JPS6091673A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6091673A
JPS6091673A JP19838383A JP19838383A JPS6091673A JP S6091673 A JPS6091673 A JP S6091673A JP 19838383 A JP19838383 A JP 19838383A JP 19838383 A JP19838383 A JP 19838383A JP S6091673 A JPS6091673 A JP S6091673A
Authority
JP
Japan
Prior art keywords
film
etching
silicon
layer
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19838383A
Other languages
Japanese (ja)
Inventor
Toshinobu Yanase
柳瀬 年延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19838383A priority Critical patent/JPS6091673A/en
Publication of JPS6091673A publication Critical patent/JPS6091673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a gate insulating film having small pattern-conversion difference to an electrode by a method wherein the gate insulating film consisting of an SiO2 film and an Si3N4 film is formed on an Si substrate 21, the gate electrode composed of polycrystalline Si in a predetermined pattern is shaped on the gate insulating film, an SiO2 film in thick thickness is formed on the surface of the electrode through heat treatment and the Si3N4 film is removed through etching while using the thick SiO2 film as a mask. CONSTITUTION:An SiO2 film 22 and an Si3N4 film 23 are laminated and applied on an Si substrate 21, the upper section of the film 23 is coated with an SiO2 film 24 again, and a polycrystalline Si layer 25 is deposited on the film 24. A mask of a photo-resist film 26 is formed at the central section of the surface of the layer 25, and a gate electrode consisting of the layer 25 and the film 24, size thereof are both reduced, are left under the film 26 through isotropic dry etching. The film 26 is removed and the surface of the electrode is coated through heat treatment, a novel SiO2 film 27 extending up to the upper section of the residual film 23 is formed while the film 24 under the electrode is changed into the film 27, and the film 27 in an extending section is removed.

Description

【発明の詳細な説明】 〔発明の技術分野] 本発明は半導体装置の製造方法に関し、特にゲート絶縁
膜が窒化シリコンと酸化シリコンの少(とも2層から成
るMIS型半導体装置におけるゲート絶縁膜の加工に使
用されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, in particular a method for manufacturing a gate insulating film in an MIS type semiconductor device in which the gate insulating film is composed of at least two layers of silicon nitride and silicon oxide. It is used for processing.

し発明の技術的背景〕 MO8型半導体装置においてはゲート絶縁膜として熱酸
化膜すなわち酸化シリコン(Si02)膜が使用される
が、近時さらに誘(社)率の大きい窒化シリコン(51
3N4 )膜が使用されるようになっている。しかし窒
化シリコン膜単独ではリーク電流が存在し、特性を態化
させるため通常薄いシリコン酸化膜の上に窒化シリコン
膜を形成している。また、電極側から電子が流入してゲ
ートしきい値vthを変動させることを防止するため、
また耐圧特性の向上のため、窒化シリコン膜の表面を酸
化して酸化シリコン膜を更に形成することも行われる。
[Technical Background of the Invention] In MO8 type semiconductor devices, a thermal oxide film, that is, a silicon oxide (Si02) film is used as a gate insulating film, but recently silicon nitride (51
3N4) membranes are now being used. However, a silicon nitride film alone has a leakage current, and in order to improve the characteristics, a silicon nitride film is usually formed on a thin silicon oxide film. In addition, in order to prevent electrons from flowing in from the electrode side and changing the gate threshold value vth,
Further, in order to improve the breakdown voltage characteristics, the surface of the silicon nitride film is oxidized to further form a silicon oxide film.

これらの酸化シリコン膜、窒化シリコン膜は窒化シリコ
ンの高誘電率を生かすよう約100χの比較的薄い膜厚
で形成される。
These silicon oxide films and silicon nitride films are formed with a relatively thin film thickness of about 100x to take advantage of the high dielectric constant of silicon nitride.

第1図はこのような窒化シリコン膜をゲート絶縁膜とし
て有する半導体装置の製造方法を示す各工程ごとの断面
図であってシリコン基板1を約800℃の雰囲気中で熱
酸化し熱酸化膜2を約100Xの厚さで形成する。次に
減圧CVD法により窒化シリコン膜(Si3N4 ) 
3を約100Xの厚さで形成し、再び熱酸化を行って第
2の酸化膜4を形成する。次に多結晶シリコン層5をC
VD法で約4000 Xの厚さに形成し、導体化するた
めにリンを拡散させ、さらにフォトレジスト1−6を形
成して露光し将来ゲートとなる領域に所定形状になるよ
うにパターニングを行えば第1図(a)の状態となる。
FIG. 1 is a cross-sectional view of each process showing a method of manufacturing a semiconductor device having such a silicon nitride film as a gate insulating film, in which a silicon substrate 1 is thermally oxidized in an atmosphere of about 800° C. is formed to a thickness of about 100X. Next, a silicon nitride film (Si3N4) was formed using the low pressure CVD method.
3 is formed to a thickness of about 100X, and thermal oxidation is performed again to form a second oxide film 4. Next, the polycrystalline silicon layer 5 is
It is formed to a thickness of about 4000× by the VD method, phosphorus is diffused to make it conductive, and photoresist 1-6 is formed and exposed to pattern the area that will become the gate in the future into a predetermined shape. For example, the state is as shown in FIG. 1(a).

次にこのパターニングされたフォトレジスト層6をマス
クとして多結晶シリコン層5を等方性ドライエツチング
技術を用いてエツチングするとオーバーエツチングによ
り窒化シリコン膜3上の第2の酸化膜4も同時に除去さ
れ第1図(b)に示す状態となる。すなわち、このとき
の多結晶シリコン層の幅L1はエツチング時に生じるサ
イドエツチングによりフォトレジスト層60幅り。より
も小さくなっている。
Next, using this patterned photoresist layer 6 as a mask, the polycrystalline silicon layer 5 is etched using an isotropic dry etching technique, and the second oxide film 4 on the silicon nitride film 3 is simultaneously removed due to overetching. The state shown in FIG. 1(b) is reached. That is, the width L1 of the polycrystalline silicon layer at this time is about the width of the photoresist layer 60 due to side etching that occurs during etching. It is smaller than.

次に電化シリコン膜3を等方性ドライエツチングを用い
てエツチングを行うと第1図(clの状態となる。この
エツチング時に等方性ドライエツチングを用いるのは、
リン酸セイル等のウェットエツチングではエツチングの
終点検出の確実性、薄膜に対する膜厚制御の容易性、量
産性等に関して問題があり、また反応性イオンエツチン
グ(RIE:Rsactlon Ion Etchin
g )では基板に与えるダメージが大キク、エツチング
量の均一性などに欠けるという問題がある一方で、等方
性ドライエツチングは基板へのダメージが少なくしかも
下地のシリコン熱酸化膜のエツチング量に対する窒化シ
リコン膜のエツチング量の比(選択比)を10以上にと
ることができるためである。
Next, when the electrified silicon film 3 is etched using isotropic dry etching, the state shown in FIG. 1 (cl) is obtained.
Wet etching such as phosphoric acid sail has problems with the reliability of etching end point detection, ease of controlling film thickness for thin films, mass production, etc., and reactive ion etching (RIE).
(g) has the problem of severe damage to the substrate and lack of uniformity in the amount of etching, while isotropic dry etching causes less damage to the substrate and the amount of nitriding compared to the amount of etching of the underlying silicon thermal oxide film. This is because the etching amount ratio (selectivity) of the silicon film can be set to 10 or more.

最後に不純物拡散によるソース、ドレイン領域7の形成
、層間絶縁膜8の形成、蒸着によるアルミニウム配#9
の形成、ノぐツシベーション[10の形成を公知の方法
で行うと第1図(d)に示すMIS型半導体装置が得ら
れる。
Finally, the source and drain regions 7 are formed by impurity diffusion, the interlayer insulating film 8 is formed, and the aluminum layer #9 is formed by vapor deposition.
When the formation of 10 and the formation of 10 are performed by a known method, the MIS type semiconductor device shown in FIG. 1(d) is obtained.

〔背景技術の間組点〕[Background technology interset]

しかしながら、このような従来の方法では微細な半纏体
構造を実現することは困難である。
However, it is difficult to realize a fine semi-woven structure using such conventional methods.

すなわち、窒化シリコン膜3のエツチング条件として通
常の窒化シリコンに対するエツチング条件を使用した場
合は酸化シリコンとの選択比が1〜3程度で小さいため
、ウェーッー内の位置によるエツチング量のばらつき、
ウェー71間のエツチング喰のばらつきを考慮し1マー
ジンをもってエツチングを行うと下地の熱酸化膜やシリ
コン基板までエツチングされることになる。これを避け
るため窒化シリコンと酸化シリコンとの選択比を大きく
するようにガス条件を変えていくと多結晶シリコンに対
するエツチング条件に近似することになり、電化シリコ
ン膜4のエツチングを行うと同時に′電極となる多結晶
シリコン層5もエツチングされてその幅寸法はL2とな
る。例えば多結晶シリコン層5の厚さが4ooo X 
z窒化シリコン膜3の厚さが93′にであったとすると
フォトレジスト60幅り。と多結晶シリコンlI!50
幅L2との差(Lo−L2)は約1.8μmにもなり従
来のゲート絶縁膜がシリコン酸化膜のみである場合より
も約0.7μm大きくなる。このようなパターン変換誤
差は窒化シリコン膜3上の酸化シリコン膜4の厚さが増
加すると更に拡大し、微細な半導体構造を得ることが困
難であるという問題がある。
In other words, when normal etching conditions for silicon nitride are used as the etching conditions for the silicon nitride film 3, the etching selectivity with respect to silicon oxide is small at about 1 to 3, so the etching amount varies depending on the position within the wafer.
If etching is performed with one margin in consideration of variations in etching depth between wafers 71, the underlying thermal oxide film and silicon substrate will also be etched. To avoid this, if the gas conditions are changed to increase the selectivity between silicon nitride and silicon oxide, the etching conditions will approximate those for polycrystalline silicon. The polycrystalline silicon layer 5 is also etched, and its width becomes L2. For example, the thickness of the polycrystalline silicon layer 5 is 4ooo
zIf the thickness of the silicon nitride film 3 is 93', it is about the width of the photoresist 60. and polycrystalline silicon II! 50
The difference from the width L2 (Lo-L2) is about 1.8 μm, which is about 0.7 μm larger than when the conventional gate insulating film is only a silicon oxide film. Such pattern conversion errors further increase as the thickness of the silicon oxide film 4 on the silicon nitride film 3 increases, posing a problem in that it is difficult to obtain a fine semiconductor structure.

〔発明の目的〕[Purpose of the invention]

本発明はこのような問題を解決しようとし℃なされたも
ので、多結晶シリコン電極に対するノぐターン変換差の
小ないゲート絶縁膜加工を可能にする半導体装置の製造
方法を提供することを目的とする。
The present invention was developed in an attempt to solve these problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device that enables processing of a gate insulating film with a small difference in turn conversion with respect to a polycrystalline silicon electrode. do.

〔発明の概要〕 上記目的達成のため、本発明においては多結晶シリコン
層のエツチング後、この多結晶シリコン層を酸化してそ
の表面に窒化シリコン膜上の酸化シリコン膜よりも厚い
酸化シリコン膜を形成し、次いで窒化シリコン膜をエツ
チングするようにしておす、窒化シリコン膜のエツチン
グの際に多結晶シリコン層のエツチングが進んでこの多
結晶シリコン層のパターン変換誤差が大きくなることを
防止できるものである。
[Summary of the Invention] In order to achieve the above object, in the present invention, after etching a polycrystalline silicon layer, the polycrystalline silicon layer is oxidized to form a silicon oxide film on its surface that is thicker than the silicon oxide film on the silicon nitride film. It is possible to prevent etching of the polycrystalline silicon layer from progressing during etching of the silicon nitride film and pattern conversion error of the polycrystalline silicon layer from increasing. be.

〔発明の実施例〕[Embodiments of the invention]

以下、第2図を参照しながら本発明にかかるゲート絶縁
膜の加工方法を詳細に説明する。
Hereinafter, a method for processing a gate insulating film according to the present invention will be explained in detail with reference to FIG.

第2図は本発明の一実施例を示す各工程の断面。FIG. 2 is a cross section of each process showing an embodiment of the present invention.

図であって、まず従来例と同様にシリコン基板21を8
00℃の雰囲気中で熱酸化して熱酸化膜nを約100X
の厚さで形成し、窒化シリコン膜nを減圧CVD法によ
り約100^の厚さで形成する。次に再び熱酸化を行っ
て第2の酸化層別を30^ないし50Xの厚さで形成し
、その上に多結晶シリコン層25をCVD法で約400
0 X の厚さで形成しリン拡散を行って導体化する。
In this figure, first, as in the conventional example, a silicon substrate 21 is
Thermal oxidation is performed in an atmosphere of 00℃ to form a thermal oxide film n of approximately 100X.
A silicon nitride film n is formed to a thickness of about 100^ by low pressure CVD. Next, thermal oxidation is performed again to form a second oxide layer with a thickness of 30~50X, and a polycrystalline silicon layer 25 is deposited on top of it with a thickness of about 40X by CVD.
It is formed to a thickness of 0.times.0.times., and is made into a conductor by performing phosphorus diffusion.

フオトレジス)1m26を形成して所定の領域に所定の
パターンで露光を行えば第2図(、)に示すようなパタ
ーニングされたフォトレジスト層かが得られる。
By forming a photoresist layer of 1 m26 and exposing a predetermined area in a predetermined pattern, a patterned photoresist layer as shown in FIG. 2(,) can be obtained.

次にこのノeターニングされたフォトレジスト層九をマ
スクとして等方性ドライエツチング法により多結晶シリ
コン層5をエツチングすると多結晶シリコン層50幅は
フォトレジスト寸法L1oよりも約1μm小さいり、1
となる。なおこのエツチング時に窒化シリコン膜お上の
酸化膜讃は通常オーバーエツチングにより除去されるの
で第2図(b)に示す状態が得られる。
Next, when the polycrystalline silicon layer 5 is etched by an isotropic dry etching method using the photoresist layer 9 that has been turned as a mask, the width of the polycrystalline silicon layer 50 is approximately 1 μm smaller than the photoresist dimension L1o.
becomes. Note that during this etching, the oxide film on the silicon nitride film is usually removed by over-etching, so that the state shown in FIG. 2(b) is obtained.

次に7オトレジスト層拠を除去し、酸素雰囲気中に水素
を混入させ850℃の温度で燃焼させるBOX (Bu
rning 0xidation :燃焼酸化)法を用
いて多結晶シリコン層5を酸化させると1200〜13
00Xの厚さの酸化膜ごが形成される。このとき、窒化
シリコン膜おも同時に酸化されるが、多結晶シリコン層
5よりもはるかに酸化の進行が遅いために窒化シリコン
膜お上には30X以下の薄い酸化膜が形成されるのみで
ある。
Next, the BOX (Bu
When the polycrystalline silicon layer 5 is oxidized using the rning oxidation (combustion oxidation) method, it becomes 1200 to 13
An oxide film having a thickness of 00X is formed. At this time, the silicon nitride film is also oxidized at the same time, but since the oxidation progresses much more slowly than the polycrystalline silicon layer 5, only a thin oxide film of 30X or less is formed on the silicon nitride film. .

次に窒化シリコン換器を等方性ドライエツチングまたは
反応性イオンエツチング(RIEエツチング)によりエ
ツチングで除去する。このエツチング条件として酸化シ
リコンに対する窒化シリコンのエツチングの選択比が大
きい多結晶シリコンに対するエツチング条件に近い条件
を選択すると、多結晶シリコン層5は厚い酸化膜に覆わ
れているためにエツチングが進まない一方で、窒化シリ
コン換器は除去されて第2図(d)の状態が得られる。
The silicon nitride film is then etched away using isotropic dry etching or reactive ion etching (RIE etching). If etching conditions are selected that are close to the etching conditions for polycrystalline silicon, in which the etching selectivity of silicon nitride to silicon oxide is high, etching will not proceed because the polycrystalline silicon layer 5 is covered with a thick oxide film. Then, the silicon nitride converter is removed to obtain the state shown in FIG. 2(d).

このときの多結晶シリコン層50幅もまし、1のままで
ある。
The width of the polycrystalline silicon layer 50 at this time also remains 1.

最後に素子分離を行うフィールド酸化膜あの形成、不純
物拡散によるソース・ドレイン領域四の形成、層間絶縁
膜3t、lU)形成、蒸着法によるアルミニウム配線3
1の形成、ノξツシペーション膜32の形成等を公知の
方法で行うと第2図te+に示すMIS型半導体装置が
児成する。
Finally, the field oxide film for element isolation is formed, the source/drain regions 4 are formed by impurity diffusion, the interlayer insulating film 3t, lU) is formed, and the aluminum wiring 3 is formed by vapor deposition.
By performing the formation of 1, the formation of the insulation film 32, etc. by known methods, an MIS type semiconductor device shown in FIG. 2te+ is formed.

以上の実施例においては、多結晶シリコン層の酸化にB
OX法を用いているが、多結晶シリコン層に厚い酸化膜
が、窒化シリコンj−に薄い酸化膜がそれぞれ形成され
るのであれば方法や温度、雰囲気、時間等の条件如何を
問うものではない。
In the above embodiment, B is used for oxidizing the polycrystalline silicon layer.
Although the OX method is used, as long as a thick oxide film is formed on the polycrystalline silicon layer and a thin oxide film is formed on the silicon nitride layer, the conditions such as method, temperature, atmosphere, time, etc. do not matter. .

また実施例においては多結晶シリコン層は窒化シリコン
膜の上部に形成された酸化膜の上に形成されているが、
この酸化膜が存在しない場合も同様に本発明を適用でき
る。
Furthermore, in the embodiment, the polycrystalline silicon layer is formed on the oxide film formed on the silicon nitride film, but
The present invention can be similarly applied even when this oxide film does not exist.

さらに本発明はMIS型のトランジスタのみでなく、M
IS型のキャパシタにも同様に適用できるものである。
Furthermore, the present invention applies not only to MIS type transistors but also to M
It can be similarly applied to IS type capacitors.

〔発明の効果〕〔Effect of the invention〕

以上のような本発明によれば窒化シリコン膜をゲート絶
縁膜の一部とし、この上に形成された多結晶シリコン層
をゲート電極とする半導体装置の製造方法において、多
結晶シリコン層をパターニングした後、この多結晶シリ
コン層に窒化シリコン膜上の酸化シリコン膜よりも厚い
酸化シリコン膜を形成し、この厚い酸化シリコン膜をエ
ツチングにより除去するようにしているため、窒化シリ
コン膜のエツチングの際に厚い酸化シリコン膜の存在に
より多結晶シリコン層のエツチングが進行することはな
く、パターン変換差が小さくなるため微細なMIS型半
導体構造を得ることができる。
According to the present invention as described above, in a method for manufacturing a semiconductor device in which a silicon nitride film is used as a part of a gate insulating film and a polycrystalline silicon layer formed thereon is used as a gate electrode, the polycrystalline silicon layer is patterned. Afterwards, a silicon oxide film that is thicker than the silicon oxide film on the silicon nitride film is formed on this polycrystalline silicon layer, and this thick silicon oxide film is removed by etching. Due to the presence of the thick silicon oxide film, etching of the polycrystalline silicon layer does not progress, and the difference in pattern conversion becomes small, making it possible to obtain a fine MIS type semiconductor structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMIS型半導体装置の製造方法を示す工
程断面図、第2図は本発明にかかるMIS型半導体製造
装置の製造方法を示す工程断面図である。 l、21・・・シリコン&[,2,22,4,24・・
・シリコン酸化膜、3.23・・・窒化シリコン膜、5
,25・・・多結晶シリコン層、6.26・・・フォト
レジスト、27・・・シリコン酸化膜。 出願人代理人 猪 股 清 第1図 (a) (b) (d) 第2図
FIG. 1 is a process sectional view showing a conventional method for manufacturing an MIS type semiconductor device, and FIG. 2 is a process sectional view showing a method for manufacturing an MIS type semiconductor device according to the present invention. l, 21... Silicon & [, 2, 22, 4, 24...
・Silicon oxide film, 3.23...Silicon nitride film, 5
, 25... Polycrystalline silicon layer, 6.26... Photoresist, 27... Silicon oxide film. Applicant's agent Kiyoshi Inomata Figure 1 (a) (b) (d) Figure 2

Claims (1)

【特許請求の範囲】 少くとも酸化シリコン膜と窒化シリコン膜の2層をゲー
ト絶縁膜とし、このゲート絶縁膜の上に形成された多結
晶シリコン層をゲート電極とする半導体装置の製造方法
において、 前記多結晶シリコン層をエツチングにより所定形状に・
ぞターニングする工程と、 前記パターニングされた多結晶シリコン層に前記窒化シ
リコン膜上に形成された酸化シリコン膜よりも厚い酸化
シリコン膜を形成する工程と、この多結晶シリコン層に
形成された前記酸化シリコン膜をマスクとし℃前記窒化
シリコン膜をエツチングにより除去する工程、 とを有することを特徴とする半導体装置の製造方法。
[Claims] A method for manufacturing a semiconductor device in which at least two layers of a silicon oxide film and a silicon nitride film are used as a gate insulating film, and a polycrystalline silicon layer formed on the gate insulating film is used as a gate electrode, The polycrystalline silicon layer is etched into a predetermined shape.
a step of forming a silicon oxide film thicker than a silicon oxide film formed on the silicon nitride film on the patterned polycrystalline silicon layer; 1. A method of manufacturing a semiconductor device, comprising: using a silicon film as a mask, removing the silicon nitride film by etching at °C.
JP19838383A 1983-10-25 1983-10-25 Manufacture of semiconductor device Pending JPS6091673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19838383A JPS6091673A (en) 1983-10-25 1983-10-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19838383A JPS6091673A (en) 1983-10-25 1983-10-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6091673A true JPS6091673A (en) 1985-05-23

Family

ID=16390207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19838383A Pending JPS6091673A (en) 1983-10-25 1983-10-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6091673A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155782A (en) * 1978-05-26 1979-12-08 Rockwell International Corp Method of fabricating semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155782A (en) * 1978-05-26 1979-12-08 Rockwell International Corp Method of fabricating semiconductor

Similar Documents

Publication Publication Date Title
US8269281B2 (en) Method for forming gate oxide of semiconductor device
US4735917A (en) Silicon-on-sapphire integrated circuits
JPS6072268A (en) Method of producing bipolar transistor structure
JPH02164027A (en) Method of forming self-aligned
KR100437451B1 (en) Method Of Fabricating Trap-type Nonvolatile Memory Device
US5369052A (en) Method of forming dual field oxide isolation
JPH10125773A (en) Manufacture of semiconductor device
JPS6091673A (en) Manufacture of semiconductor device
JPH1126571A (en) Manufacture of semiconductor device
JPS5856436A (en) Manufacture of semiconductor device
JPS5952879A (en) Manufacture of semiconductor device
JPH0620138B2 (en) Method of manufacturing thin film MOS structure semiconductor device
JPH03116968A (en) Manufacture of semiconductor device
JP2707538B2 (en) Method for manufacturing semiconductor device
KR100455735B1 (en) Device Separating Method of Semiconductor Device
JPS5950540A (en) Manufacture of semiconductor device
KR100774795B1 (en) Forming method of multiple gate dielectric layer
JPS6248045A (en) Manufacture of semiconductor device
JPH05183156A (en) Semiconductor device and fabrication thereof
JPH07307468A (en) Manufacture of semiconductor device
JPH04321228A (en) Manufacture of semiconductor device
JPH04209543A (en) Manufacture of semiconductor device
JPH04137624A (en) Manufacture of semiconductor device
JPH10242262A (en) Manufacture of semiconductor device
JPS61154169A (en) Manufacture of semiconductor device