently thick in order to secure a stream outlet.

次に、一端8102及びその上に堆積した多結晶GaA
S/GaAtAj等をホトレジストパターンを用いて化
学的に取り去った後、新たに、SiO2等によシ、メサ
エッチングのマスクをCVDあるいはスパッタ法で形成
する。しかる後に、第1図(3)に示すように、いわめ
るメサエッチングによって前より幅が狭く、かつ浅い凹
みを、中央に残したレーザを溝成する領域の両側に形成
することによって、逆メサ構造を持った、BH型特有の
レーザストライプを形成する。ここでのエツチングは、
ちょうど活性層が取シ除かれる深さに止める。即ち本実
施例の場合は1.6μmである。
Next, one end 8102 and the polycrystalline GaA deposited thereon.
After chemically removing S/GaAtAj or the like using a photoresist pattern, a new mesa etching mask of SiO2 or the like is formed by CVD or sputtering. After that, as shown in Fig. 1 (3), by so-called mesa etching, a recess that is narrower and shallower than before is formed on both sides of the region where the laser groove is to be formed, leaving it in the center. Forms a laser stripe unique to the BH type with a mesa structure. The etching here is
Stop at just the depth where the active layer is removed. That is, in the case of this embodiment, it is 1.6 μm.

次に、メサエッチに用いた8102等のマスクを付けた
まま、凹みを、ノンドープのp″型Gao、63At0
.37A Sの約1.6μm厚さの層7で埋め込む。こ
の層のキャリヤ濃度は1014cm−3以下で、高比抵
抗の、電気的な隔壁となる。この埋込みによって、BH
型レーザが出来上がる。マスクに用いたSi Q、及び
その上に堆積したGaAtAS等はすべてホトレジスト
パターンを用いて取シ除く。
Next, with the 8102 mask used for mesa etching still attached, the recess was filled with non-doped p'' type Gao 63At0.
.. Fill with a layer 7 of approximately 1.6 μm thick of 37A S. The carrier concentration of this layer is less than 1014 cm-3, and it becomes an electrical barrier wall with high resistivity. With this embedding, BH
The mold laser is completed. The SiQ used for the mask and GaAtAS deposited thereon are all removed using a photoresist pattern.

しかる後に、露出させた半絶縁性基板表面に電子回路を
作り付ける。先ず、Siのイオン打込みによって、能動
領域10とオーミック電極領域11とを作る。領域10
は例えば125kVに加速したSiを打込み、アニール
後のキャリヤ濃度ヵ11ゾ2 X 10”cm−3とな
るようにし、11は、150kVのSiを打込み、アニ
ール後のキャリヤ濃度が6〜7 X 10”cm−”と
なるようにする。打込後、As万四囲気中800Cで約
30分間アニールを行い、打込みイオンの活性化を計っ
た。次に、オーミック電極13,14を、AuGeNi
合金とAuの逐次蒸着とリフトオフならびに、アロイン
グによって作った。アロイングは、H,2雰囲気中、4
00Cで3分間加熱する事によった。レーザのn側電極
部のオーミックコンタクトを良好にする7tめ、先のイ
オン打込みを、9にも行う事が望ましい。
Thereafter, an electronic circuit is built on the exposed surface of the semi-insulating substrate. First, the active region 10 and the ohmic electrode region 11 are formed by Si ion implantation. Area 10
For example, Si is implanted accelerated to 125 kV so that the carrier concentration after annealing is 11 zo2 x 10" cm-3, and in 11, Si is implanted at 150 kV and the carrier concentration after annealing is 6 to 7 x 10" cm. After the implantation, annealing was performed at 800C in an As atmosphere for about 30 minutes to activate the implanted ions.Next, the ohmic electrodes 13 and 14 were made of AuGeNi.
It was made by sequential vapor deposition of alloy and Au, lift-off, and alloying. Alloying is done in H,2 atmosphere, 4
By heating at 00C for 3 minutes. It is desirable to perform the previous ion implantation at 7th and 9th to improve the ohmic contact of the n-side electrode portion of the laser.

次に、ショットキィ電極と、レーザのp側電極12を形
成する、Ti/Pt/Auの逐次蒸着とリフトオフによ
って行った。レーザのp側を極については、あらかじめ
Znを0.5μm穆度の深さまで、第1図(5)中に8
で示すように、アンプル拡散しておく事が電極部での電
圧降下を下げる効果があるので望ましい。しかし、6の
キャリヤ濃度が結晶成長の段階から十分高ければ、Zn
のアンプル拡散は不要と、なシ、プロセスが簡略化され
る。
Next, a Schottky electrode and a p-side electrode 12 of the laser were formed by sequential deposition and lift-off of Ti/Pt/Au. For the p-side pole of the laser, add Zn to a depth of 0.5 μm in advance in Figure 1 (5).
As shown in , ampoule diffusion is desirable because it has the effect of lowering the voltage drop at the electrode. However, if the carrier concentration of 6 is sufficiently high from the crystal growth stage, Zn
There is no need for ampoule diffusion, which simplifies the process.

次に、金属電極間を配線する。そのためには先ず全面に
属間絶縁膜となるP S G (IJンガラス)を0.
6μm厚さCVD法によって付け、所要部にコンタクト
穴を開ける。この上に、Mo/Auを逐次蒸着し、イオ
ンミリングによってパターンを形成する事によって、レ
ーザと電子回路部間や電子回路部内の所要の配線を行う
Next, wiring is established between the metal electrodes. To do this, first, PSG (IJ glass), which will serve as an intermetallic insulating film, is coated on the entire surface with a 0.0-.
It is attached to a thickness of 6 μm using the CVD method, and contact holes are drilled at the required locations. By sequentially depositing Mo/Au on this and forming a pattern by ion milling, necessary wiring between the laser and the electronic circuit section and within the electronic circuit section is performed.

最後に、レーザの端面を弁開あるいはエツチング(湿式
及び乾式)によって形成する事によって目的とする光・
電子集積回路を得た。
Finally, the end face of the laser is formed by opening the valve or etching (wet and dry) to produce the desired
Obtained an electronic integrated circuit.

本発明による選択結晶成長によって、半絶縁性基板上に
、n側の電極を、表面に段差を生ずる事なく形成出来た
。このために、電子回路部において、写真蝕刻法(ホト
リソグラフィ)を用いて十分に微細なパターンを作る事
が出来た。夕0えば、ゲート長1μmのFE’I’を士
数個作り付けた。ゲート長を短くする事が出来たために
、回路の高周波動作が可能になり、本素子全体として、
2GHzの信号に応答する事が確認された。
By selective crystal growth according to the present invention, an n-side electrode could be formed on a semi-insulating substrate without forming a step on the surface. For this reason, it was possible to create sufficiently fine patterns in the electronic circuit section using photolithography. In the evening, several FE'I's with a gate length of 1 μm were fabricated. By being able to shorten the gate length, the circuit can operate at high frequencies, and this device as a whole has
It has been confirmed that it responds to 2GHz signals.

他の実姉例を第2図に示す。基本的には第1図と同様製
作プロセスであるが、p、nの極性が逆p型が反転する
ように作る事によって、眠気的な隔離を計る。第2図に
おいて第1図と同一符号に同−都立を示している。
Another real sister example is shown in Figure 2. Basically, the manufacturing process is the same as that shown in Figure 1, but by making the polarity of p and n so that the inverted p type is reversed, a drowsy isolation is achieved. In FIG. 2, the same reference numerals as in FIG. 1 indicate the same metropolitan area.

第1図、第2図の、溝造のいずれについても、半導体の
導電型のp型とn型を入れ換えても同様に実施可能であ
る。
Both of the groove formations shown in FIGS. 1 and 2 can be implemented in the same manner even if the conductivity types of the semiconductors are switched between p type and n type.

また本発明はGaAS/GaAtASのみならず、In
P/InGaASP等一般に半導体レーザを構成出来る
半導体材料に広く適用し得ることはいうまでもない。
Furthermore, the present invention is applicable not only to GaAS/GaAtAS but also to In
Needless to say, the present invention can be widely applied to semiconductor materials such as P/InGaASP that can generally be used to construct semiconductor lasers.

〔発明の効果〕〔Effect of the invention〕

本発明の適用によって半絶縁性基板−Fに、段差を作ら
ずに、BH型の低閾値・モード制御レーザと、微細パタ
ーンを有する電子回路とを作シ付ける事が出来た。
By applying the present invention, it was possible to fabricate a BH-type low-threshold, mode-controlled laser and an electronic circuit having a fine pattern on a semi-insulating substrate -F without creating a step.

そして、半導体レーデと電子回路とを含めた集積回路装
置として、2GH2以上の高周波動作が出来た。
As an integrated circuit device including a semiconductor radar and an electronic circuit, it was possible to operate at a high frequency of 2GH2 or higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)〜(5)は本発明の半導体レーザ集積回路
装置の製造工程を示す部材の断面図、第2図は本ヤツプ
層、7・・・皿め込み層、8・・・不純物拡散層、9・
・・オーミック電極、10・・・FETの能動領域、1
1・・・オーミック電極、12,13.14・・・電極
。 特許出願人 工業技術院長 川田裕部
FIGS. 1 (1) to (5) are cross-sectional views of members showing the manufacturing process of the semiconductor laser integrated circuit device of the present invention, and FIG. Impurity diffusion layer, 9.
...Ohmic electrode, 10...FET active region, 1
1... Ohmic electrode, 12, 13.14... Electrode. Patent applicant Hirobe Kawada, Director of the Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】 1、所定の半絶縁性基板に所望の第1G凹部を有し、こ
の第1凹部内に選択エピタキシャル法によって少なくと
も半導体レーザ部を構成する第1のクラッド層1、活性
層および第2のクラッド層が積層され更に当該凹部内に
これら各層を両側から埋め込む埋め込み層を少なくとも
有し、前記半絶縁性基板、第1の凹部以外の領域に所望
の電子回路が形成されて成ることを特徴とする半導体レ
ーザ集積回路装置。 2、前記第1のクラッド層内に第2の凹部が設けられ、
この第2の凹部内に少なくとも活性層、第2のクラッド
層および前記埋め込み層が設けられて成ることを特徴と
する特許哨求の範囲第1項記載の半導体レーザ集積回路
装置。
[Scope of Claims] 1. A first cladding layer 1 having a desired first G recess in a predetermined semi-insulating substrate and forming at least a semiconductor laser portion by selective epitaxial method in the first recess, and an active layer. and a second cladding layer is laminated thereon, further comprising at least a buried layer for embedding each of these layers from both sides in the recess, and a desired electronic circuit is formed in the semi-insulating substrate in a region other than the first recess. A semiconductor laser integrated circuit device characterized by: 2. A second recess is provided in the first cladding layer,
The semiconductor laser integrated circuit device according to claim 1, wherein at least an active layer, a second cladding layer, and the buried layer are provided in the second recess.
JP11614183A 1983-06-29 1983-06-29 Semiconductor laser integrated circuit device Pending JPS609185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11614183A JPS609185A (en) 1983-06-29 1983-06-29 Semiconductor laser integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11614183A JPS609185A (en) 1983-06-29 1983-06-29 Semiconductor laser integrated circuit device

Publications (1)

Publication Number Publication Date
JPS609185A true JPS609185A (en) 1985-01-18

Family

ID=14679754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11614183A Pending JPS609185A (en) 1983-06-29 1983-06-29 Semiconductor laser integrated circuit device

Country Status (1)

Country Link
JP (1) JPS609185A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171952A (en) * 1986-12-31 1988-07-15 コクヨ株式会社 Layout method of office and floor of office used therein
JPS6429565A (en) * 1987-07-25 1989-01-31 Oyo Kikaku Kk Wiring floor foundation
JPS6457781A (en) * 1987-08-28 1989-03-06 Mitsubishi Electric Corp Planar type phase synchronous integrated optical element and manufacture thereof
JPH0211936U (en) * 1988-03-30 1990-01-25
JPH0318337U (en) * 1989-07-05 1991-02-22
JPH0466248U (en) * 1990-10-17 1992-06-10
JPH04129249U (en) * 1991-05-15 1992-11-25 株式会社岡村製作所 raised floor
WO2007038918A2 (en) * 2005-10-03 2007-04-12 Frauenhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Monolithically integrated bh-laser structure in the form of an amplifier element provided with an integrated tapering of active laser layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198689A (en) * 1981-05-30 1982-12-06 Matsushita Electric Ind Co Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198689A (en) * 1981-05-30 1982-12-06 Matsushita Electric Ind Co Ltd Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171952A (en) * 1986-12-31 1988-07-15 コクヨ株式会社 Layout method of office and floor of office used therein
JPH051860B2 (en) * 1986-12-31 1993-01-11 Kokuyo Kk
JPS6429565A (en) * 1987-07-25 1989-01-31 Oyo Kikaku Kk Wiring floor foundation
JPS6457781A (en) * 1987-08-28 1989-03-06 Mitsubishi Electric Corp Planar type phase synchronous integrated optical element and manufacture thereof
JPH0211936U (en) * 1988-03-30 1990-01-25
JPH0318337U (en) * 1989-07-05 1991-02-22
JPH0466248U (en) * 1990-10-17 1992-06-10
JPH04129249U (en) * 1991-05-15 1992-11-25 株式会社岡村製作所 raised floor
WO2007038918A2 (en) * 2005-10-03 2007-04-12 Frauenhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Monolithically integrated bh-laser structure in the form of an amplifier element provided with an integrated tapering of active laser layer
WO2007038918A3 (en) * 2005-10-03 2008-06-26 Fraunhofer Ges Forschung Monolithically integrated bh-laser structure in the form of an amplifier element provided with an integrated tapering of active laser layer

Similar Documents

Publication Publication Date Title
JP2968014B2 (en) Micro vacuum tube and manufacturing method thereof
JPH07135369A (en) Semiconductor laser and its fabrication
JPS609185A (en) Semiconductor laser integrated circuit device
JP3087671B2 (en) Bipolar transistor and method of manufacturing the same
JP2558418B2 (en) Field effect element and method of manufacturing the same
JPH11163316A (en) Field-effect transistor and manufacture thereof
JPS5878469A (en) Vertical channel field effect transistor
JPH0864899A (en) Manufacture of semiconductor laser and the same laser
JPS6062175A (en) Manufacture of semiconductor device
JPH023314B2 (en)
JPS5885583A (en) Manufacture of semiconductor laser
JPS59181084A (en) Semiconductor laser device
JPS59186385A (en) Semiconductor laser device
JP2598044B2 (en) Semiconductor semi-insulation method
JPS62259490A (en) Buried hetero structure semiconductor laser
JPS62193189A (en) Semiconductor light-emitting device
JPS6045083A (en) Planar type semiconductor laser integrated circuit device
JPS62298182A (en) Semiconductor device
JPS5871679A (en) Semiconductor light emitting element
JPH0864774A (en) Manufacture of semiconductor integrated circuit device
JPH1126867A (en) Manufacture of semiconductor light emitting device
JPS58215088A (en) Manufacture of semiconductor laser device
JPS6372174A (en) Buried type semiconductor laser device and its manufacture
JPS5994864A (en) Integrated circuit
JPH03194988A (en) Structure of semiconductor laser