JPS6069235A - Diesel engine with supercharger - Google Patents

Diesel engine with supercharger

Info

Publication number
JPS6069235A
JPS6069235A JP17904883A JP17904883A JPS6069235A JP S6069235 A JPS6069235 A JP S6069235A JP 17904883 A JP17904883 A JP 17904883A JP 17904883 A JP17904883 A JP 17904883A JP S6069235 A JPS6069235 A JP S6069235A
Authority
JP
Japan
Prior art keywords
engine
supercharger
pressure
working chamber
discharge side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17904883A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17904883A priority Critical patent/JPS6069235A/en
Publication of JPS6069235A publication Critical patent/JPS6069235A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/36Engines with pumps other than of reciprocating-piston type with rotary pumps of positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To lower the specific fuel consumption of an engine, by making the expansion ratio fairly great as compared with the compression ratio at the time when an intake valve is closed. CONSTITUTION:Providing that the minimum volume and the maximum volume of a work space are Vc, Vm, respectively, and the volume of the work space at the time point when an intake valve is closed is Vs, the compression ratio epsilon(=Vs/Vc) at the time when the intake valve is closed and the expansion ratio E(=Vm/Vc) is so selected to satisfy the following relationship, E/epsilon=1.35, In case that an engine is required to produce a high torque and a high output, drop of the engine torque and output due to the large value of E/epsilon is prevented by supplying high-pressure intake air from a supercharger 2. On the other hand, at the time of partial-load operation of the engine when supercharging for the engine is not required, return passages 11, 13 are opened by valves 12, 15 so as not to produce loss of work done by the supercharger 2 for compression the intake air.

Description

【発明の詳細な説明】 本発明は、吸気弁閉鎖時圧縮比に対し膨張比を大幅に高
めて、機関の燃費を改善する様にした過給機付デイーゼ
ル機関に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a supercharged diesel engine that improves the fuel efficiency of the engine by significantly increasing the expansion ratio relative to the compression ratio when the intake valve is closed.

一般に、過給機付デイーゼル機関では、圧縮比を高める
事が燃費を改善する有効な手段であるが、あまり高すぎ
る圧縮比を採用する事は機関の摩擦損失を増加させて却
つて燃費の低下を拓くと共に燃焼圧力及び熱負荷が過大
となる不具合を生ずるので、自と上限がある。
In general, increasing the compression ratio of a turbocharged diesel engine is an effective means of improving fuel efficiency, but adopting a compression ratio that is too high increases engine friction loss and actually reduces fuel efficiency. There is an upper limit to this problem, as the combustion pressure and heat load become excessive as the combustion pressure increases.

本発明は、吸気弁閉鎖時圧縮比に対し(もちろんできる
限り高圧縮比を採用するのであるが)膨張比を大幅に高
めて、機関の燃費を改善しようとしたもので、以下図面
に従つて説明する。
The present invention aims to improve the fuel efficiency of the engine by significantly increasing the expansion ratio compared to the compression ratio when the intake valve is closed (of course, a compression ratio as high as possible is adopted). explain.

本発明においては、機関のある1つの作動空間(シリン
ダー、シリンダーヘツド、ピストンにより形成される吸
入・圧縮・膨張・排出を行う空間を言う)の最小容積を
Vc、最大容積をVm、吸気弁が閉鎖される時点(吸気
弁が複数個備えられている場合は最も遅く閉じるものが
閉鎖される時点)における同作動空間の容積をVsとす
ると、吸気弁閉鎖時圧縮比εをε=Vs/Vc、膨張比
EをE=Vm/Vcと定義する。
In the present invention, the minimum volume of one operating space in the engine (referring to the space in which suction, compression, expansion, and exhaust are performed formed by the cylinder, cylinder head, and piston) is Vc, the maximum volume is Vm, and the intake valve is If the volume of the same operating space at the time of closing (when multiple intake valves are provided, the time when the one that closes latest is closed) is Vs, then the compression ratio ε when the intake valve is closed is ε=Vs/Vc , the expansion ratio E is defined as E=Vm/Vc.

第1図は本発明による過給機付デイーゼル機関の一実施
例で、チエーン・ベルト等を介して機関1の出力軸へ連
結する過給機2を備えている。
FIG. 1 shows an embodiment of a supercharged diesel engine according to the present invention, which includes a supercharger 2 connected to an output shaft of an engine 1 via a chain belt or the like.

ベーン6はローターハウジング4の中心に備えられたベ
ーン軸8を中心としてローター3と共に回転し、ベーン
6の先端面とローターハウジング4の内壁面との間には
極めて僅かな間隙が残されている。
The vane 6 rotates together with the rotor 3 around a vane shaft 8 provided at the center of the rotor housing 4, and an extremely small gap is left between the tip surface of the vane 6 and the inner wall surface of the rotor housing 4. .

吸入側通路9から作動室7(過給機における容積変化を
行う空間を言い、図ではローター3、ローターハウジン
グ4、サイドハウジング5、ベーン6により形成される
空間を言う)内へ流入した給気は、吐出側通路10を経
て機関1へ供給される様になつている。
Supply air that flows from the suction side passage 9 into the working chamber 7 (referring to the space where the volume changes in the supercharger, and in the figure, the space formed by the rotor 3, rotor housing 4, side housing 5, and vane 6) is supplied to the engine 1 via a discharge side passage 10.

そして、ある1つの作動室7に注目すると、同作動室7
の容積の最小状態から最大状態へ到るまで給気は一様に
同作動室7内へ流入する様になつている(途中で、給気
の流入が中断されない様になつている。) ここで、開閉弁12,15はアクセルペダル又は燃料噴
射量を制御するコントロールラツク等(図示せず)へ機
械的に連動させ、機関に過給を行う必要のない部分負荷
域(特に機関の空転状態を含む極低負荷域)には、開閉
弁12,15により戻し通路11,13(14)を開か
せて、過給機2の給気圧縮仕事損失を発生させない様に
するのである。
Then, when focusing on one working chamber 7, the same working chamber 7
The air supply is designed to uniformly flow into the working chamber 7 from the minimum volume state to the maximum volume state (the inflow of air supply is not interrupted on the way). The on-off valves 12 and 15 are mechanically linked to an accelerator pedal or a control rack (not shown) that controls the fuel injection amount, and are used in a partial load range where there is no need to supercharge the engine (especially when the engine is idling). In extremely low load ranges (including extremely low load areas), the return passages 11 and 13 (14) are opened by the on-off valves 12 and 15 to prevent the charge air compression work loss of the supercharger 2 from occurring.

開閉弁12,15により戻し通路11,13(14)が
閉鎖されれば機関には過給が行なわれる。
When the return passages 11, 13 (14) are closed by the on-off valves 12, 15, the engine is supercharged.

この場合、戻し通路13の作動室7へ開口する開口部1
3′は、例えばその円周方向の長さをベーン6の先端部
の厚さ以下とする如くして、ベーン6の先端面により閉
鎖される瞬間を有する形状を持つ様に各々形成されてい
るから、各々の開口部13′が開閉弁15により閉鎖さ
れた時、各々の開口部13′をベーン6が通過する際、
このベーン6を境界として隣り合う作動空間が互いに連
通する事はなく、給気の■通りが起らない。
In this case, the opening 1 of the return passage 13 opens into the working chamber 7.
3' are each formed to have a shape that is closed by the tip end surface of the vane 6, for example, by making its circumferential length less than or equal to the thickness of the tip end of the vane 6. Therefore, when each opening 13' is closed by the on-off valve 15, when the vane 6 passes through each opening 13',
Adjacent operating spaces with this vane 6 as a boundary do not communicate with each other, and supply air does not flow.

さて、図示しない吸気弁は、吸気過程において機関出力
軸角度でピストンの下死点後θの時点で閉鎖される様に
ないている(吸気弁が複数個備えられている場合は、最
も遅く閉鎖するものを考えるものとする)。
Now, the intake valve (not shown) is designed to close at a point θ after the bottom dead center of the piston at the engine output shaft angle during the intake process (if multiple intake valves are provided, the intake valve closes at the latest). ).

この場合、前記ε,E,θとの間には次の様な関係があ
る(ただし、λは速接棒長さとピストン行程との比で、
ここではλ=2とする)。
In this case, there is the following relationship between ε, E, and θ (where λ is the ratio of the quick contact rod length to the piston stroke,
Here, λ=2).

一般には膨張比Eは13〜23、θは40°〜60°位
が普通であり、吸気弁閉鎖時圧縮比εとの比、E/εを
考えると、E/εの値は1.09〜1.23位であるが
、本発明はこのE/εの値を1.35以上としたところ
に特徴がある。
Generally, the expansion ratio E is 13 to 23, and θ is usually about 40° to 60°. Considering the ratio of E/ε to the compression ratio ε when the intake valve is closed, the value of E/ε is 1.09. ~1.23, but the present invention is characterized in that the value of E/ε is set to 1.35 or more.

即ちE/εの値を1.35以上とすれば、膨張比Eが1
3〜23の範囲では前記θは70°以上となり、吸気過
程において機関の作動空間内へ一旦充填された給気は相
当の部分が機関の作動空間外へ逆流し(特に機関の低速
域において)、機関のトルクは大幅に低下する事を衆儀
なくされる。
That is, if the value of E/ε is 1.35 or more, the expansion ratio E is 1.
In the range of 3 to 23, the above θ is 70° or more, and a considerable portion of the supply air once filled into the working space of the engine during the intake process flows back out of the working space of the engine (especially in the low speed range of the engine). , the torque of the engine is inevitably reduced significantly.

本発明ではE/εの値を1.35以上とし、機関の高ト
ルク・高出力が要求される場合には過給機2から高圧の
給気(従来よりも高圧の給気となる)を供給して、E/
εの値が大である事に起因する機関のトルク・出力の低
下を防いでいるのである。
In the present invention, the value of E/ε is set to 1.35 or more, and when high torque and high output of the engine are required, high pressure air supply from the supercharger 2 (higher pressure air supply than before) is provided. Supply, E/
This prevents the engine's torque and output from decreasing due to the large value of ε.

即ち、機関の空転状態を含む少なくとも極低負荷域には
開閉弁12,15は開いており、過給機2からの給気は
大気圧のまま機関へ供給をれるが(これにより、過給機
2の給気圧縮仕事損失は発生しない゜→一般に過給機付
デイービル機関では、常時給気を大気圧以上に加圧して
機関へ供給している為、燃費は相当悪化する)、この状
態から図示しないアクヒルペダルを開いてゆくと、燃料
噴射量が増して機関の出力は増大され、開閉弁12,1
5が閉鎖(全閉)するに到ると、遂には機関に過給が行
なわれる様になり(従来、即ちE/εの値が1、35よ
り小の場合よりも給気の圧力は高い)、かくして燃料噴
射量の増大と相まつて機関のトルク・出力の低下を防い
でいるのである。
That is, the on-off valves 12 and 15 are open at least in the extremely low load range, including when the engine is idling, and the air supplied from the supercharger 2 is supplied to the engine at atmospheric pressure (thereby, the supercharger There is no work loss in compression of the air supply in machine 2 (→Generally, in a turbocharged engine, the air supply is constantly pressurized above atmospheric pressure and supplied to the engine, so the fuel efficiency deteriorates considerably), this state When the accelerator pedal (not shown) is opened, the fuel injection amount increases and the engine output increases, and the on-off valves 12,1
5 is closed (fully closed), the engine is finally supercharged (the supply air pressure is higher than conventionally, that is, when the value of E/ε is smaller than 1.35). ), thus preventing an increase in the amount of fuel injection and a decrease in engine torque and output.

本発明の望ましい実施例をあげると、直接噴射式機関で
は例えばε=13.5,E=20(この時E/ε=1.
48→従来はε=13.5,E=16,E/ε=1.2
位である)であり、間接噴射式(副室式)機関では例え
ばε=16,E=24(この時E/ε=1.5−→従来
はε=17,E=21,E/ε=1.23位である)ご
ある。
To give a preferred embodiment of the present invention, in a direct injection engine, for example, ε=13.5, E=20 (in this case, E/ε=1.
48 → Conventionally ε=13.5, E=16, E/ε=1.2
In an indirect injection (pre-chamber type) engine, for example, ε=16, E=24 (in this case, E/ε=1.5-→ conventionally, ε=17, E=21, E/ε = 1.23rd place).

従つて、吸気弁閉鎖時圧縮比εを従来と同一としながら
、膨張比Eを極めて高くする事ができる。
Therefore, the expansion ratio E can be made extremely high while the compression ratio ε when the intake valve is closed is the same as the conventional one.

この様に本発明によれば機関の摩擦損失、燃焼圧力及び
熱負荷を過大に増加させる事なく(前記εが従来と同一
である故)膨張比Eを極めて高くし、かつ機関の空転状
態を含む少なくとも極低負荷域では過給機の給気圧縮仕
事損失を発生させない様にしているので(即ち、過給機
の吐出側の圧力が正圧とならない様にしているので)、
機関の燃費を大幅に改善する事ができる。
As described above, according to the present invention, the expansion ratio E can be made extremely high without excessively increasing the friction loss, combustion pressure, and thermal load of the engine (because ε is the same as before), and the idling state of the engine can be reduced. At least in the extremely low load range, including the supercharger, the charge air compression work loss of the supercharger is prevented from occurring (that is, the pressure on the discharge side of the supercharger is prevented from becoming positive pressure).
The fuel efficiency of the engine can be significantly improved.

本発明は機関のトルク・出力を低下させる事なくE/ε
の値を1.35以上とするところに特徴があるが、望ま
しくはE/εの値を1.4〜3.0とするのが良い(E
/εの値をあまり大とする事は、過給機の給気圧縮仕事
損失が増大して好ましくない)。
The present invention enables E/ε without reducing engine torque/output.
The characteristic is that the value of E is set to 1.35 or more, but it is preferable to set the value of E/ε to 1.4 to 3.0 (E
It is undesirable to make the value of /ε too large because it increases the charge air compression work loss of the supercharger).

一般に過給機付デイーゼル機関では、燃焼圧力及び熱負
荷の過大な上昇を防止する為、無過給デイーゼル機関に
比し、吸気弁閉鎖時圧縮比εを若干下げる様にするが、
一方においては機関の部分負荷域(特に空転状態を含む
極低負荷域)における燃焼特性を悪化させ易い。
Generally, in a diesel engine with a supercharger, the compression ratio ε is slightly lowered when the intake valve is closed compared to a non-supercharged diesel engine in order to prevent an excessive increase in combustion pressure and thermal load.
On the other hand, it tends to deteriorate the combustion characteristics of the engine in a partial load range (particularly in an extremely low load range including idling).

そこで第2図に示す如く、機関の空転状態を含む少なく
とも極低負荷域においては吸入側通路9内を流れる給気
を絞弁16により若干絞る様にする事が望ましい。
Therefore, as shown in FIG. 2, it is desirable to use a throttle valve 16 to slightly throttle the supply air flowing through the suction side passage 9 at least in an extremely low load range, including when the engine is idling.

これにより過給機の吐出側の圧力、即ち吐出側通路10
内の圧力は負圧となり、機関の作動空間内(シリンダー
内)へ充填される給気の量が制限され、機関の作動空間
内熱容量は適度に減少され、圧縮端温度(燃料噴射時の
機関の作動空間内給気温度と考えて良い)を十分に上昇
させる事ができる。
As a result, the pressure on the discharge side of the supercharger, that is, the pressure on the discharge side passage 10
The internal pressure becomes negative pressure, the amount of air charged into the working space of the engine (inside the cylinder) is restricted, the heat capacity in the working space of the engine is appropriately reduced, and the compression end temperature (engine temperature at the time of fuel injection) is reduced. (can be considered as the supply air temperature in the working space).

従つて、着火遅れ期間が短縮されて燃焼圧力の上昇が後
やかとなる結果となり、燃焼騒音が低減されると共に燃
料の完全燃焼も可能となり、かくして燃焼特性が改善さ
れるのである(一般に、デイーゼル機関では給気を絞る
と機関のポンプ損失の発生により燃費は悪化するはずで
あるが、実際には給気を絞ると圧縮端圧力が低下して摩
擦損失が減少する等の効果があるので、燃費は殆ど悪化
しない)。
Therefore, the ignition delay period is shortened and the combustion pressure rises later, resulting in reduced combustion noise and complete combustion of the fuel, thus improving the combustion characteristics (generally used in diesel engines). In an engine, when the supply air is throttled, fuel consumption is supposed to worsen due to engine pump loss, but in reality, when the supply air is throttled, it has the effect of lowering the compression end pressure and reducing friction loss. There is almost no deterioration in fuel consumption).

そしてこの場合、過給機の吐出側(吐出側通路10)に
は強い負圧が発生しているから、二点鎖線示の如く適当
な流量制御装置18を有する排ガス導入通路17を形成
すれば、排気通路19内を流れる排ガスを吐出側通路1
0内へ多量に導入させる事ができる。
In this case, since a strong negative pressure is generated on the discharge side (discharge side passage 10) of the supercharger, an exhaust gas introduction passage 17 having an appropriate flow rate control device 18 is formed as shown by the two-dot chain line. , the exhaust gas flowing in the exhaust passage 19 is transferred to the discharge side passage 1.
It is possible to introduce a large amount into 0.

これにより(排ガスの温度は極めて高いから)、圧縮端
温度が更に上昇する利点を生ずると共に、排ガス中のN
oxを低減させる事ができる。
This has the advantage of further increasing the compression end temperature (since the temperature of the exhaust gas is extremely high) and also reduces the amount of N in the exhaust gas.
Ox can be reduced.

ここで、吐出側通路10内へ導入される排ガスの流量を
順次増加させてゆくと、遂には吐出側通路10内の圧力
がほぼ大気圧となるが、この様にしても圧縮端温度を十
分に上昇させて燃焼特性を改善する事ができる(これは
、機関の作動空間内熱容量の減少によるものではなく、
機関へ供給される空気、即ち新気の量を制限した事と、
排ガスを導入した事とによるものである)。
Here, if the flow rate of the exhaust gas introduced into the discharge side passage 10 is gradually increased, the pressure inside the discharge side passage 10 will finally reach almost atmospheric pressure, but even if this is done, the compression end temperature can be maintained sufficiently. (This is not due to a decrease in the heat capacity in the working space of the engine, but rather
Limiting the amount of air supplied to the engine, that is, fresh air;
This is due to the introduction of exhaust gas).

絞弁16は図示しないアクヒルペダル等に機関的に連動
させ、機関の空転状態を含む少なくとも極低負荷域には
、絞弁16により給気を絞る様にする事が望ましい。
It is preferable that the throttle valve 16 is mechanically linked to an accelerator pedal (not shown) or the like, and that the intake air is throttled by the throttle valve 16 at least in an extremely low load range, including when the engine is idling.

次に、絞弁16により給気を絞らないで、機関の部分負
荷域(特に空転状態を含む極低負荷域)における燃焼特
性を改善する様にした実施例を第4図に示す。
Next, FIG. 4 shows an embodiment in which the combustion characteristics in the partial load range of the engine (particularly in the extremely low load range including the idling state) are improved without throttling the air supply using the throttle valve 16.

即ち第4図において、吸入側通路9は作動室7へ開口す
る直前で多数の吸入側通路9′に分割され、これらの吸
入側通路9′を順次開閉する制御弁21が備えられてい
る。
That is, in FIG. 4, the suction side passage 9 is divided into a number of suction side passages 9' just before opening into the working chamber 7, and is provided with a control valve 21 for sequentially opening and closing these suction side passages 9'.

そして、各々の吸入側通路9′の作動室7へ開口する開
口部9′′は、ベーン6の先端面により閉鎖される瞬間
を有する形状を持つ様に各々形成されている。
The openings 9'' of each suction side passage 9' opening into the working chamber 7 are each formed to have a shape that is closed by the tip end surface of the vane 6.

従つてある1つの開口部9′′に注目すると、同開口部
9′′に属する吸入側通路9′が制御弁21により閉鎖
されている時には、ベーン6が同開口部9′′を通過す
る際、このベーン6を境界として隣り合う作動室間が互
いに連通する事はなく、給気の素通りも起らない。
Therefore, focusing on one opening 9'', when the suction side passage 9' belonging to the opening 9'' is closed by the control valve 21, the vane 6 passes through the opening 9''. At this time, adjacent working chambers with the vane 6 as a boundary do not communicate with each other, and supply air does not pass through.

今、機関の空転状態を含む部分負荷域(特に極低負荷域
)を考えると、制御弁21は各々の開口部9′′に属す
る各々の吸入側通路9′を図示の如く全部閉鎖しており
(以下、制御弁21が全閉していると称する)、ある1
つの作動室7に注目すると、同作動室7の容積の最小状
態から最大状態へ到る行程の中途(以下、この時点をV
d点と称する)まで吸入側通路20が同作動室7へ連通
する事によつて、給気が同作動室7内へ流入する様にな
つている。
Now, considering a partial load range (particularly an extremely low load range) that includes the idling state of the engine, the control valve 21 completely closes each suction side passage 9' belonging to each opening 9'' as shown in the figure. (hereinafter referred to as the control valve 21 being fully closed), certain 1
Focusing on the two working chambers 7, the volume of the working chamber 7 is in the middle of the process from the minimum state to the maximum state (hereinafter, this point is referred to as V
By communicating the suction side passage 20 to the working chamber 7 up to point d), the supply air flows into the working chamber 7.

即ち、前記Vd点までに、機関へ供給される給気の全部
を占る如く、給気を同作動室7内へ流入させているので
ある。
That is, up to the Vd point, the supply air is made to flow into the working chamber 7 so as to account for all of the supply air supplied to the engine.

そして、前記Vd点で同作動室7内へ流入する給気の流
入が遮断された後は、同作動室7内の給気は断熱的に膨
張し(給気温度が低下する事が考えられるから、この分
排ガス・冷却水等により予熱しておく事が望ましい)、
過給機2の吐出側の圧力、即ち吐出側通路10内の圧力
(負圧)に等しくなつた時点で、同作動室7は連通路2
3,24を介して過給機2の吐出側(吐出側通路10)
へ連通し、最終的には同作動室7内の給気は過給機の吐
出側へ吐出される様になる(この場合、各々の開口部9
′′に属する各々の吸入側通路9′は制御弁21により
全部閉鎖されているから、ベーン6が各々の開口部9′
を通過する時、このベーン6を介して隣り合う作動室間
が互いに連通する事がなく、給気の来通りも起らない為
、同作動室7内の給気は断熱的に膨張する事ができるの
である)。
After the supply air flowing into the working chamber 7 is cut off at the Vd point, the supply air in the working chamber 7 expands adiabatically (it is thought that the temperature of the supply air decreases). Therefore, it is desirable to preheat this amount using exhaust gas, cooling water, etc.)
When the pressure on the discharge side of the supercharger 2 becomes equal to the pressure (negative pressure) in the discharge side passage 10, the working chamber 7 is connected to the communication passage 2.
3, 24 to the discharge side of the supercharger 2 (discharge side passage 10)
Finally, the supply air in the working chamber 7 is discharged to the discharge side of the supercharger (in this case, each opening 9
Since each of the suction side passages 9' belonging to the
When passing through the vane 6, adjacent working chambers do not communicate with each other through the vane 6, and the supply air does not pass through, so the supply air in the working chamber 7 expands adiabatically. ).

かくして、機関へ供給とれる給気(新気)を制限(新気
の密度を大気圧状態よりも小とする事)しているのであ
る。
In this way, the supply air (fresh air) that can be supplied to the engine is restricted (the density of fresh air is made lower than the atmospheric pressure).

制御弁21を全閉、連通路23,24を全開させた時の
同作動室7のP−V線図(圧力−容積線図)を第3図に
示すが、図からも明らかの様に過給機2は斜線の部分に
相当する仕事、即ち動力を発生しており、これを機関へ
伝達しているのである(Poは大気圧を、Piは過給機
2の吐出側の圧力−負圧を示す)。
FIG. 3 shows a PV diagram (pressure-volume diagram) of the working chamber 7 when the control valve 21 is fully closed and the communicating passages 23 and 24 are fully opened, and as is clear from the diagram. The supercharger 2 generates work, that is, power, corresponding to the shaded area, and transmits this to the engine (Po is the atmospheric pressure, Pi is the pressure on the discharge side of the supercharger 2 - (indicates negative pressure).

かくして、機関の空転状態を含む少なくとも極低負荷域
では機関へ供給される給気(新気)を制限させているの
で、機関の作動空間内へ充填される給気の量は制限され
、作動空間内熱容量は適度に減少される。
In this way, the supply air (fresh air) supplied to the engine is limited at least in the extremely low load range, including when the engine is idling, so the amount of supply air that is filled into the engine's working space is limited, and the engine is not operating properly. The internal heat capacity is moderately reduced.

従つて、圧縮端温度が十分に上昇し、着火遅れ期間が短
縮されるから燃焼圧力の上昇は緩やかとなり、燃焼騒音
が低減され、燃料の完全燃焼が可能となり、燃焼特性が
改善される。
Therefore, the compression end temperature is sufficiently increased and the ignition delay period is shortened, so that the increase in combustion pressure becomes gradual, combustion noise is reduced, complete combustion of the fuel becomes possible, and combustion characteristics are improved.

燃料噴射量が増大して機関へ供給される給気が更に多量
に要求される場合には、アクセルペダル(図示せず)の
所定開度から開き始める制御弁21を順次開いてゆく(
各々の開口部9′′に属する各々の吸入側通路9′を制
御弁21により順次開いてゆく)様にすれば良く、これ
により燃料噴射量の増大と相まつて機関の出力は増加す
る。
When the amount of fuel injection increases and a larger amount of air supply to the engine is required, the control valves 21 are sequentially opened, starting from a predetermined opening degree of the accelerator pedal (not shown).
The suction side passages 9' belonging to the respective openings 9'' may be sequentially opened by the control valve 21), thereby increasing the fuel injection amount and increasing the engine output.

(この場合、制御弁12は燃料噴射量を制御するコント
ロールラツク・コントロールスリーブ等に連動させる事
も考えられる) そして制御弁21を更に開くと、連通路23が順次閉鎖
されるに到り、そして遂には機関に過給が行なわれる様
になる(開口部23′も、ベーン6の先端面により閉鎖
される瞬間を有する形状を持つ様に形成すると、各々の
開口部23′をベーン6が通過する時、このベーン6を
境界として隣り合う作動室間が互いに連通する事はなく
、給気の素通りが全く起らない。
(In this case, the control valve 12 may be linked to a control rack, control sleeve, etc. that controls the fuel injection amount.) Then, when the control valve 21 is further opened, the communication passage 23 is sequentially closed. Eventually, the engine will be supercharged (if the openings 23' are also formed to have a shape that has the moment when they are closed by the tip surfaces of the vanes 6, the vanes 6 will pass through each opening 23'). At this time, adjacent working chambers with the vane 6 as a boundary do not communicate with each other, and supply air does not pass through at all.

制御弁21により各々の連通路23がT度閉鎖された時
の作動室7のP−V線図を第3図に二点鎖線で示す。
A PV diagram of the working chamber 7 when each communication passage 23 is closed by T degree by the control valve 21 is shown by a two-dot chain line in FIG.

尚、各々の吸入側通路9′と制御弁21との間の間隙は
できる限り微小とし、気密性を高める事が望ましいが、
必要ならばこの間隙を若干残しても良い。
Note that it is desirable to make the gap between each suction side passage 9' and the control valve 21 as small as possible to improve airtightness.
If necessary, this gap may be left slightly.

この様にすると、機関の空転状態を含む極低負荷域を考
えると、前記Vd点で作動室7内へ流入する給気の流入
が遮断された後も作動室7内へ(前記間隙から)給気が
若干流入する事になるが、換言すれば前記Vd点までに
、機関へ供給される給気の大部分を占る如く、給気を作
動室7内へ流入させる事になるが、この様にしても過給
機2に動力を発生させる事ができるのである。
In this way, considering the extremely low load range including the idling state of the engine, even after the inflow of the supply air flowing into the working chamber 7 at the Vd point is cut off, the supply air flows into the working chamber 7 (from the gap). A small amount of supply air will flow in, but in other words, the supply air will flow into the working chamber 7 so as to account for most of the supply air supplied to the engine up to the Vd point. Even in this manner, the supercharger 2 can generate power.

さて前述の如く制御弁21が全閉している時には、過給
機2の吐出側には強い負圧が発生しているから、第2図
で述べた如く排ガスを吐出側通路10内へ多量に導入す
る様にすれば、圧縮端温度を更に上昇させて燃焼特性を
改善し、排ガス中のNOxを低減させる事ができる(排
ガスを導入すると吐出側通路10内の負圧が低下するの
で、連通路23を遅れ側に新設して角度φを小とし、前
記Vd点からの作動室7が連通路23,24を介して吐
出側通路10へ連通する時期を早める様にする)。
Now, as mentioned above, when the control valve 21 is fully closed, a strong negative pressure is generated on the discharge side of the supercharger 2, so a large amount of exhaust gas flows into the discharge side passage 10 as described in FIG. If the exhaust gas is introduced into the exhaust gas, it is possible to further increase the compression end temperature, improve the combustion characteristics, and reduce NOx in the exhaust gas. The communication passage 23 is newly installed on the delay side to make the angle φ small, so that the timing at which the working chamber 7 from the Vd point communicates with the discharge side passage 10 via the communication passages 23 and 24 is brought forward).

そして、吐出側通路10内へ導入される排ガスの流量を
順次増加させてゆくと、遂には吐出側通路10内の圧力
がほぼ大気圧となり、過給機2には動力は発生しない様
になるが、同時に機関にもポンプ損失が発生してないの
で、燃費には全く悪影響を及ぼさない(この場合、角度
φが0°となる様に、連通路23を制御弁21の進み端
22の近傍まで新設する様にする)。
Then, as the flow rate of exhaust gas introduced into the discharge side passage 10 is gradually increased, the pressure inside the discharge side passage 10 finally becomes almost atmospheric pressure, and the supercharger 2 no longer generates power. However, since no pump loss occurs in the engine at the same time, there is no adverse effect on fuel efficiency at all (in this case, the communication passage 23 is placed near the leading end 22 of the control valve 21 so that the angle ).

第4図においてもE/εの値を1.35以上とし、機関
の摩擦損失、燃焼圧力及び熱負荷を過大に増加させる事
なく膨張比Eを極めて高くしているのである。
Also in FIG. 4, the value of E/ε is set to 1.35 or more, and the expansion ratio E is made extremely high without excessively increasing the friction loss, combustion pressure, and heat load of the engine.

かつ、機関の空転状態を含む少なくとも極低負荷域では
、過給機2の給気圧縮仕事損失を発生させない様に(吐
出側通路10内の圧力が正圧とならない様に)している
In addition, at least in the extremely low load range including the idling state of the engine, the charge air compression work loss of the supercharger 2 is prevented from occurring (the pressure in the discharge side passage 10 is prevented from becoming positive pressure).

従つて、機関の燃費を大幅に改善する事ができる。Therefore, the fuel efficiency of the engine can be significantly improved.

更には、機関へ供給される給気(新気)を制限して吐出
側通路10内の圧力が負圧となつている場合には、過給
機2に動力が発生しているので、機関の燃費は更に改善
される(一般にデイーゼル機関では、機関へ供給される
給気を制限すると機関のポンプ損失の為に燃費は悪化す
るはずであるが、実際には圧縮端圧力の低下による摩擦
損失の減少、更には燃焼特性の改善等の効果があり、燃
費の悪化は殆どない。従つて、過給機2に発生した動力
に相当する分だけ燃費は改善されるのである)。
Furthermore, when the supply air (fresh air) supplied to the engine is restricted and the pressure in the discharge side passage 10 becomes negative pressure, power is generated in the supercharger 2, so the engine (In general, in a diesel engine, if the supply air to the engine is restricted, the fuel efficiency should worsen due to the engine pump loss, but in reality, the fuel consumption is reduced due to the reduction in compression end pressure.) This has the effect of reducing fuel consumption and improving combustion characteristics, and there is almost no deterioration in fuel efficiency.Therefore, fuel efficiency is improved by an amount equivalent to the power generated by the supercharger 2).

第4図において制御弁21の進み端22を最も遅れ側に
ある連通路23まで延長した実施例を第5図に示す。
FIG. 5 shows an embodiment in which the leading end 22 of the control valve 21 in FIG. 4 is extended to the communication path 23 located on the most delayed side.

図において、制御弁21が全閉した時(機関の空転状態
を含む少なくとも極低負荷域)の作動室7のP−V線図
は第3図(実線の部分)と同様であり、制御弁21を開
いても(制御弁21により吸入側通路9′を開いても)
制御弁21により全ての連通路23が閉鎖されるまでは
、作動室7内へ流入した給気が吐出側通路10内の圧力
に常時ほぼ等しくなるまで膨張した後に、同作動室7が
連通路23,24を介して吐出側通路10へ連通する様
になつているのである(もちろん、制御弁21の進み端
22を角度φの中間程度まで縮小する様にしても、ほぼ
同様の効果が得られるものである)。
In the figure, the P-V diagram of the working chamber 7 when the control valve 21 is fully closed (at least in the extremely low load range including the idling state of the engine) is the same as that in Figure 3 (the solid line part), and the control valve 21 is 21 (even if the suction side passage 9' is opened by the control valve 21)
Until all the communication passages 23 are closed by the control valve 21, the supply air flowing into the working chamber 7 expands until the pressure in the discharge side passage 10 is almost equal to the pressure in the discharge side passage 10, and then the working chamber 7 closes in the communication passage. 23 and 24 to the discharge side passage 10 (of course, almost the same effect can be obtained even if the leading end 22 of the control valve 21 is reduced to about the middle of the angle φ). ).

更に、第1図において角度φの区間に連通路23を形成
する様にした実施例を、第6図に示す。
Further, FIG. 6 shows an embodiment in which a communicating path 23 is formed in the section of angle φ in FIG. 1.

即ち第6図において、制御弁21が全閉した機関の空転
状態を含む少なくとも極低負荷域を考えると、前記Vd
点の近傍で作動室7は直5に連通路23,24を介して
吐出側道路10へ連通する様になつており。
That is, in FIG. 6, when considering at least an extremely low load range including the idling state of the engine in which the control valve 21 is fully closed, the Vd
In the vicinity of the point, the working chamber 7 communicates directly with the discharge side road 10 via communication passages 23 and 24.

作動室7のP−V線図を示した第7図からも明らかの様
に、過給機には斜線の部分に相当する仕事、即ち動力が
発生しているのである(参考の為、制御弁21が若干開
いた時の作動室7のP−V線図を二点鎖線で示した)。
As is clear from Figure 7, which shows the P-V diagram of the working chamber 7, the turbocharger generates work corresponding to the shaded area, that is, power (for reference, the control A PV diagram of the working chamber 7 when the valve 21 is slightly opened is shown by a two-dot chain line).

この場合、制御弁21の進み端22を連通路23側へ若
干延長する様にしても良く、これにより前記Vd点から
の作動室内の給気は若干膨張した後に連通路23,24
を介して吐出側通路10内へ吐出される様になる。
In this case, the leading end 22 of the control valve 21 may be slightly extended toward the communication passage 23, so that the air supplied from the Vd point in the working chamber expands slightly and then enters the communication passages 23, 23.
It comes to be discharged into the discharge side passage 10 through.

第8図は、レプシールドポンプと称するポンプを過給機
として使用した本発明による過給機付デイーゼル機関(
機関は図示せず)において、絞弁により給気を絞らない
で機関の部分負荷域(特に空転状態を含む極低負荷域)
における燃焼特性を改善する様にしたものである。
Figure 8 shows a diesel engine with a supercharger according to the present invention, which uses a pump called a Repshield pump as a supercharger.
(engine not shown), the engine is operated in a partial load range (especially in an extremely low load range including idling) without throttling the supply air with a throttle valve.
The combustion characteristics of the fuel are improved.

ローター25は図示しない同期歯車によつて互いに無接
触状態で噛合う様になつており、吸入側通路30を流れ
る給気は、吸入側通路30とローター25との接続部3
1(向う側のサイドハウジング27の内壁面にある)か
らローター25に形成された連通孔32を経て、更に吸
入側通路33(手前側のサイドハウジングに形成されて
いる)を介して作動室28内へ流入する様になつている
The rotors 25 are meshed with each other without contact by synchronous gears (not shown), and the supply air flowing through the suction side passage 30 is connected to the connection part 3 between the suction side passage 30 and the rotor 25.
1 (located on the inner wall surface of the side housing 27 on the opposite side), through the communication hole 32 formed in the rotor 25, and further into the working chamber 28 via the suction side passage 33 (formed on the side housing on the front side). It seems that there is an influx into the country.

機関の空転状態を含む少なくとも極低負荷域を考えると
、閉鎖弁36は全閉又はほぼ全閉しており(通常は全閉
)、ある1つの作動室28に注目すると、同作動室28
の容積の最小状態から最大状態へ到る行程の中途Vd点
までに(ローター25に形成された連通孔32が前記V
d点まで接続部31に連通する事によつて)、機関へ供
給される給気の全部(閉鎖弁36が全閉の場合)又は大
部分(閉鎖弁36が若干開いた場合)を占る如く,給気
を同作動室28内へ流入させ、これにより機関へ供給さ
れる給気(新気)を制限して圧縮端温度を十分に上昇さ
せ、燃焼特性を改善しているのである。
Considering at least the extremely low load range including the idling state of the engine, the closing valve 36 is fully closed or almost fully closed (usually fully closed), and when focusing on one working chamber 28, the same working chamber 28
By the point Vd in the middle of the journey from the minimum volume state to the maximum volume state (the communication hole 32 formed in the rotor 25
(by communicating with the connection part 31 up to point d), it accounts for all (when the closing valve 36 is fully closed) or most (when the closing valve 36 is slightly open) of the supply air supplied to the engine. Thus, the supply air is allowed to flow into the working chamber 28, thereby restricting the supply air (fresh air) supplied to the engine, sufficiently raising the compression end temperature, and improving the combustion characteristics.

閉鎖弁36を全閉させた時の作動室28のP−V線図を
第9図に示すが、図からも明らかの様に過給機2′は斜
線の部分に相当する仕事、即ち動力を発生し、これを機
関へ伝達して燃費を更に改善しているのである。
FIG. 9 shows a P-V diagram of the working chamber 28 when the closing valve 36 is fully closed. As is clear from the figure, the supercharger 2' performs the work corresponding to the shaded area, that is, the power. This generates energy and transmits it to the engine, further improving fuel efficiency.

燃料噴射量が増大して機関へ供給される給気が更に多量
に要求される場合には、アクセルペダル等に連動する閉
鎖弁36を保々に又は急激に開き、吸入側通路29から
も多量の給気を作動室28内へ流入させる様にすれば良
い。
When the amount of fuel injection increases and a larger amount of air is required to be supplied to the engine, the closing valve 36 that is linked to the accelerator pedal etc. is opened continuously or suddenly, and a large amount of air is also removed from the suction side passage 29. The supply air may be allowed to flow into the working chamber 28.

34はリード弁を示す。34 indicates a reed valve.

尚、閉鎖弁36が全閉又は若干開いている時には、吐出
側通路35内には強い負圧が発生しているから、前述と
同様に排ガスを多量に導入する事ができる。
Note that when the closing valve 36 is fully closed or slightly opened, a strong negative pressure is generated in the discharge side passage 35, so that a large amount of exhaust gas can be introduced as described above.

第10図は、ねじポンプを過給機として使用した本発明
による過給機付デイーゼル機関(機関は図示せず)にお
いて、絞弁により給気を絞らないで機関の部分負荷域(
特に空転状態を含む極低負荷域)における燃焼特性を改
善する様にしたものである。
FIG. 10 shows a partial load range of the engine (the engine is not throttled) in a turbocharged diesel engine (engine not shown) according to the present invention using a screw pump as a supercharger, without throttling the supply air with a throttle valve.
It is designed to improve combustion characteristics, especially in extremely low load ranges (including idling).

即ち第10図において、スライド弁43はアクセルペダ
ルの所定開度から開く(手前側から向う側へスライドす
る)様に構成され、スライド弁43の開閉によつて吸入
側通路42の作動室41へ開口する開口部(ローターハ
ウジング39の内壁面にある)の有効断面積が変化する
と共に、この開口部と作動室41との連通の遮断される
時期が変化する様になつている。
That is, in FIG. 10, the slide valve 43 is configured to open (slide from the front side to the opposite side) from a predetermined opening degree of the accelerator pedal, and opens to the working chamber 41 of the suction side passage 42 by opening and closing the slide valve 43. The effective cross-sectional area of the opening (located on the inner wall surface of the rotor housing 39) changes, and the timing at which communication between the opening and the working chamber 41 is cut off changes.

機関の空転状態を含む少なくとも極低負荷域では、吸入
側通路42の作動室41へ開口する開口部は既に一定の
有効断面積を有しており、従つてある1つの作動室41
に注目すると、同作動室41と前記開口部との連通が遮
断される時点(前記Vdに相当する)まで、給気が吸入
側通路42及びその開口部から同作動室41内へ流入し
、前記Vd点からは同作動室41内の給気が断熱的に膨
張すると共に、吐出側通路44内の圧力にほぼ等しくな
つた時点で同作動室41は連通路45を介して吐出側通
路44へ連通する様になつている。
At least in the extremely low load range, including when the engine is idling, the opening of the suction side passage 42 that opens into the working chamber 41 already has a certain effective cross-sectional area, and therefore only one working chamber 41
Paying attention to , the supply air flows into the working chamber 41 from the suction side passage 42 and its opening until the communication between the working chamber 41 and the opening is cut off (corresponding to the Vd); From the point Vd, the supply air in the working chamber 41 expands adiabatically, and when the pressure becomes almost equal to the pressure in the discharge side passage 44, the working chamber 41 flows through the communication passage 45 into the discharge side passage 44. It seems to be connected to.

かくして、機関へ供給される給気(新気)を制限して圧
縮端温度を十分に上昇させ、燃焼特性を改善しているの
である。
In this way, the supply air (fresh air) supplied to the engine is restricted to sufficiently raise the compression end temperature and improve combustion characteristics.

この場合、作動室41のP−V線図は第3図(実線の部
分)と類似しており、過給機に発生した動力を機関へ伝
達し、燃費を更に改善しているのである。
In this case, the PV diagram of the working chamber 41 is similar to that in FIG. 3 (solid line portion), and the power generated in the supercharger is transmitted to the engine, further improving fuel efficiency.

機関へ供給される給気が更に多量に要求される場合には
、スライド弁43を保々に又は急激に開き、吐出側通路
44内の圧力がほぼ大気圧となつた時点で回転弁46に
より連通路45を閉鎖するのである。
If a larger amount of supply air is required to be supplied to the engine, the slide valve 43 is opened continuously or suddenly, and when the pressure in the discharge side passage 44 reaches almost atmospheric pressure, the rotary valve 46 is opened. This closes the passage 45.

尚、E/εの値を1.35以上とし、機関の燃費を大幅
に改善する様にしている事は言うまでもない。
It goes without saying that the value of E/ε is set to 1.35 or more to significantly improve the fuel efficiency of the engine.

本発明は以上の如く、機関の摩擦損失、燃焼圧力及び熱
負荷を過大に増加させる事なく膨張比を高め、かつ機関
の空転状態を含む少なくとも極低負荷域では過給機の給
気圧縮仕事損失を発生させない様に(過給機の吐出側の
圧力が正圧とならない様に)しているので、機関の燃費
を大幅に改善する事ができる。
As described above, the present invention increases the expansion ratio without excessively increasing the engine's friction loss, combustion pressure, and heat load, and at least in the extremely low load range including the idling state of the engine, the charge air compression work of the supercharger is achieved. Since loss is prevented from occurring (pressure on the discharge side of the supercharger does not become positive pressure), the fuel efficiency of the engine can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1・4図は本発明による過給機付デイーゼル機関の断
面図、第2・5・6図は本発明による過給機付デイーゼ
ル機関の図(機関は省略)、第3・7・9図はP−V線
図、第8・10図は本発明による過給機付デイーゼル機
関の断面図(機関は省略)を示す。 1は機関,2・2′は過給機,3・25・37・38は
ローター,4・26・39はローターハウジング,5・
27・40はサイドハウジング,6はベーン,7・28
・41は作動室,8はベーン軸,9・9′・20・29
・30・33・42は吸入側通路,10・35・44は
吐出側通路,11・13・14は戻し通路,12・15
は開閉弁,16は絞弁,17は排ガス導入通路,18は
流量制御装置,19は排気通路,21は制御弁,22は
進み端,23・24・45は連通路,31は接続部,3
2は連通孔,34はリード弁,36は閉鎖弁,43はス
ライド弁,46は回転弁,9′′・13′・23′は開
口部である。 特許出願人 北村修一
Figures 1 and 4 are sectional views of a diesel engine with a supercharger according to the present invention, Figures 2, 5, and 6 are views of a diesel engine with a turbocharger according to the present invention (the engine is omitted), and Figures 3, 7, and 9. The figure is a PV diagram, and Figures 8 and 10 are sectional views (the engine is omitted) of a supercharged diesel engine according to the present invention. 1 is the engine, 2.2' is the supercharger, 3.25.37.38 is the rotor, 4.26.39 is the rotor housing, 5.
27.40 is the side housing, 6 is the vane, 7.28
・41 is the working chamber, 8 is the vane shaft, 9, 9', 20, 29
・30, 33, 42 are suction side passages, 10, 35, 44 are discharge side passages, 11, 13, 14 are return passages, 12, 15
1 is an on-off valve, 16 is a throttle valve, 17 is an exhaust gas introduction passage, 18 is a flow rate control device, 19 is an exhaust passage, 21 is a control valve, 22 is a leading end, 23, 24, and 45 are communication passages, 31 is a connection part, 3
2 is a communication hole, 34 is a reed valve, 36 is a closing valve, 43 is a slide valve, 46 is a rotary valve, and 9'', 13', and 23' are openings. Patent applicant Shuichi Kitamura

Claims (9)

【特許請求の範囲】[Claims] (1)機関の出力軸へ連結する過給機を備えたデイーゼ
ル機関において、少なくとも1個備えられた吸気弁の内
で最も遅く閉じる吸気弁がピストンの下死点後に閉鎖さ
れた時点からの吸気弁閉鎖時圧縮比をεとし、このεに
対し、膨張比をEとすると、E/εの値を1.35以上
となる様に構成し、かつ機関の空転状態を含む少なくと
も極低負荷域においては前記過給機の吐出側の圧力が正
圧とならない様にした事を特徴とする過給機付デイーゼ
ル機関。
(1) In a diesel engine equipped with a supercharger connected to the output shaft of the engine, the intake air from the time when the latest intake valve of at least one intake valve is closed after the bottom dead center of the piston. If the compression ratio when the valve is closed is ε, and the expansion ratio is E relative to this ε, then the configuration is such that the value of E/ε is 1.35 or more, and at least in the extremely low load range including the idling state of the engine. A diesel engine with a supercharger, characterized in that the pressure on the discharge side of the supercharger does not become positive pressure.
(2)E/εの値が1.4〜3.0である特許請求の範
囲第1項記載の過給機付デイーゼル機関。
(2) The supercharged diesel engine according to claim 1, wherein the value of E/ε is 1.4 to 3.0.
(3)過給機のある1つの作動室に注目し、同作動室の
容積の最小状態から最大状態へ到るまで給気が同作動室
内へ一様に流入する様にし、以上の如く構成された過給
機を備えた特許請求の範囲第1項又は第2項記載の過給
機付デイーゼル機関。
(3) Focusing on one working chamber in which the supercharger is located, supply air is uniformly flowed into the working chamber from the minimum volume state to the maximum volume state, and the configuration is as described above. A supercharged diesel engine according to claim 1 or 2, comprising a supercharger.
(4)機関の空転状態を含む少なくとも極低負荷域にお
いては、作動室内へ流入する給気を絞弁により絞る様に
した特許請求の範囲第3項記載の過給機付デイーゼル機
関。
(4) The supercharged diesel engine according to claim 3, wherein the air supply flowing into the working chamber is throttled by a throttle valve at least in an extremely low load range including when the engine is idling.
(5)機関の空転状態を含む少なくとも極低負荷域にお
いては、排ガスを過給機の吐出側へ導入する様にした特
許請求の範囲第4項記載の過給機付デイーゼル機関。
(5) A diesel engine with a supercharger according to claim 4, wherein exhaust gas is introduced into the discharge side of the supercharger at least in an extremely low load range including when the engine is idling.
(6)過給機のある1つの作動室に注目し、同作動室の
容積の最小状態から最大状態へ到る行程の中途Vd点ま
でに、機関へ供給される給気の全部又は大部分を占る如
く、給気を同作動室内へ流入させ、かつ前記Vd点まで
は給気を同作動室内へ流入させ、これにより機関へ供給
される新気を制限して過給機の吐出側の圧力ガ正圧とな
らない様にせしめ、機関へ供給される給気が更に要求さ
れる場合には給気を同作動室を介して更に機関へ供給す
る様にし、以上の如く構成された過給機を備えた特許請
求の範囲第1項又は第2項記載の過給機付デイーゼル機
関。
(6) Focusing on one working chamber in which the supercharger is located, all or most of the air supplied to the engine is supplied to the engine up to point Vd in the middle of the process from the minimum volume state to the maximum volume state of the working chamber. The supply air is allowed to flow into the same working chamber until the Vd point is reached, thereby restricting the fresh air supplied to the engine and reducing the amount of air on the discharge side of the supercharger. The pressure of the engine is prevented from becoming positive pressure, and when more air supply to the engine is required, the air supply is further supplied to the engine through the same working chamber. A supercharged diesel engine according to claim 1 or 2, comprising a feeder.
(7)Va点の直前における作動室内の圧力が過給機の
吐出側の圧力よりも十分に大である様にし、これにより
機関へ供給される新気を制限して過給機の吐出側の圧力
が負圧となる如くし、かくして過給機に動力を発生させ
る様にした特許請求の範囲第6項記載の過給機付デイー
ゼル機関。
(7) Make sure that the pressure in the working chamber just before point Va is sufficiently higher than the pressure on the discharge side of the supercharger, thereby restricting the fresh air supplied to the engine and 7. A diesel engine with a supercharger according to claim 6, wherein the pressure of the supercharger becomes negative pressure, thereby causing the supercharger to generate power.
(8)排ガスを過給機の吐出側へ導入させる様にした特
許請求の範囲第7項記載の過給機付デイーゼル機関。
(8) A diesel engine with a supercharger according to claim 7, wherein exhaust gas is introduced into the discharge side of the supercharger.
(9)Vd点の直前における作動室内の圧力が過給機の
吐出側の圧力にほぼ等しくなる如く、排ガスを過給機の
吐出側へ導入させる様にし、これにより機関へ供給され
る新気を制限して過給機の吐出側の圧力が正圧とならな
い様にした特許請求の範囲第6項記載の過給機付デイー
ゼル機関。
(9) Exhaust gas is introduced to the discharge side of the supercharger so that the pressure in the working chamber just before the Vd point is almost equal to the pressure on the discharge side of the supercharger, and thereby fresh air is supplied to the engine. 7. A diesel engine with a supercharger according to claim 6, wherein the pressure on the discharge side of the supercharger is prevented from becoming positive pressure by limiting the pressure on the discharge side of the supercharger.
JP17904883A 1983-09-27 1983-09-27 Diesel engine with supercharger Pending JPS6069235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17904883A JPS6069235A (en) 1983-09-27 1983-09-27 Diesel engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17904883A JPS6069235A (en) 1983-09-27 1983-09-27 Diesel engine with supercharger

Publications (1)

Publication Number Publication Date
JPS6069235A true JPS6069235A (en) 1985-04-19

Family

ID=16059207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17904883A Pending JPS6069235A (en) 1983-09-27 1983-09-27 Diesel engine with supercharger

Country Status (1)

Country Link
JP (1) JPS6069235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113518A (en) * 1987-10-27 1989-05-02 Mazda Motor Corp Engine provided with mechanical supercharger
JPH01501883A (en) * 1987-01-15 1989-06-29 メーネルト,ギユンター drive system
JPH0650059B2 (en) * 1985-10-14 1994-06-29 スベンスカ・ロツタア・マスキナ−・アクチボラグ Device in a throttle controlled internal combustion engine with a supercharger in the form of a screw air compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650059B2 (en) * 1985-10-14 1994-06-29 スベンスカ・ロツタア・マスキナ−・アクチボラグ Device in a throttle controlled internal combustion engine with a supercharger in the form of a screw air compressor
JPH01501883A (en) * 1987-01-15 1989-06-29 メーネルト,ギユンター drive system
JPH01113518A (en) * 1987-10-27 1989-05-02 Mazda Motor Corp Engine provided with mechanical supercharger

Similar Documents

Publication Publication Date Title
KR890002317B1 (en) Improvements in or relating method of fitting operating conditions of an internal combustion engine
EP1127218B1 (en) Combustion engine
JPH0742863B2 (en) Method for controlling the working cycle of a four-cycle internal combustion piston engine
JPS6329093B2 (en)
JPS6069235A (en) Diesel engine with supercharger
US6293236B1 (en) Breathing system for internal combustion engines, using dual duty (alternatively exhaust-intake) valves and a forced air supply
JP3183560B2 (en) Control device for supercharged engine
JPH0436026A (en) Intake system of engine
JPH07102982A (en) Engine having supercharger
JPS6045719A (en) Internal-combustion system with supercharger
JPS5925100B2 (en) supercharged internal combustion engine
JPS60159336A (en) Diesel engine with supercharger
JPH0138261Y2 (en)
JPS6090924A (en) Internal-combustion engine with supercharger
JPS6040725A (en) Internal-combustion engine with pump
JPS60122227A (en) Intake device of internal-combustion engine
JPS6018594Y2 (en) Rotary piston engine with supercharger
KR820000757B1 (en) Method for improving the efficiency of internal combustion engines
JPS6032933A (en) Diesel engine with supercharger
JPS60147534A (en) Suction device for internal-combustion engine
JP2020097914A (en) Exhaust device of engine with turbocharger
JPS60116820A (en) Internal-combustion engine with suprecharger
JPS61232330A (en) Intake apparatus for rotary piston engine
JPH04203320A (en) Air intake device of engine
JPS6079122A (en) Intake-air device in internal-combustion engine provided with super-charger