JPS6090975A - Adiabatic engine - Google Patents

Adiabatic engine

Info

Publication number
JPS6090975A
JPS6090975A JP58197539A JP19753983A JPS6090975A JP S6090975 A JPS6090975 A JP S6090975A JP 58197539 A JP58197539 A JP 58197539A JP 19753983 A JP19753983 A JP 19753983A JP S6090975 A JPS6090975 A JP S6090975A
Authority
JP
Japan
Prior art keywords
air
engine
pipe
suction
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58197539A
Other languages
Japanese (ja)
Other versions
JPH0585747B2 (en
Inventor
Hideo Kawamura
英男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP58197539A priority Critical patent/JPS6090975A/en
Publication of JPS6090975A publication Critical patent/JPS6090975A/en
Publication of JPH0585747B2 publication Critical patent/JPH0585747B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M33/00Other apparatus for treating combustion-air, fuel or fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To contrive to increase the output of the engine by arranging an oxygen enriching device on the way of an air suction pipe to increase the rate of isochoric change in a combustion stroke and to contrive the smooth operation of the engine by opening a solenoid bypass valve when the air passing resistance of the oxygen enriching device became large. CONSTITUTION:The inner tube 38 and the outlet pipe 31a of the oxygen amplifier 30 are connected to the half way of the suction air pipe 11 connected to the suction port 10 of a cylinder head 2. Air, introduced into the inner tube 38 through the air suction pipe 11 from an air cleaner 12 in accordance with the operation of the engine, is introduced into the inner chamber through a through hole 36, then, is introduced into the outer chamber from here through a filter 32. The molecule of oxygen is passed through the filter 32 preferentially to increase the oxygen concentration, thereafter, the air is supplied into the combustion chamber 15 from an outlet pipe 31a through the suction air pipe 11. On the other hand, in case the air sucking resistance of the suction air pipe 11 is increased, the pressure drop of the outlet pipe 31a is detected by a pressure sensor 35, the solenoid bypass valve 34 is opened based on the signal and the amount of suction air may be increased.

Description

【発明の詳細な説明】 本発明はセラミクスを利用した断熱構造のエンジンに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine having a heat insulating structure using ceramics.

シリンダライプニ、ピストン、シリンダヘッドなどの燃
焼室を1g画する壁面にセラミクス材料を用い、従来の
冷却水によって外部へ放出されていた熱エネルギを排気
ガスに集中さじで排気タービンへ送り、その動力をクラ
ンク軸に戻す断熱ti造のエンジンが提案されている。
Ceramic materials are used on the walls that define 1g of the combustion chamber, such as the cylinder pipe, piston, and cylinder head, and the heat energy, which would normally be released to the outside by cooling water, is concentrated in the exhaust gas and sent to the exhaust turbine. An engine with an insulated Ti structure that returns the heat to the crankshaft has been proposed.

しかし、12i焼空を断熱WIJ造とすることは燃燗室
の壁部の澗麿が上昇し、噴射ノズルから噴射される燃料
に早期着火が生じ、この結果圧力上昇率が低下し、熱効
率が低下する恐れがある。また、壁部渇廣の上昇により
吸気効率が低下し、平均有効圧が低下する恐れがある。
However, using an insulated WIJ structure for the 12i firing chamber raises the temperature of the wall of the combustion chamber, causing early ignition of the fuel injected from the injection nozzle, resulting in a decrease in the rate of pressure rise and a decrease in thermal efficiency. There is a risk that it will decline. In addition, there is a possibility that the intake efficiency decreases due to the increase in wall draft, and the average effective pressure decreases.

したがって、断熱エンジンでは却って出力の低下や燃費
の低下を来たすことがある。
Therefore, in the case of an adiabatic engine, the output and fuel efficiency may be reduced.

この点について詳述すると、理論的には、従来の冷却エ
ンジンの熱サイクルは第1図に示tT−8線図(温度−
エントロピ線図)において、/MB−C=D′で表され
るのに対して、断熱エンジンの熱ザイクルはABCDで
表される。ここで、Δ′B−は燃焼行程、B−C=は膨
張行程、C−D′は吸排気行程、D′A−は圧縮行程を
表す。ABCDで表される断熱エンジンでは、燃焼行程
すなわち熱発生期間での断熱効果により、8点はB′点
よりもかなり高くなり、仕事量は断熱エンジンの方が冷
却エンジンよりも増加するものと考えられる。
To elaborate on this point, theoretically, the thermal cycle of a conventional cooling engine is shown in the tT-8 diagram (temperature -
In the entropy diagram), /MB-C=D' is expressed, whereas the thermal cycle of an adiabatic engine is expressed as ABCD. Here, Δ'B- represents a combustion stroke, B-C= an expansion stroke, CD' represents an intake/exhaust stroke, and D'A- represents a compression stroke. In an adiabatic engine represented by ABCD, point 8 is much higher than point B' due to the adiabatic effect during the combustion stroke, that is, the heat generation period, and it is thought that the amount of work will increase in an adiabatic engine than in a cooled engine. It will be done.

しかし、実際の制御エンジンでは理論どおりにはならな
い。つまり、冷却エンジンの燃焼行程は第2図に△−E
′B′で示すように、A−E−で等容度化をし、E’−
8−で等圧変化をし、等容変化A′E−は等圧変化E−
B−よりも勾配が急になる。冷却エンジンのように燃料
の着火遅れの傾向が大きいと、等容度化Δ”E−の割合
が増加し、等圧変化B−E−の割合が減少する。
However, in actual control engines, things don't work out as expected in theory. In other words, the combustion stroke of the cooled engine is shown in Figure 2 as △-E.
As shown by 'B', equalize the volume with A-E-, and then E'-
8- causes an isobaric change, and the isovolume change A'E- is an isobaric change E-
The slope is steeper than B-. When the tendency of fuel ignition delay is large as in a cooled engine, the proportion of equal volume change Δ''E- increases and the proportion of equal pressure change BE- decreases.

これに対して、断熱エンジンの熱サイクルは第2図に実
線AEBCDで示すように、燃焼室の温度が高いので、
燃料噴射後の着火遅れが短くなり、等容度化AEの割合
が減少する。その結果、等圧変化EBの割合が大幅に増
加し、最高潤度は従来の冷却エンジンとあまり変らない
。このように、エンジンの発熱1iAEBCDは断熱エ
ンジンの力が増加するが、出力BCはむしろ冷N1エン
ジンの方が大きくなることがある。
On the other hand, in the thermal cycle of an adiabatic engine, as shown by the solid line AEBCD in Figure 2, the temperature of the combustion chamber is high, so
The ignition delay after fuel injection is shortened, and the proportion of volume equalization AE is reduced. As a result, the rate of isobaric change EB increases significantly, and the maximum moisture content is not much different from that of a conventional cooled engine. In this way, the heat generated by the engine 1iAEBCD increases the power of the adiabatic engine, but the output BC may actually become larger in the cold N1 engine.

以上の運出により、断熱エンジンの熱効率は単に燃焼室
を断熱S造とするだけでは、冷却エンジンに比べてあま
り変らないか、却って低下することがある。断熱エンジ
ンの熱発生率を急激にするためには、燃焼における等容
度化AEの割合を大きくすることが必要であるが、これ
は燃料の特性から通常の方法では実現し得ない。
As a result of the above, the thermal efficiency of an adiabatic engine may not change much or may even decrease compared to a cooled engine simply by making the combustion chamber adiabatic steel. In order to rapidly increase the heat release rate of an adiabatic engine, it is necessary to increase the proportion of volumetric AE in combustion, but this cannot be achieved by normal methods due to the characteristics of the fuel.

したがって、本発明の目的は簡単な構成で断熱エンジン
における燃焼の等容度化の割合を大きくし得る断熱エン
ジンを提供することにある。
Therefore, an object of the present invention is to provide an adiabatic engine that can increase the rate of equalization of combustion in the adiabatic engine with a simple configuration.

このため、本発明の構成は吸気管の途中にポリオレフィ
ン膜などのフィルタおよびバイパス弁を備えた酸素富化
器を挿入接続い前記吸気管の前記酸素富化器よりも下流
側に負圧センサを配設し、該負圧セン9の検出負圧が所
定の値よりも低下した時前記バイパス弁を開く制御装置
を備えたものである。
For this reason, the configuration of the present invention is such that an oxygen enricher equipped with a filter such as a polyolefin membrane and a bypass valve is inserted and connected in the middle of the intake pipe, and a negative pressure sensor is installed downstream of the oxygen enricher in the intake pipe. The bypass valve is provided with a control device that opens the bypass valve when the negative pressure detected by the negative pressure sensor 9 falls below a predetermined value.

本発明を実施例に基づいて説明すると、第3図に示すよ
うに、エンジンはシリンダブロック1に形成したシリン
ダにピストン4が嵌合され、かつこれにピストンピン1
4をもって連結したコネクティングロッド6がクランク
軸7のアームと連結される。シリンダブロック1の上端
部はシリンダヘッド2によって閉鎖され、燃焼室15が
区画される。この燃焼室15に連なる吸気口10および
排気口13がシリンダヘッド2に設りられ、吸気弁8お
よびこれと同様の図示してない排気弁によって開閉され
るようになっている。
To explain the present invention based on an embodiment, as shown in FIG. 3, an engine includes a piston 4 fitted into a cylinder formed in a cylinder block 1, and a piston pin
A connecting rod 6 connected at 4 is connected to an arm of a crankshaft 7. The upper end of the cylinder block 1 is closed by a cylinder head 2, and a combustion chamber 15 is defined. An intake port 10 and an exhaust port 13 connected to the combustion chamber 15 are provided in the cylinder head 2, and are opened and closed by an intake valve 8 and a similar exhaust valve (not shown).

断熱エンジンでは、シリンダブロック1の内壁面にセラ
ミクスからなるシリンダライナ3が嵌合され、またシリ
ンダヘッド2の内壁面にセラミクスからなるヘッドライ
ナ9が結合される。また、ピストン4の頂端面にセラミ
クスからなるピストンライナ5が結合される。好ましく
は吸気弁8および排気弁もセラミクスから一体的に構成
される。
In the adiabatic engine, a cylinder liner 3 made of ceramics is fitted onto the inner wall surface of a cylinder block 1, and a headliner 9 made of ceramics is coupled to the inner wall surface of the cylinder head 2. Further, a piston liner 5 made of ceramics is coupled to the top end surface of the piston 4. Preferably, the intake valve 8 and the exhaust valve are also integrally constructed of ceramics.

このようにして、燃焼室15を取り囲む壁部は全て耐熱
性と断熱性を存するセラミクスをもって形成され、燃焼
室15での燃焼ガスの熱が外部へ放散されるのを最小限
に抑えるように構成される。
In this way, the walls surrounding the combustion chamber 15 are all made of ceramics that have heat resistance and heat insulation properties, and are configured to minimize the heat of the combustion gas in the combustion chamber 15 from dissipating to the outside. be done.

本発明によれば、吸気1」10に連なる吸気管11の途
中に酸素富化器30が接続される。この酸素富化器30
は第4.5図に示プように、内1ri138と外筒31
との間に花弁形に折り曲けられたポリオレフィン膜など
からなるフィルタ32を配設して、内室25と外室26
とが区画される。外筒31はこの両端部を端板39,4
1によって閉鎖される。内室25は内83Bに設けた通
孔36を介して内筒38の内部と連通される。一方、外
室26は外筒31の仕切板40に設けた通孔37を介し
て仕切板40と端板41との間に形成した至28に連通
される。室28は出口ll31aと接続される。この出
口管31aには圧力センサ35が設けられる。
According to the present invention, the oxygen enricher 30 is connected in the middle of the intake pipe 11 connected to the intake air 1'10. This oxygen enricher 30
As shown in Fig. 4.5, the inner 1ri 138 and the outer cylinder 31
A filter 32 made of a polyolefin film bent into a petal shape is arranged between the inner chamber 25 and the outer chamber 26.
and are divided. The outer cylinder 31 has both ends connected to end plates 39 and 4.
Closed by 1. The inner chamber 25 communicates with the inside of the inner cylinder 38 via a through hole 36 provided in the inner part 83B. On the other hand, the outer chamber 26 communicates with a hole 28 formed between the partition plate 40 and the end plate 41 through a through hole 37 provided in the partition plate 40 of the outer cylinder 31. Chamber 28 is connected to outlet ll31a. A pressure sensor 35 is provided on this outlet pipe 31a.

入口管を兼ねる内筒38の端部には電磁パイ/<ス弁3
4が配設され、通常ばね29によって弁座34aに押付
けられ、内向38の内端部を閉鎖づるようになっている
。圧力センサ35の信号番よ制御装置20へ加えられ、
吸気管の負圧が所定の値よりも低くなると、制御装置2
0からの出力信号によって電磁バイパス弁34の電磁コ
イルが励磁され、弁体が弁座34aから引離されるよう
になっている。フィルタ32は多数の通孔を備えた金属
補強板33と重合せ結合される。
An electromagnetic piston valve 3 is installed at the end of the inner cylinder 38 which also serves as an inlet pipe.
4 is disposed and is normally pressed against the valve seat 34a by a spring 29 to close the inner end of the inward direction 38. The signal number of the pressure sensor 35 is added to the control device 20,
When the negative pressure in the intake pipe becomes lower than a predetermined value, the control device 2
The electromagnetic coil of the electromagnetic bypass valve 34 is excited by the output signal from 0, and the valve element is separated from the valve seat 34a. The filter 32 is overlapped and bonded to a metal reinforcing plate 33 having a large number of through holes.

上述のように構成した酸素富化器30は内筒38および
出口管31aが吸気1!11の途中に接続される。そし
て、エンジンの運転に伴ってエアクリーナ12から吸気
管11を経て内n38へ導かれた空気は通孔36を経て
内室25に入り、ここからフィルタ32を経て外室26
へ入る。フィルタ32では酸素分子が優先的に通過して
酸素濃度が増加する。そして、外室26から通孔37を
経−C室28へ入り、さらに出口管31aから吸気管1
1を通つ°Cシリンダの燃焼室15へ供給される。
In the oxygen enricher 30 configured as described above, the inner cylinder 38 and the outlet pipe 31a are connected to the middle of the intake air 1!11. As the engine operates, air is guided from the air cleaner 12 through the intake pipe 11 to the inner chamber 25 through the through hole 36, and from there passes through the filter 32 to the outer chamber 26.
Enter. Oxygen molecules pass through the filter 32 preferentially, increasing the oxygen concentration. Then, from the outer chamber 26, the through hole 37 enters the -C chamber 28, and then from the outlet pipe 31a to the intake pipe 1.
1 to the combustion chamber 15 of the cylinder.

酸素富化器30を経て燃焼室15へ供給される吸気は酸
素濃度が大幅に増加されるから、これによって燃焼速度
が上昇し、燃焼6稈における等容変化の割合が増加Jる
。このことは、ff12図にお昏プるE点およびB点の
温度が高くなり、出力BCが大幅に増加する。
Since the oxygen concentration of the intake air supplied to the combustion chamber 15 via the oxygen enricher 30 is greatly increased, the combustion rate increases and the rate of isovolume change in the combustion chamber increases. This means that the temperatures at points E and B shown in the ff12 diagram become higher, and the output BC increases significantly.

また、燃焼室15では燃焼ガスの熱が燃焼室の壁部から
外部へ伝達されのを最小限に抑えられるので、高温の状
態で排気口13から排気タービンへ供給される。この排
気タービンの動力はクランク軸7に歯車Ia1fIなど
の適当な手段を6って伝達される。このようにして、断
熱エンジンの燃焼室15における燃おlの燃焼と膨張に
よるピストン4の運動エネルギが増大されるとともに、
排気ガスが高温の状態で排出されるので、この熱エネル
ギを排気タービンなどで回収するようにすれば、^い回
収効率を得ることができる。
Further, in the combustion chamber 15, the heat of the combustion gas is minimized from being transferred from the wall of the combustion chamber to the outside, so that the heat is supplied from the exhaust port 13 to the exhaust turbine in a high temperature state. The power of the exhaust turbine is transmitted to the crankshaft 7 through a suitable means such as a gear Ia1fI. In this way, the kinetic energy of the piston 4 due to combustion and expansion of fuel in the combustion chamber 15 of the adiabatic engine is increased, and
Since exhaust gas is discharged in a high temperature state, if this thermal energy is recovered using an exhaust turbine or the like, a high recovery efficiency can be obtained.

エンジンの負荷変動によって吸気管11の吸気抵抗が増
大した場合には、圧力セン+135によって出口管31
aの圧力低下が検出され、この信号に基づいて電磁バイ
パス弁34がばね29に抗して弁座34aから引き離さ
れ、内筒38が室28を介して出口管31aと連通され
る。したがって、この場合はフィルタ32の通気抵抗が
なくなり、吸気量を増加させることができる。
When the intake resistance of the intake pipe 11 increases due to engine load fluctuations, the pressure sensor +135
A pressure drop is detected, and based on this signal, the electromagnetic bypass valve 34 is pulled away from the valve seat 34a against the spring 29, and the inner cylinder 38 is communicated with the outlet pipe 31a via the chamber 28. Therefore, in this case, the ventilation resistance of the filter 32 is eliminated, and the amount of intake air can be increased.

なお、排気ガスは排気ターボ過給機に供給し一τ吸気効
率を高めるようにしても、出力の増大と熱効率の向上を
図ることができる。
Note that even if the exhaust gas is supplied to an exhaust turbo supercharger to increase the 1τ intake efficiency, it is possible to increase the output and improve the thermal efficiency.

本発明は上述のように、酸素富化器30を吸気管11の
途中に配設したことによって、燃焼室15へ供給される
吸気の酸素濃度を大幅に増加することができるから、こ
れによって燃焼速度が上昇し、燃焼6稈における等容変
化の割合を増加さセることかでき、エンジンの出力を大
幅に増大することができる。
As described above, in the present invention, by disposing the oxygen enricher 30 in the middle of the intake pipe 11, the oxygen concentration of the intake air supplied to the combustion chamber 15 can be significantly increased. The speed is increased, the rate of isovolumic change in the combustion culms can be increased, and the power of the engine can be significantly increased.

通常の冷却エンジンでは酸素濃度を人さくすると、燃焼
速度も上昇づ−るが熱負荷が大きくなり、ピストンやシ
リンダライナなどの耐熱限度を超えるために焼付きなど
が発生する。
In a normal cooled engine, lowering the oxygen concentration will increase the combustion rate, but it will also increase the heat load, which will exceed the heat resistance limits of pistons, cylinder liners, etc., resulting in seizures.

しかし、本発明では燃焼室が断熱vA造とされ、特に高
温に対して十分な耐久性を備えているので、出力の増大
とひいては燃費の向上に役立つ。また、燃焼室が高温に
維持されるので、低速・高負荷運転での燃焼状態が改善
され、スモークの発生を低減することができる。モして
、機関の急加速や高負荷運転で酸素富化器の通気抵抗が
大きくなると、電磁バイパス弁が問いて吸気管の抵抗が
減じられるので、吸気量を増加させ、円滑な運転性能を
得ることかできる。
However, in the present invention, the combustion chamber is made of a heat-insulating VA structure and has sufficient durability, especially against high temperatures, which is useful for increasing output and, by extension, improving fuel efficiency. Furthermore, since the combustion chamber is maintained at a high temperature, combustion conditions are improved during low-speed, high-load operation, and smoke generation can be reduced. When the ventilation resistance of the oxygen enricher increases due to sudden acceleration or high-load operation of the engine, the electromagnetic bypass valve operates and reduces the resistance of the intake pipe, increasing the amount of intake air and ensuring smooth operating performance. You can get it.

【図面の簡単な説明】[Brief explanation of the drawing]

第″1図は一般的な冷却エンジンと断熱エンジンとを比
較して表す理論上のl−s線図、第2図は同実際のT−
3線図、第3図は本発明に係る断熱]−ンジンの概略構
成を示す正面断面図、第4図G;を同断熱エンジンに取
付けられる酸素富化器につ(1ての側面断面図、第5図
は同正面断面図である。 3ニジリンダライナ 4:ピストン 5:ピストンライ
ナ 9:へラドライナ 11:吸気管 12:エアクリ
ーナ 15:燃焼室 30:酸素富化器 32:フィル
タ 34:電磁パイ!<ス弁35:圧力センサ 特許出願人 いプず自動車株式会社 代理人 弁理士 山本俊夫
Figure 1 is a theoretical l-s diagram comparing a general cooling engine and an adiabatic engine, and Figure 2 is the actual T-s diagram.
Figure 3 is a front cross-sectional view showing the schematic structure of the heat insulation engine according to the present invention, and Figure 4G is a side cross-sectional view of the oxygen enricher attached to the heat insulation engine. , and Fig. 5 is a front sectional view of the same. 3 Nijiliner liner 4: Piston 5: Piston liner 9: Herad liner 11: Intake pipe 12: Air cleaner 15: Combustion chamber 30: Oxygen enricher 32: Filter 34: Electromagnetic Pi!<Suben 35: Pressure sensor patent applicant IPzu Jidosha Co., Ltd. Patent attorney Toshio Yamamoto

Claims (1)

【特許請求の範囲】[Claims] 吸気管の途中にポリオレフィン膜などのフィルタおよび
バイパス弁を備えた酸素富化器を挿入接続し、前記吸気
管の前記m素富化器よりも下流側に負圧センサを配設し
、該負圧センサの検出負圧が所定の値よりも低下した時
前記バイパス弁を開く制御装置を備えたことを特徴とす
る断熱エンジン。
An oxygen enricher equipped with a filter such as a polyolefin membrane and a bypass valve is inserted and connected in the middle of the intake pipe, and a negative pressure sensor is disposed downstream of the oxygen enricher in the intake pipe. An adiabatic engine comprising: a control device that opens the bypass valve when the negative pressure detected by the pressure sensor falls below a predetermined value.
JP58197539A 1983-10-24 1983-10-24 Adiabatic engine Granted JPS6090975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58197539A JPS6090975A (en) 1983-10-24 1983-10-24 Adiabatic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197539A JPS6090975A (en) 1983-10-24 1983-10-24 Adiabatic engine

Publications (2)

Publication Number Publication Date
JPS6090975A true JPS6090975A (en) 1985-05-22
JPH0585747B2 JPH0585747B2 (en) 1993-12-08

Family

ID=16376153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197539A Granted JPS6090975A (en) 1983-10-24 1983-10-24 Adiabatic engine

Country Status (1)

Country Link
JP (1) JPS6090975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157271A (en) * 1985-12-28 1987-07-13 Isuzu Motors Ltd Oxygen enriching equipment of internal combustion engine
WO2001055580A1 (en) * 2000-01-27 2001-08-02 Filterwerk Mann+Hummel Gmbh Intake system for an internal combustion engine with a membrane that is mainly permeable to oxygen molecules
CN100410519C (en) * 2004-10-04 2008-08-13 贺长宏 IC engine with oxygen jet in cylinder and oxygen-enriched combustion control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117720U (en) * 1981-01-14 1982-07-21
JPS58144659A (en) * 1982-02-22 1983-08-29 Mazda Motor Corp Air-intake apparatus for engine
JPS58158340A (en) * 1982-03-13 1983-09-20 Mazda Motor Corp Suction device for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117720U (en) * 1981-01-14 1982-07-21
JPS58144659A (en) * 1982-02-22 1983-08-29 Mazda Motor Corp Air-intake apparatus for engine
JPS58158340A (en) * 1982-03-13 1983-09-20 Mazda Motor Corp Suction device for engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157271A (en) * 1985-12-28 1987-07-13 Isuzu Motors Ltd Oxygen enriching equipment of internal combustion engine
WO2001055580A1 (en) * 2000-01-27 2001-08-02 Filterwerk Mann+Hummel Gmbh Intake system for an internal combustion engine with a membrane that is mainly permeable to oxygen molecules
US6640794B2 (en) 2000-01-27 2003-11-04 Filterwerk Mann & Hummel Gmbh Intake system for an internal combustion engine with a membrane preferentially permeable to oxygen molecules
CN100410519C (en) * 2004-10-04 2008-08-13 贺长宏 IC engine with oxygen jet in cylinder and oxygen-enriched combustion control

Also Published As

Publication number Publication date
JPH0585747B2 (en) 1993-12-08

Similar Documents

Publication Publication Date Title
US20020078934A1 (en) Exhaust gas turbine for internal combustion engine and exhaust turbo-supercharger
US20060168958A1 (en) Supercharged internal combustion engine
US20070056281A1 (en) Integrated inboard exhaust manifolds for V-type engines
US4534173A (en) Means for supplying a secondary air in an internal combustion engine which is provided with a turbo charger
SE512943C2 (en) Internal combustion engine
CN104121123B (en) The engine of special exhaust gas recirculatioon with pulse suppression
US4418532A (en) Supercharged internal combustion engine having a compressed air driven exhaust gas ejector
JPS6090975A (en) Adiabatic engine
JPS569632A (en) Air-fuel ratio controller of internal combustion engine equipped with exhaust turbo-charger
JP2551083B2 (en) Turbocharged internal combustion engine with turbo
JPH04303124A (en) Intake device for engine with mechanical supercharger
JPH0433966B2 (en)
JPS5843563B2 (en) Internal combustion engine exhaust purification device
JPH08319911A (en) Intake device for 4-cycle engine
JP3018349B2 (en) 2-cycle insulated engine
JP2785351B2 (en) Insulated engine with auxiliary combustion chamber
JPS5857020A (en) Intake controller of internal-combustion engine
JPS61234224A (en) Internal-combustion engine
JPS646328B2 (en)
JPH0210258Y2 (en)
JPS5999025A (en) Supercharged internal-combustion engine
JPS6069235A (en) Diesel engine with supercharger
JPS62157271A (en) Oxygen enriching equipment of internal combustion engine
WO2000070213A1 (en) Operation of forced induction internal combustion engines
KR820000757B1 (en) Method for improving the efficiency of internal combustion engines