JPS5999025A - Supercharged internal-combustion engine - Google Patents

Supercharged internal-combustion engine

Info

Publication number
JPS5999025A
JPS5999025A JP57207670A JP20767082A JPS5999025A JP S5999025 A JPS5999025 A JP S5999025A JP 57207670 A JP57207670 A JP 57207670A JP 20767082 A JP20767082 A JP 20767082A JP S5999025 A JPS5999025 A JP S5999025A
Authority
JP
Japan
Prior art keywords
intake
engine
intake valve
supercharger
supercharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57207670A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
敏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57207670A priority Critical patent/JPS5999025A/en
Publication of JPS5999025A publication Critical patent/JPS5999025A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/06After-charging, i.e. supplementary charging after scavenging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To obtain an excellent supercharging effect over the entire speed range of engine operation, by providing a first intake valve for feeding non-supercharged air and a second intake valve opened with some delay to the first intake valve and closed during the compression stroke of an engine in the cylinder head of the engine. CONSTITUTION:A first intake valve 25, a second intake valve 26 and an exhaust valve 30 are provided in an engine body 29, and the intake valves 25, 26 are provided respectively in a first and a second intake passages 22, 24. The first intake pipe 22 is connected directly to an air-flow meter 20 while the second intake pipe 24 is connected to the air-flow meter 20 by the intermediary of a compressor 23 of a small supercharger 27. Further, the exhaust valve 30 and a silencer 35 are connected together via a first exhaust pipe 31 having a turbine 28 of the supercharger 27 and a second exhaust pipe 33 having an exhaust-gas by-pass valve 32. Here, arrangement is such that the first intake valve 25 is opened during the suction stroke of an engine while the second intake valve 26 is opened with some delay to the first intake valve 25 and closed during the compression stroke of the engine.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は過給式の内燃機関に係シ、特に機関の低速域を
含めた全速度領域において良好な過給効果が得られるよ
うに改良した過給内燃機関に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a supercharged internal combustion engine, and has been improved so that a good supercharging effect can be obtained in the entire engine speed range, particularly in the low speed range of the engine. It relates to supercharged internal combustion engines.

〔従来技術〕[Prior art]

過給内燃機関に・おける機関本体の特性と過給機の特性
とのマツチングは、過給内燃機関の性能を決定する上で
重大な要素であって、過給機の容量に関して次記のよう
な技術的問題がある。
Matching the characteristics of the engine itself and the characteristics of the supercharger in a supercharged internal combustion engine is an important factor in determining the performance of the supercharged internal combustion engine. There are technical problems.

一般的に、過給機を小形にすると機関の低速域の性能は
良くなるが、高速域においては却って吸入空気の負荷に
なって無過給機関よシも出力が低下し燃料消費率が大き
くなる。
In general, making a supercharger more compact improves the performance of the engine at low speeds, but at high speeds it actually becomes a load on the intake air, reducing output and increasing fuel consumption even in non-supercharged engines. Become.

このため、従来一般に、低速性能を若干犠牲にして大形
過給機を機関に搭載している。また、低速用の小形過給
機と高速用の大形過給機との両方を設ける試みも為され
ているが、装置全体を大形大重量化して製造コスi−増
加させる上に、2個の過給機の切換によって機関の性能
特性カーブが不連続になる等の不具合を伴う。
For this reason, conventionally, a large supercharger is generally installed in the engine at the expense of some low-speed performance. In addition, attempts have been made to provide both a small turbocharger for low speeds and a large turbocharger for high speeds, but this increases the size and weight of the entire device, increases manufacturing costs, and This is accompanied by problems such as the engine performance characteristic curve becoming discontinuous due to switching between two superchargers.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みて為され、小形過給機を用い
て機関の低速域を含めた全速度領域にわたって良好な過
給効果が得られ、併せて装置全体の小形軽量化並びにコ
ストダウンに貢献し得る過給内燃機関を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and uses a small turbocharger to obtain a good supercharging effect over the entire speed range of the engine including the low speed range, and also to reduce the size and weight of the entire device as well as cost reduction. The purpose is to provide a supercharged internal combustion engine that can contribute to the

〔発明の概要〕[Summary of the invention]

本発明の基本的原理は、機関の吸入空気量を2つに区分
して主空気量と過給空気量とを設定し、上記の過給空気
量を供給するに足シる小形過給機を設けて過給空気を供
給するとともに、これと併行して無過給空気を供給し得
るように構成して、全速度領域にわたって良好な機関性
能を発揮せしめるものである。
The basic principle of the present invention is to divide the intake air amount of the engine into two, set the main air amount and the supercharging air amount, and create a small supercharger that is sufficient to supply the above supercharging air amount. The engine is configured so that it can supply supercharged air and simultaneously supply non-supercharged air, thereby achieving good engine performance over the entire speed range.

め、本発明は内燃機関の吸気行程中に開、1゛る第1の
吸気弁と、上記第1の吸気弁よシも遅れて開弁して圧縮
工程中に閉弁する第2の吸気弁とを設け、かつ、上記の
第2の吸気弁を介して過給空気を供給すると共に、前記
の第1の吸気弁を介して無過給空気を供給し得るように
構成したことを特徴とする。
Therefore, the present invention provides a first intake valve that opens during the intake stroke of an internal combustion engine, and a second intake valve that opens later than the first intake valve and closes during the compression stroke. and a valve, and is configured such that supercharged air can be supplied through the second intake valve and non-supercharged air can be supplied through the first intake valve. shall be.

第1図は比較対照のために掲げた従来の過給内燃機関の
一例の吸排気系統図である。機関本体1から排出された
排気ガスは、排気バルブ2および排気管3を経て過給機
4のタービン翼車5に導入されて該タービン翼車5を回
転駆動する。上記のタービン翼車5と一体的に連結され
たコンプレッサ典車6の回転により、機関本体1の全吸
入空気量が空気清浄器7から吸入され、吸気管8.吸気
バルブ9を経て機関本体1の燃焼室Aに供給される。
FIG. 1 is an intake and exhaust system diagram of an example of a conventional supercharged internal combustion engine for comparison. Exhaust gas discharged from the engine body 1 is introduced into a turbine wheel 5 of a supercharger 4 through an exhaust valve 2 and an exhaust pipe 3, and drives the turbine wheel 5 to rotate. By the rotation of the compressor wheel 6 integrally connected to the turbine impeller 5, the entire intake air amount of the engine body 1 is taken in from the air cleaner 7, and the intake pipe 8. The air is supplied to the combustion chamber A of the engine body 1 via the intake valve 9.

機関本体1の燃焼室内ピーク圧を抑制するため□ 吸気
管8の分岐管8aから過給機出口圧力を取シ出してアク
チュエータ10f、作動せしめ、排気バイパスバルブ1
1を開閉制御し7てタービン翼車5の回転速度を自動的
に制御する構造になっている。
In order to suppress the peak pressure in the combustion chamber of the engine body 1, the supercharger outlet pressure is taken out from the branch pipe 8a of the intake pipe 8 to operate the actuator 10f, and the exhaust bypass valve 1 is activated.
1 and 7 to automatically control the rotational speed of the turbine wheel 5.

12は消音器である。12 is a silencer.

以上のように構成された従来の過給機4のコンプレッサ
作動線図を第2図に示す、過給機4は機関本体の全吸入
空気量を供給する構造であるため、第2図の機関作動線
13上を移動する。このため大容量の過給機を設けない
と機関の高速域をカバーできない。本例において例えば
機関回転速度Ne=300Orpmの点をとってみると
、空気流量(本図表の横軸)は4Ky/min強である
Fig. 2 shows a compressor operation diagram of the conventional supercharger 4 configured as described above. It moves on the actuation line 13. For this reason, the high-speed range of the engine cannot be covered unless a large-capacity supercharger is installed. In this example, if we take the point where the engine rotational speed Ne=300 rpm, for example, the air flow rate (horizontal axis of this chart) is a little over 4 Ky/min.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例を第3図について説明する。 Next, one embodiment of the present invention will be described with reference to FIG.

29は機関本体で、第1吸気バルブ25と第2吸気バル
ブ26とを設けである。
Reference numeral 29 denotes an engine body, in which a first intake valve 25 and a second intake valve 26 are provided.

エアフローメータ20と第1吸気バルブ25との間に第
1吸気管22を設け、これと並列に第2吸気パルプ26
との間に第2吸気管24を設け、かつ、上記の第2吸気
管24の途中に小形過給機27のコンプレッサ23を介
装接続する。
A first intake pipe 22 is provided between the air flow meter 20 and the first intake valve 25, and a second intake pulp 26 is provided in parallel with the first intake pipe 22.
A second intake pipe 24 is provided between the two, and a compressor 23 of a small supercharger 27 is interposed and connected in the middle of the second intake pipe 24.

機関本体29の排気バルブ30と消音器35との間に、
小形過給機27のタービン28を介装した第1排気管3
1と、排気バイパスバルブ32を設けた第2排気管33
とを並列に設ける。
Between the exhaust valve 30 of the engine body 29 and the silencer 35,
The first exhaust pipe 3 in which the turbine 28 of the small supercharger 27 is interposed
1 and a second exhaust pipe 33 provided with an exhaust bypass valve 32
and are provided in parallel.

上記の排気バイパスバルブ32を駆動するダイヤフラム
形アクチュエータ34に、/J’%形過給機27のター
ビン入口圧力Ptl又はコンプレッサ出口圧力P。2を
連通せしめ得るように構成する。
The diaphragm actuator 34 that drives the exhaust bypass valve 32 receives the turbine inlet pressure Ptl or the compressor outlet pressure P of the /J'% type supercharger 27. 2 is configured to communicate with each other.

第4図は上記実施例における作動タイミングを表わす図
表で、横軸にクランク角度をとシ、縦軸にパルプ開閉と
、機関本体の燃焼室内圧力とを示しである。
FIG. 4 is a chart showing the operation timing in the above embodiment, in which the horizontal axis shows the crank angle, and the vertical axis shows pulp opening/closing and the pressure in the combustion chamber of the engine body.

本図表の下半部に吸、排気パルプの開口面積カーブを描
いである。仮想iは参考のために示した排気パルプの開
閉作動でアシ、通例のごとく排気行程の間だけ開弁する
The lower half of this diagram depicts the opening area curves of the suction and exhaust pulp. Virtual i is the opening and closing operation of the exhaust pulp shown for reference, and as usual, the valve opens only during the exhaust stroke.

実線は前記の第1吸気バルブ25の開閉作動を示す。こ
の第1吸気バルブは通例の内燃機関の吸気バルブの如く
吸入行程開始上死点の少し前に開弁し、吸入行程路シの
下死点の少し後に閉弁する。
The solid line indicates the opening/closing operation of the first intake valve 25. The first intake valve, like the intake valve of a conventional internal combustion engine, opens a little before the top dead center of the intake stroke and closes a little after the bottom dead center of the intake stroke.

いま、上記の第1吸気バルブのみによシ、即ち第2吸気
パルプ26を継続的に閉じfcままで機関を運転すると
、燃焼室内の圧力変化は本図表の上半に実線で示したよ
うになる。このカーブ(実線)は通例の無過給内燃機関
におけると同様の圧力カーブである。
Now, if we operate the engine with only the first intake valve mentioned above, that is, with the second intake pulp 26 continuously closed and fc, the pressure change in the combustion chamber will be as shown by the solid line in the upper half of this chart. Become. This curve (solid line) is a pressure curve similar to that in a conventional non-supercharged internal combustion engine.

前記の第2吸気パルプ26は、本図表の下半部に点線で
示したように、第1吸気パルプ25よシも遅れて、吸入
行程の末期に開弁じ、圧縮行程の途中で閉弁するように
構成する。この期間は燃焼室内圧力が、はぼ大気圧付近
から正圧となって上昇する時期であるが、第2吸気パル
プ26は過給機27から過給空気(即ち圧縮空気)を供
給されているので、燃焼室内の正圧に打ち勝って過給空
気が燃焼室内に流入せしめられる。
As shown by the dotted line in the lower half of this diagram, the second intake pulp 26 opens later than the first intake pulp 25 at the end of the suction stroke and closes in the middle of the compression stroke. Configure it as follows. During this period, the pressure in the combustion chamber increases from near atmospheric pressure to positive pressure, but the second intake pulp 26 is supplied with supercharged air (i.e. compressed air) from the supercharger 27. Therefore, the supercharged air overcomes the positive pressure within the combustion chamber and is forced to flow into the combustion chamber.

上記の作用によシ、第1吸気バルブ25と第2吸気パル
プ26とを併用すると、本図表の上半に破線で示したよ
うに、圧縮行程における燃焼室内圧力は無過給の場合(
実線)に比して著しく上昇する。このことは、燃焼室内
に多量の気体が充填されたことを意味する。
Due to the above action, when the first intake valve 25 and the second intake pulp 26 are used together, the pressure in the combustion chamber during the compression stroke becomes (
(solid line). This means that a large amount of gas is filled into the combustion chamber.

上記の充填気体とは、ガソリンエンジンに於てはガソリ
ンと燃焼用空気との混合気であシ、デイゼルエンジンに
於ては燃焼用空気である。
The above-mentioned filling gas is a mixture of gasoline and combustion air in a gasoline engine, and combustion air in a diesel engine.

圧縮行程において多量の気体を充填した結果、第2吸気
バルブを作動せしめた場合の燃焼室内圧力(破線)は、
膨張行程において無過給の場合(実線)に比して著しく
高くなる。従って発生動力が大きくなる。
As a result of filling a large amount of gas in the compression stroke, the combustion chamber pressure (dashed line) when the second intake valve is activated is:
In the expansion stroke, it becomes significantly higher than in the case of no supercharging (solid line). Therefore, the generated power increases.

以上説明したように、本実施例の過給内燃機関は、無過
給の吸入空気と過給吸入空気とを併用して吸入するので
、過給機の容量を著しく小さくすることができる。
As explained above, since the supercharged internal combustion engine of this embodiment draws in both non-supercharged intake air and supercharged intake air, the capacity of the supercharger can be significantly reduced.

過゛給機を小形にできることの結果として、過給内燃機
関の装置全体を小形、軽量化して、その製造コストヲ低
減し得るのみでなく、小形過給機を用いるため低速性能
が良くなる。しかも、無過給の吸入空気を併用するため
高速域においても機関の性能を妨げることなく、無過給
エンジン出力に小形過給エンジン出力を加えた形で出力
を増加せしめることができる。
As a result of making the turbocharger smaller, not only can the entire supercharged internal combustion engine be made smaller and lighter, reducing its manufacturing cost, but also the use of a smaller supercharger improves low-speed performance. Moreover, since non-supercharged intake air is also used, the output can be increased by adding the small supercharged engine output to the non-supercharged engine output without impeding engine performance even in the high-speed range.

上に述べた(イ)低速性能の改善、(ロ)高速性能の維
持、←)過給機の小形化、という三つの効果を、第5図
および第6図について次に詳述する。
The three effects mentioned above (a) improvement of low-speed performance, (b) maintenance of high-speed performance, and ←) miniaturization of the supercharger will be explained in detail below with reference to FIGS. 5 and 6.

第5図の横軸は機関の回転速度である。同図の縦軸の上
半は吸入空気量、縦軸の下半は軸トルクを示す。
The horizontal axis in FIG. 5 is the rotational speed of the engine. The upper half of the vertical axis in the figure shows the intake air amount, and the lower half of the vertical axis shows the shaft torque.

本図の上半に示す如く内燃機関の吸入空気量は、無過給
機関(2点鎖線)の場合回転数と共に増加し、従来の過
給機関(実線)の場合上記の無過給機関よシも上回るが
、本実施例(破線)においては次のようになる。
As shown in the upper half of this figure, the intake air amount of an internal combustion engine increases with the rotation speed in the case of a non-supercharged engine (double-dashed line), and in the case of a conventional supercharged engine (solid line), compared to the above-mentioned non-supercharged engine. However, in this embodiment (broken line), the result is as follows.

小形過給機を搭載しているため低速性能が良く、低速域
においては従来の過給機関(実線)よシも著しく大量の
空気が吸入される。
Equipped with a small turbocharger, it has good low-speed performance, and in the low-speed range, a significantly larger amount of air is taken in than a conventional supercharged engine (solid line).

そして、高速域においても無過給プラス小形過給分の吸
入が行なわれる。即ち、第5図の上半部に点線で付記し
たカーブが小形過給機の特性カーブである。このカーブ
は、低速域(約2500rl)m以下)で良好な特性を
示しているが、中速以上(約250Orpm以上)では
性能カーブが頭打ちした形になっている。
Even in the high-speed range, the amount of intake without supercharging plus small supercharging is performed. That is, the curve marked with a dotted line in the upper half of FIG. 5 is the characteristic curve of the small supercharger. This curve shows good characteristics in the low speed range (approximately 2500 rpm or less), but the performance curve peaks out at medium speeds or higher (approximately 250 rpm or more).

本実施例のカーブ(破線)は、無過給機関のカーブ(2
点鎖線)に、上記の小形過給機特性カーブ(点線)を上
積みして加算した形となる。従って、低速域では従来の
過給機関よシも著しく優れた過給特性が得られ、高速域
(約5000rl)m以上)においても従来の過給機関
(実線)に比して悪くはなら゛ない。
The curve of this example (dashed line) is the curve of the non-supercharged engine (2
This is the result of adding the above small supercharger characteristic curve (dotted line) to the curve (dotted chain line). Therefore, in the low speed range, supercharging characteristics are significantly superior to those of conventional supercharged engines, and even in the high speed range (approximately 5,000 rl) m or higher), they are no worse than conventional supercharged engines (solid line). do not have.

以上に説明した・ような吸入空気量が得られる結果、機
関の軸トルクは本図9下半に示した如くになシ、本実施
例の過給機関の軸トルク(破線)は従来の過給エンジン
の軸トルク(実線)に比して低速域で著しく優れ、高速
域でも悪くならない。
As a result of obtaining the intake air amount as described above, the shaft torque of the engine becomes as shown in the lower half of Fig. 9, and the shaft torque (dashed line) of the supercharged engine of this embodiment is equal to that of the conventional supercharged engine. Compared to the shaft torque of the supplied engine (solid line), it is significantly superior in the low speed range and does not deteriorate even in the high speed range.

また、この図表から明らかなように本実施例は低速域を
含む全速度領域において優れた性能を示し、しかも性能
カーブに不連続側/9rt−生じない。
Further, as is clear from this graph, this example shows excellent performance in all speed ranges including low speed ranges, and does not have a discontinuous side/9rt- in the performance curve.

上に述べた第5図の機関特性カーブは、いわゆるフルス
ロットルの状態、すなわち機関出力軸に適正な負荷が掛
かった状態を表わしている。負荷が著しく軽い場合、乃
至無負荷の場合は、機関の回転速度が高くても過給機の
回転速度は上昇せず、このような状態では過給効果が減
少する。これを本図表についてみれば、従来の過給機関
のカーブ(実線)も、本実施例のカーブ(破線)も、無
過給機関のカーブ(2点鎖線)に接近する。完全に無負
荷であれば低速域において無過給カーブ(2点鎖線)に
一致し、この状態で過給機はほとんど乃至完全に停止し
ている。
The engine characteristic curve shown in FIG. 5 described above represents a so-called full throttle condition, that is, a condition in which an appropriate load is applied to the engine output shaft. If the load is extremely light or there is no load, the rotational speed of the supercharger will not increase even if the engine rotational speed is high, and the supercharging effect will decrease in such a state. Looking at this in this chart, both the curve of the conventional supercharged engine (solid line) and the curve of this embodiment (broken line) approach the curve of the non-supercharged engine (double-dashed line). If there is no load, the engine will match the no-supercharging curve (double-dashed line) in the low speed range, and the supercharger will almost or completely stop in this state.

上述の変化は負荷の変化に応じて自動的に、円滑に移行
し、機関の性能に一切の悪影響を及ぼすものではない。
The above-mentioned changes occur automatically and smoothly in response to changes in load, and do not have any adverse effect on engine performance.

即ち、内燃機関に過給機を搭載するのは軸トルクを増加
させる為であるから′、軽負荷乃至無負荷時には過給効
果を必要としない。
That is, since the purpose of installing a supercharger on an internal combustion engine is to increase the shaft torque, the supercharging effect is not required when the engine is under light load or no load.

第6図は上記実施例のコンプレッサ作動線図である。機
関作動線13′は図示のような形となる。
FIG. 6 is a compressor operation diagram of the above embodiment. The engine operating line 13' has a shape as shown.

機関回転速度3000〜sooorpmにおいても空気
流量が2 Kf/ m i n弱であり、第2図に示し
だ従来形過給機関における30001m時の空気流量4
にグ/min強に比して半分以下である。
Even at an engine rotational speed of 3000 to sooorpm, the air flow rate is a little less than 2 Kf/min, and as shown in Figure 2, the air flow rate at 30001 m in a conventional supercharged engine is 4.
This is less than half compared to slightly more than 2000 kg/min.

これらの図表から明らかなように、本発明を適用するこ
とによシ、過給機の容量を1/2以下とし、低速性能を
著しく改善し、しかも高速性能を悪化させないことが可
能になる。
As is clear from these graphs, by applying the present invention, it is possible to reduce the capacity of the supercharger to 1/2 or less, significantly improve low-speed performance, and not deteriorate high-speed performance.

第7図は上記と異なる実施例を示し、第3図に示した前
例と異なるところは第2吸気管24の途中に逆止弁37
を介装接続したことである。このように構成すると、万
一、燃焼室内圧力が第2吸気弁の開弁中にコンプレッサ
23の吐出圧力よシも高くなっても吸入気体が第2吸気
管24に逆流する虞れが無い。
FIG. 7 shows an embodiment different from the above, and the difference from the example shown in FIG.
This means that they are connected via an intervening connection. With this configuration, even if the pressure in the combustion chamber becomes higher than the discharge pressure of the compressor 23 while the second intake valve is open, there is no possibility that the intake gas will flow back into the second intake pipe 24.

また、本発明の適用によって機関出力が増加し、このた
め機関の主運動部材が力学的若しくは熱的に辛くなる虞
れがある場合は、小形過給機27のコンプレッサ23の
出口圧力Pc2、若しくはタービン入口圧力P t 1
をアクチュエータ34に連通し排気バイパスパルプ32
を開いて小形過給機27の回転速度を抑制するようeこ
構成する。これによシ機関本体29の稼働条件を確実に
安全範囲内に収めることができる。また、上記の排気バ
イパスパルプ32を当該過給機関の操縦系統機器(図示
せず)に連動せしめるように構成してもよい。
In addition, if the engine output is increased by applying the present invention, and there is a risk that the main moving members of the engine will become mechanically or thermally stressed, the outlet pressure Pc2 of the compressor 23 of the small supercharger 27, or Turbine inlet pressure P t 1
is connected to the actuator 34 to connect the exhaust bypass pulp 32 to the actuator 34.
The structure is such that the rotation speed of the small supercharger 27 is suppressed by opening. Thereby, the operating conditions of the engine main body 29 can be reliably kept within a safe range. Further, the exhaust bypass pulp 32 may be configured to be linked to control system equipment (not shown) of the supercharged engine.

この実施例を用いる場合、過給圧力Pc2、又はタービ
ン入口圧力Pt1f本例のように直接的に圧力信号とし
てアクチュエータ34に与えてもよく、或いは適宜のセ
ンサを介して電気的信号に変えてアクチュエータ34を
作動せしめてもよい。
When using this embodiment, the supercharging pressure Pc2 or the turbine inlet pressure Pt1f may be given directly to the actuator 34 as a pressure signal as in this example, or it may be converted into an electrical signal via an appropriate sensor and sent to the actuator 34. 34 may be activated.

2第8図は上記と異なる実施例を示し、本発明を噴射式
ガソリンエンジンに適用した過給内燃機関の一例でおる
。第1吸気管22及び第2吸気管24にそれぞれ空気量
を制御する開閉パルプ54゜55を設け、噴射弁52.
53を設けである。噴射弁はコントロールユニット50
によってそれぞれ独立に制御可能である。また排気バイ
パスパルプは電気信号によって駆動されるソレノイドパ
ルプ51によυタービン翼車の回転数が一定となるよう
に制御される構造である。
2. FIG. 8 shows an embodiment different from the above, and is an example of a supercharged internal combustion engine in which the present invention is applied to an injection type gasoline engine. The first intake pipe 22 and the second intake pipe 24 are provided with opening/closing pulps 54 and 55 for controlling the amount of air, respectively, and the injection valves 52.
53 is provided. The injection valve is a control unit 50
Each can be controlled independently. Further, the exhaust bypass pulp is controlled by a solenoid pulp 51 driven by an electric signal so that the rotational speed of the υ turbine wheel is kept constant.

第9図は本発明をデイゼルエンジンに適用した一実施例
を示し、60は燃料噴射ノズルである。
FIG. 9 shows an embodiment in which the present invention is applied to a diesel engine, and 60 is a fuel injection nozzle.

以上詳述したように、本発明の過給内燃機関は、内燃機
関の吸気行程中に開弁する第1の吸気孔と、上記第1の
吸気孔よシも遅れて開弁して圧縮工程中に閉弁する第2
の吸気孔とを設け、かつ、上記の第2の吸気孔に過給空
気を供給すると共に、前記の第1の吸気孔に対しては無
過給空気を供給するように構成して機関の低速域を含め
た全速度領域にわたって良好な過給効果が得られ、併せ
て過給内燃機関全体の小形軽量化が可能となり製造コス
トを低減せしめ得るという優れた実用的効果を生じる。
As described above in detail, the supercharged internal combustion engine of the present invention has a first intake hole that opens during the intake stroke of the internal combustion engine, and a first intake hole that also opens later than the first intake hole to open during the compression process. The second valve closes during
an intake hole, and is configured to supply supercharged air to the second intake hole, and to supply non-supercharged air to the first intake hole. A good supercharging effect can be obtained over the entire speed range including the low speed range, and the overall supercharged internal combustion engine can be made smaller and lighter, resulting in an excellent practical effect of reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の過給機内の一例の吸、排気系統図、第2
図は上記の過給機関のコンプレッサ作動線図である。第
3図乃至第6図は本発明の過給内燃機関の一実施例を示
し、第3図は吸、排気系統図、第4図は作動タイミング
図表、第5図は性能特性を従来装装置と対比して示した
図表、第6図はコンプレッサ作動線図である。第7図乃
至第9図はそれぞれ上記と異なる実施例を示す吸、排気
系統図である。 1・・・機関本体、4・・・過給機、22・・・第1吸
気管、23・・・小形過給機のコンプレッサ、24・・
・第2吸気管、25・・・第1吸気パルプ、26・・・
第2吸気パルプ、27・・・小形過給機、2B・・・小
形過給機のタービン、29・・・機関本体、30・・・
排気バルブ、31・・・第1排気管、32・・・排気バ
イパスバルブ、33・・・第2排気管、34・・・アク
チュエータ、35・・・消音器、51・・・ソレノイド
バルブ、60・・・噴射ノズル。 代理人 弁理士 秋本正実 茶1 図 第2図 空気流量 伝 (リム絹 不3図 茶+団 $6図 !4に、ジ*’t−Qa  (kaし/−ηをンし)茶
7図 第2図
Figure 1 is an example of the intake and exhaust system diagram inside a conventional supercharger, and Figure 2
The figure is a compressor operation diagram of the above-mentioned supercharged engine. 3 to 6 show an embodiment of the supercharged internal combustion engine of the present invention, FIG. 3 is an intake and exhaust system diagram, FIG. 4 is an operation timing diagram, and FIG. 5 shows performance characteristics of a conventionally equipped engine. 6 is a compressor operating diagram. FIGS. 7 to 9 are intake and exhaust system diagrams showing embodiments different from those described above. DESCRIPTION OF SYMBOLS 1... Engine body, 4... Supercharger, 22... First intake pipe, 23... Compressor of small supercharger, 24...
-Second intake pipe, 25...First intake pulp, 26...
2nd intake pulp, 27...Small supercharger, 2B...Small supercharger turbine, 29... Engine main body, 30...
Exhaust valve, 31... First exhaust pipe, 32... Exhaust bypass valve, 33... Second exhaust pipe, 34... Actuator, 35... Silencer, 51... Solenoid valve, 60 ...Injection nozzle. Agent Patent Attorney Masami Akimoto 1 Figure 2 Air flow rate Den (Rim Kinufu 3 Figure + Group $6 Figure! 4, Ji*'t-Qa (Kashi/-η)) Tea 7 Figure Figure 2

Claims (1)

【特許請求の範囲】 1、内燃機関の吸気行程中に開弁する第1の吸気弁と、
上記第1の吸気弁よシも遅れて開弁じて圧縮工程中に閉
弁する第2の吸気弁とを設け、かつ、上記の第2の吸気
弁を介して過給空気を供給すると共に、前記の第1の吸
気弁を介して、無過給空気を供給するように構成したこ
とを特徴とする過給内燃機関。 2、前記の第2の吸気弁は、設吸気質と過給機との間に
逆流防止手段を設けたものであることを特徴とする特許
請求の範囲第1項に記載の過給内燃機関。 3、前記の第2の吸気弁に過給空気を供給する過給機は
、該第2の吸気弁に連通する吸気管内の圧力を検出する
手段を設けたものとし、かつ、上記の検出手段の出力信
号と、上記過給機の排気ガス圧力の検出信号と、当該内
燃機関の運転操作状態を表わす信号との内の少なくとも
いずれか一つに基づいて開閉作動される排気バイパスを
設けて、機関の回転速度が一定値以上にならないように
制御し得べくなしたることを特徴とする特許請求の範囲
第1項又は同第2項に記載の過給内燃機関。
[Claims] 1. A first intake valve that opens during the intake stroke of an internal combustion engine;
A second intake valve that opens later than the first intake valve and then closes during the compression process is provided, and supercharging air is supplied through the second intake valve, and A supercharged internal combustion engine characterized in that the engine is configured to supply non-supercharged air through the first intake valve. 2. The supercharged internal combustion engine according to claim 1, wherein the second intake valve is provided with a backflow prevention means between the intake air quality setting and the supercharger. . 3. The supercharger that supplies supercharged air to the second intake valve is provided with means for detecting the pressure within the intake pipe communicating with the second intake valve, and the above-mentioned detection means an exhaust bypass that is opened and closed based on at least one of the output signal of the supercharger, the detection signal of the exhaust gas pressure of the supercharger, and the signal representing the operational state of the internal combustion engine; A supercharged internal combustion engine according to claim 1 or 2, characterized in that the engine rotational speed is controlled so as not to exceed a certain value.
JP57207670A 1982-11-29 1982-11-29 Supercharged internal-combustion engine Pending JPS5999025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207670A JPS5999025A (en) 1982-11-29 1982-11-29 Supercharged internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207670A JPS5999025A (en) 1982-11-29 1982-11-29 Supercharged internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5999025A true JPS5999025A (en) 1984-06-07

Family

ID=16543612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207670A Pending JPS5999025A (en) 1982-11-29 1982-11-29 Supercharged internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5999025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175235U (en) * 1986-04-28 1987-11-07
WO1988000283A1 (en) * 1986-07-09 1988-01-14 Engine Technology Limited Turbo-charger incorporating energy storage means
FR2894288A1 (en) * 2005-12-07 2007-06-08 Renault Sas Air injection device for e.g. spark ignition engine, has intake manifold supplying air to intake duct in cylinder head of combustion chamber, where pressure of manifold is less than pressure in duct when duct is opened

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148027A (en) * 1981-03-09 1982-09-13 Mazda Motor Corp Protective device of engine with supercharger
JPS5813123A (en) * 1981-07-14 1983-01-25 Daihatsu Motor Co Ltd Engine with supercharger
JPS5916512U (en) * 1982-07-23 1984-02-01 株式会社吉野工業所 containers with cosmetics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148027A (en) * 1981-03-09 1982-09-13 Mazda Motor Corp Protective device of engine with supercharger
JPS5813123A (en) * 1981-07-14 1983-01-25 Daihatsu Motor Co Ltd Engine with supercharger
JPS5916512U (en) * 1982-07-23 1984-02-01 株式会社吉野工業所 containers with cosmetics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175235U (en) * 1986-04-28 1987-11-07
WO1988000283A1 (en) * 1986-07-09 1988-01-14 Engine Technology Limited Turbo-charger incorporating energy storage means
FR2894288A1 (en) * 2005-12-07 2007-06-08 Renault Sas Air injection device for e.g. spark ignition engine, has intake manifold supplying air to intake duct in cylinder head of combustion chamber, where pressure of manifold is less than pressure in duct when duct is opened

Similar Documents

Publication Publication Date Title
JP4417603B2 (en) Internal combustion engine
JPS6353364B2 (en)
JPS61164039A (en) Multistage turbo supercharged engine
JPH03138416A (en) Intake device for engine provided with supercharger
JPH1089106A (en) Engine with turbo-supercharger and power unit of vehicle loaded with the same engine
JP4177961B2 (en) Method of operating an internal combustion engine and internal combustion engine
JPH0586989A (en) Exhaust gas reflux device for engine with mechanical type supercharger
JPS5999025A (en) Supercharged internal-combustion engine
JPS6240096Y2 (en)
JPS60216030A (en) Internal-combustion engine equipped with turbochargers
JPH03117624A (en) Turbosupercharge engine
JPS6116229A (en) Supercharged internal-combustion engine
KR20110129130A (en) Internal combustion engine
JPS5941293Y2 (en) Internal combustion engine with supercharger
JPS5857020A (en) Intake controller of internal-combustion engine
JPS5856340Y2 (en) internal combustion engine with supercharger
JPS59692B2 (en) Exhaust turbocharged engine
JPH0315805Y2 (en)
JP2647131B2 (en) Intake device for turbocharged diesel engine
JPH0748984Y2 (en) Engine with turbocharger
JPS5836824Y2 (en) Exhaust turbo supercharging device
JPS5920851B2 (en) Internal combustion engine with supercharger
JPS5941294Y2 (en) Internal combustion engine with supercharger
JPS6329852Y2 (en)
JPS59158321A (en) Engine with supercharger