JPS6090924A - Internal-combustion engine with supercharger - Google Patents

Internal-combustion engine with supercharger

Info

Publication number
JPS6090924A
JPS6090924A JP58197865A JP19786583A JPS6090924A JP S6090924 A JPS6090924 A JP S6090924A JP 58197865 A JP58197865 A JP 58197865A JP 19786583 A JP19786583 A JP 19786583A JP S6090924 A JPS6090924 A JP S6090924A
Authority
JP
Japan
Prior art keywords
engine
supercharger
pump
air
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58197865A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58197865A priority Critical patent/JPS6090924A/en
Publication of JPS6090924A publication Critical patent/JPS6090924A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/36Engines with pumps other than of reciprocating-piston type with rotary pumps of positive-displacement type
    • F02B33/38Engines with pumps other than of reciprocating-piston type with rotary pumps of positive-displacement type of Roots type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To lower the specific fuel consumption of an Otto-cycle engine in which a supercharger consisting of at least two pumps connected in parallel with each other is connected to an output shaft of the engine, by employing such an arrangement that the output power of the pumps is transmitted to the output shaft of the engine at the time of low-load operation of the engine and supercharging of intake air is started at the time of high-load operation of the engine. CONSTITUTION:In a supercharger 2 which consists of two pumps 3, 3' and is driven by a driving means selectively according to the operational conditions of an engine 1, the pumps 3, 3' are disposed respectively in intake passages 8, 8' connected in parallel with each other, and supercharged intake air is supplied to the engine 1 via discharge passages 10, 10'. At the time of racing operation of the engine 1, throttle valves 11, 12 are closed completely and a shut-off valve 18 is fully opened so that work is done only the pump 3 and the output power of the pump 3 is transmitted to the engine 1. On the other hand, when the engine output is increased with opening of the throttle valve 12, intake air is supplied also into a work chamber 7' via passage 13-16 and the engine output is increased. With further opening of the throttle valve 12, the throttle valve 11 begins to open and supercharging of the engine 1 is started.

Description

【発明の詳細な説明】 本発明は、燃費を改善させた過給機付内燃機関に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a supercharged internal combustion engine with improved fuel efficiency.

一般に過給機付内燃機関では、過給機を駆動する事に起
因する駆動馬力損失、機関の過大な熱負荷及び燃焼圧力
、更にはノツキングを回避する為の圧縮比低減等の理由
により機関の燃費は悪仕する。
In general, in internal combustion engines with a supercharger, engine failure occurs due to reasons such as drive horsepower loss caused by driving the supercharger, excessive heat load and combustion pressure on the engine, and compression ratio reduction to avoid knocking. Fuel efficiency is poor.

本発明はこの様な欠点を解決しようとしたもので、以下
図面に従つて説明する。
The present invention is intended to solve these drawbacks, and will be described below with reference to the drawings.

第1図は本発明による過給機付内燃機関の一実施例で、
機関1(オツトー機関)の出力軸へチエーン・ベルト等
を介して連結する過給機2を備えている。
FIG. 1 shows an embodiment of a supercharged internal combustion engine according to the present invention.
A supercharger 2 is provided which is connected to the output shaft of an engine 1 (an Otto engine) via a chain belt or the like.

過給機2の平面図を第3図に略図的に示すが、ポンプ3
(第1図−レプシールドポンプと称す)とポンプ3′(
第2図−レプシールドポンプと称する)とが連結されて
おり、ローター4は図示しない同期歯事によつて互いに
無接触状態で(極めて僅かな間隙を保ちつつ)噛合う様
になつている(第2図のポンプ3′は第1図のポンプ3
の向う側にめる−以下、第1図から第3図までを総合的
に説明する)。
A plan view of the supercharger 2 is schematically shown in FIG.
(Fig. 1 - Referred to as Repshield pump) and pump 3' (
Fig. 2 - Repshield pump) are connected to each other, and the rotors 4 are engaged with each other in a non-contact state (while maintaining an extremely small gap) by means of synchronous teeth (not shown). Pump 3' in Figure 2 is pump 3 in Figure 1.
Figures 1 to 3 will be comprehensively explained below.

吸入側通路8、8′から作動室7(過給機における容積
変仕を行う空間を言い、図ではローター4、ローターハ
ウジング5、サイドハウジング6により形成される空間
を言う)、7′(第2図)内へ流入した給気は、吐出側
通路10、10′を経て機関1へ供給される(燃料供給
装置としては燃料噴射装置が望ましい)。
From the suction side passages 8, 8' to the working chamber 7 (referring to the space in which the volume is changed in the supercharger, in the figure, referring to the space formed by the rotor 4, the rotor housing 5, and the side housing 6), 7' (the The supply air that has flowed into the engine (Figure 2) is supplied to the engine 1 via the discharge side passages 10, 10' (a fuel injection device is preferable as the fuel supply device).

9、9′はリード弁を示す。9 and 9' indicate reed valves.

今、機関の空転状態を考えると、絞弁11、12は全閉
、閉鎖弁18は全開しており、吸入側通路8′、8から
ポンプ3内へ(作動室7内へ)流入した給気は吐出側通
路10、10′を経て機関1へ供給され、これにより機
関の空転状態が維持される様になつている(作動室7の
最大容積は作動室7′のそれの例えば1/5〜1/6と
なつている)。
Now, considering the idling state of the engine, the throttle valves 11 and 12 are fully closed and the closing valve 18 is fully open, and the supply that has flowed into the pump 3 (into the working chamber 7) from the suction side passages 8' and 8. Air is supplied to the engine 1 through the discharge side passages 10, 10', thereby maintaining the idle state of the engine (the maximum volume of the working chamber 7 is, for example, 1/1/1 of that of the working chamber 7'). 5 to 1/6).

この場合、吸入側通路8を流れる給気は絞らない様にす
る事が望ましいが、多少ならば給気を絞る様にても良い
In this case, it is desirable not to restrict the supply air flowing through the suction side passage 8, but the supply air may be restricted to some extent.

絞弁11・12を全閉、閉鎖弁18を全開させた時の作
動室7のP−V線図(圧力−容積様図)を第4図に示す
が、図からも明らかの様にポンプ3は(過給機2は)斜
線の部分に相当する仕事、即ち動力を発生し、これを機
関へ伝達しているのである。
Figure 4 shows a PV diagram (pressure-volume diagram) of the working chamber 7 when the throttle valves 11 and 12 are fully closed and the closing valve 18 is fully opened. 3 (supercharger 2) generates work corresponding to the shaded area, that is, power, and transmits this to the engine.

(ポンプ3′については、連通路17が全開しているか
ら、給気圧縮仕事損失は一切ない) Poはポンプ3の吸入側(吸入側通路8)の圧力を示し
(大気圧)、Piはポンプ3の吐出側(吐出側通路10
)の圧力(負圧)を示す。
(As for the pump 3', since the communication passage 17 is fully open, there is no loss of supply air compression work.) Po indicates the pressure on the suction side (suction side passage 8) of the pump 3 (atmospheric pressure), and Pi indicates the pressure on the suction side (suction side passage 8) of the pump 3. The discharge side of the pump 3 (discharge side passage 10
) indicates the pressure (negative pressure).

ここで、再び機関の空転状態を考えると、絞弁11を僅
かに開いておく様にしても、換言すれば機関へ供給され
る給気の大部分を占る如く(絞弁11が全閉の場合は、
機関へ供給される給気の全部を占る如く)給気をポンプ
3内へ流入させる様にしても、ポンプ3に(過給機2に
)動力を発生させる事ができる。
Now, considering the idling state of the engine again, even if the throttle valve 11 is left slightly open, in other words, it will take up most of the supply air supplied to the engine (if the throttle valve 11 is fully closed). In the case of,
Even if the supply air is made to flow into the pump 3 (so as to account for all of the supply air supplied to the engine), the pump 3 (supercharger 2) can generate power.

機関の出力を増加させる為に絞弁12(図示しないアク
セルペダルに連動している)を開くと、給気は吸入側通
路13、接続部14(吸入側通路13のローター4′の
側面への接続部)、連通孔15を経て、吸入側通路16
(手前側のサイドハウジングに形成されている)からも
作動室7′内へ流入し、機関の出力は増大され、絞弁1
2を更に開くと絞弁11も開き始め、遂には機関に過給
が行なわれる様になる。
When the throttle valve 12 (linked to the accelerator pedal, not shown) is opened in order to increase the engine output, the supply air flows through the suction side passage 13 and the connection part 14 (the side of the rotor 4' in the suction side passage 13). connection part), through the communication hole 15, and the suction side passage 16.
(formed in the side housing on the near side) also flows into the working chamber 7', the output of the engine is increased, and the throttle valve 1
When the throttle valve 2 is further opened, the throttle valve 11 also begins to open, and the engine is finally supercharged.

この場合、ポンプ3′のある1つの作動室7′に注目す
ると、同作動室7′の容積の最小状態から最大状態へ到
る行程の中途まで接続部14と連通孔15(ローター4
′に形成されている)とが連通する様になつており、絞
弁11が全閉している場合には、この中途の時点まで同
作動室7′内に給気が流入するのである(第1図におい
ては、作動室の容積の少なくとも最大状態まで−通常は
最大状態の直後までである−給気を同作動室7内へ流入
させているのである)。
In this case, focusing on one working chamber 7' in which the pump 3' is located, the connection part 14 and the communication hole 15 (the rotor 4
When the throttle valve 11 is fully closed, the supply air flows into the working chamber 7' until this point in time. In FIG. 1, supply air is allowed to flow into the working chamber 7 at least up to the maximum volume of the working chamber (usually just after the maximum).

更に第2、3図に示す如く負圧通路19は絞弁12の直
後に開口しており、従つて絞弁12が僅かに開くのみで
ダイアフラム装置20には大気圧が導入され、閉鎖弁1
8を全閉させる様になつている。
Furthermore, as shown in FIGS. 2 and 3, the negative pressure passage 19 opens immediately after the throttle valve 12, so that when the throttle valve 12 opens only slightly, atmospheric pressure is introduced into the diaphragm device 20, and the closing valve 1
8 is completely closed.

絞弁12が若干開き(絞弁11は全閉とする)、絞弁1
2の直後の圧力がほぼ大気圧となつた時(この為には絞
弁12の径を十分に大とする)のP−V線図を第6図に
示すが、図からも明らかな様にポンプ3′には(過給機
2には)斜線の部分に相当する仕事、即ち動力が発生し
ているのである。
Throttle valve 12 opens slightly (throttle valve 11 is fully closed), and throttle valve 1 opens slightly.
Figure 6 shows a P-V diagram when the pressure immediately after step 2 becomes almost atmospheric pressure (the diameter of the throttle valve 12 should be made sufficiently large for this purpose), and as is clear from the figure. The pump 3' (supercharger 2) generates work, or power, corresponding to the shaded area.

この様に本発明によれば、機関の空転状態を含む部分負
荷域においては過給機2から機関1へ動力が伝達される
ので、過給機付内燃機関にもかかわらず機関の燃費は大
幅に改善される。
As described above, according to the present invention, power is transmitted from the supercharger 2 to the engine 1 in the partial load range, including when the engine is idling, so the fuel consumption of the engine is significantly reduced even though it is an internal combustion engine equipped with a supercharger. will be improved.

ところで第1図から第3図においては、ポンプ3から吐
出される給気(吐出側通路10内を流れる給気)は吐出
側通路10′へ合流して機関へ導びかれているが、第5
図に示す如く吸気弁22の近傍位置か、又は二点鎖線示
の如く副吸気弁23を介して直接燃焼室21内へ、独立
的に導びく様にしても良い。
By the way, in FIGS. 1 to 3, the supply air discharged from the pump 3 (the supply air flowing in the discharge side passage 10) joins the discharge side passage 10' and is guided to the engine. 5
It may be introduced into the combustion chamber 21 directly into the combustion chamber 21 at a position near the intake valve 22 as shown in the figure, or directly into the combustion chamber 21 via the auxiliary intake valve 23 as shown by the two-dot chain line.

これにより(吐出側通路10の断面積は十分に小さいか
ら)、ポンプ3から送られてくる給気の速い噴流(吐出
側通路10から噴出する給気の速い噴流)によつて燃焼
室21内に形成される給気の乱れを強仕し、機関の燃費
を一層改善する事ができる。
As a result, (because the cross-sectional area of the discharge side passage 10 is sufficiently small), a fast jet of the supply air sent from the pump 3 (a fast jet of the supply air jetted from the discharge side passage 10) causes the inside of the combustion chamber 21. It is possible to further improve the fuel efficiency of the engine by suppressing the turbulence in the supply air that is formed.

本発明における過給機は少なくとも2つのポンプを連結
させたところに特徴があり、従つて第7図に示す如く3
つのポンプを連結させ、機関の空転状態では絞弁11、
11′を全閉(又はほぼ全閉)とし、ポンプ3内へ(ほ
ぼ大気圧のまま)流入した給気によつて機関の空転状態
を維持させ、これにより過給機2に動力を発生せしめ、
絞弁11′が十分に開いた後に絞弁11を開かせる様に
しても良い。
The turbocharger according to the present invention is characterized in that at least two pumps are connected, and therefore, three pumps are connected as shown in FIG.
two pumps are connected, and when the engine is idling, the throttle valve 11,
11' is fully closed (or nearly fully closed), and the engine is maintained in an idling state by the supply air flowing into the pump 3 (at almost atmospheric pressure), thereby causing the supercharger 2 to generate power. ,
The throttle valve 11 may be opened after the throttle valve 11' is sufficiently opened.

第1図において作動室7の容積の最小状態から最大状態
へ到る行程の中途まで給気を同作動室7内へ流入させ、
これにより機関の空転状態を維持させる様にした実施例
を第8図に示す(これに伴い、第8図のローター4の幅
を第1図のそれよりも拡大しておく事は言うまでもない
)。
In FIG. 1, supply air is allowed to flow into the working chamber 7 until the middle of the process from the minimum volume state to the maximum volume state of the working chamber 7,
FIG. 8 shows an embodiment in which the idling state of the engine is maintained by this. .

即ち第8図において、ポンプ3のある1つの作動室7に
注目し、同作動室7の容積の最小状態から最大状態へ到
る行程の中途(以下、この時点をVc点と称する)まで
、ローター4に形成された連通孔26が吸入側通路25
、27へ連通する事によつて給気が同作動室7内へ流入
し、これにより機関の空転状態が維持される様になつて
いる(絞弁24は全閉とする)。
That is, in FIG. 8, focusing on one working chamber 7 of the pump 3, from the middle of the process from the minimum volume state to the maximum state of the volume of the working chamber 7 (hereinafter, this point is referred to as the Vc point), The communication hole 26 formed in the rotor 4 is connected to the suction side passage 25.
, 27, supply air flows into the working chamber 7, thereby maintaining the engine in an idling state (the throttle valve 24 is fully closed).

即ち、前記Vc点までに、同作動室7を介して機関へ供
給される給気の全部を占る如く給気を同作動室7内へ流
入させる様にしているのである。
That is, the supply air is made to flow into the working chamber 7 so as to account for all of the supply air supplied to the engine via the working chamber 7 up to the Vc point.

絞弁24を全閉させた時の同作動室7のP−V線図を第
9図に示すが、図からも明らかな様にポンプ3は(過給
機2は)斜線の部分に相当する仕事、即ち動力を機関へ
伝達し、燃費を改善しているのである。
Figure 9 shows a P-V diagram of the working chamber 7 when the throttle valve 24 is fully closed, and as is clear from the figure, the pump 3 (supercharger 2) corresponds to the shaded area. The job it does is to transmit power to the engine and improve fuel efficiency.

この場合、機関の空転状態においては絞弁24を僅かに
開く様にしても、換言すれば前記Vc点までに、同作動
室7を介して機関へ供給される給気の大部分を占る如く
給気を同作動室7内へ流入させる様にしても、ポンプ3
に(過給機2に)動力を発生させる事ができる。
In this case, even if the throttle valve 24 is slightly opened when the engine is idling, in other words, most of the air supplied to the engine through the working chamber 7 up to the Vc point is Even if the supply air is made to flow into the same working chamber 7, the pump 3
It is possible to generate power (to the supercharger 2).

機関の出力を増加させる為には絞弁24を開く様にすれ
ば良く、そして絞弁24が十分に開いた後に絞弁12(
第2図)を開き始める様にする(絞弁24が十分に開い
た時の同作動室7のP−V線図は、第4図と類似したも
のになる)。
In order to increase the output of the engine, it is sufficient to open the throttle valve 24, and after the throttle valve 24 has opened sufficiently, the throttle valve 12 (
(Fig. 2) begins to open (the PV diagram of the working chamber 7 when the throttle valve 24 is fully opened will be similar to that shown in Fig. 4).

ポンプ3、3′がルーツポンプである実施例を第10、
11図に示す。
A tenth embodiment in which the pumps 3 and 3' are Roots pumps,
It is shown in Figure 11.

即ち第10、11図において、過給機2はポンプ28と
28′とが連結されており(第3図参照)、機関の空転
状態では絞弁30は全閉(又はほぼ全閉)、閉鎖弁32
は全開しており、吸入側通路8からポンプ28内へ流入
した給気は吐出側通路10、10′を経て機関へ供給さ
れ、これにより機関の空転状態が維持される様になつて
いる。
That is, in FIGS. 10 and 11, the turbocharger 2 is connected to pumps 28 and 28' (see FIG. 3), and when the engine is idling, the throttle valve 30 is fully closed (or almost fully closed) or closed. valve 32
is fully open, and the supply air flowing into the pump 28 from the suction side passage 8 is supplied to the engine via the discharge side passages 10, 10', thereby maintaining the idle running state of the engine.

この時、ポンプ28の吸入側の圧力(吸入側通路8内の
圧力−大気圧Po)は吐出側の圧力(吐出側通路10内
の圧力−負圧Pi)よりも十分に大であるので、ポンプ
28には(過給機2には)動力が発生し、かくして機関
の燃費を大幅に改善するのである。
At this time, the pressure on the suction side of the pump 28 (pressure in the suction side passage 8 - atmospheric pressure Po) is sufficiently higher than the pressure on the discharge side (pressure in the discharge side passage 10 - negative pressure Pi), so Power is generated in the pump 28 (in the supercharger 2), thus significantly improving the fuel efficiency of the engine.

機関の出力を増加させるには絞弁30を開く様にすれば
良く、これにより遂には過給が行なわれるに到る。
In order to increase the output of the engine, the throttle valve 30 may be opened, which will eventually result in supercharging.

機関の過給時には、吐出側通路10′の圧力を感知して
作動するダイアフラム装置(図示せず)により閉鎖弁3
2を全閉させ、給気の逆流を防ぐ様にする。
When the engine is being supercharged, the closing valve 3 is closed by a diaphragm device (not shown) that operates by sensing the pressure in the discharge side passage 10'.
2 is fully closed to prevent backflow of supply air.

ポンプ28、28′がベーンポンプである実施例を第1
2、13図に示す。
In the first embodiment, the pumps 28, 28' are vane pumps.
Shown in Figures 2 and 13.

即ち第12、13図において 過給機2はポンプ33と
33′とが連結されており(第3図参照)、機関の空転
状態では絞弁30は全閉(又はほぼ全閉)、閉鎖弁32
、32′、32′′は全開しており、第10、11図と
同様にポンプ33に(過給機2に)発生した動力を機関
へ伝達し、燃費を大幅に改善しているのである。
That is, in Figs. 12 and 13, the turbocharger 2 is connected to pumps 33 and 33' (see Fig. 3), and when the engine is idling, the throttle valve 30 is fully closed (or almost fully closed) and the closed valve is closed. 32
, 32', and 32'' are fully open, and as in Figures 10 and 11, the power generated by the pump 33 (supercharger 2) is transmitted to the engine, greatly improving fuel efficiency. .

閉鎖弁32、32′、32′′は給気の圧縮仕事損失を
なくす為に通常は全開しているが、機関の過給時には全
閉させ、加圧された給気の逆流を防ぐ様にする。
The closing valves 32, 32', and 32'' are normally fully open to eliminate compression work loss of supply air, but when the engine is being supercharged, they are fully closed to prevent backflow of pressurized supply air. do.

第14、15、16図は本発明を過給機付デイーゼル機
関(機関は図示せず)に適用したものである。
14, 15, and 16 show the present invention applied to a supercharged diesel engine (the engine is not shown).

即ち第14、15、16図において、過給機2はポンプ
35(ルーツポンプ)とポンプ35′(ねじポンプ−も
ちろんルーツポンプでも良い)とが連結されており、下
段側のローター29と40とは各々の回転軸が連結され
ているが、上段側のローター29と39とは、ローター
39と40との回転速度が異なる為、各々の回転軸は連
結されていない(過給機2の平面図を略図的に示した第
16図参照)。
That is, in FIGS. 14, 15, and 16, the supercharger 2 has a pump 35 (roots pump) and a pump 35' (screw pump - of course, a roots pump may also be used) connected to each other, and rotors 29 and 40 on the lower stage side. The rotating shafts of the rotors 29 and 39 on the upper stage side are connected, but since the rotational speeds of the rotors 39 and 40 are different, the respective rotating shafts are not connected (the plane of the supercharger 2 (See FIG. 16, which shows the diagram schematically).

従つて、ローター39と40とを互いに無接触状態で噛
合わせるもう1組の同期歯事が必要となる。
Therefore, another set of synchronizing teeth is required to mesh the rotors 39 and 40 without contacting each other.

今、機関の空転状態を含む低負荷域(特に極低負荷域)
を考えると、絞弁42は全閉(又はほぼ全閉)、閉鎖弁
43は全開しており、吸入側通路8からポンプ35内へ
(大気圧のまま)流入した給気は吐出側通路10、10
′を経て機関(図示せず)へ供給され、これにより機関
へ供給される新気(空気)の量を、新気のみがポンプ3
5の吐出側からほぼ大気圧状態のまま機関へ供給される
場合よりも、小さくなる如く制限する(例えば新気の密
度を大気圧状態よりも小とする)様にしている。
Now, the low load range (especially the extremely low load range) including the engine idling state
Considering this, the throttle valve 42 is fully closed (or almost fully closed), the stop valve 43 is fully open, and the supply air flowing from the suction side passage 8 into the pump 35 (at atmospheric pressure) flows into the discharge side passage 10. , 10
′ is supplied to the engine (not shown), and the amount of fresh air (air) supplied to the engine is supplied to the engine through pump 3.
Compared to the case where the fresh air is supplied to the engine from the discharge side of the air at almost atmospheric pressure, the pressure is restricted to be lower (for example, the density of fresh air is made lower than the atmospheric pressure).

即ちポンプ35内へ、過給機2を介して機関へ供給され
る給気の全部(絞弁42が全閉の場合)又は大部分(絞
弁42が僅かに開いた場合)を占る如く給気を流入させ
ているのである。
That is, all (when the throttle valve 42 is fully closed) or most (when the throttle valve 42 is slightly opened) of the supply air supplied to the engine through the supercharger 2 into the pump 35 is occupied. This allows supply air to flow in.

かくして、ポンプ35の吸入側の圧力は吐出側の圧力(
負圧)よりも十分に大となる為、ポンプ35には(過給
機2には)動力が発生し、これを機関へ伝達しているの
である。
Thus, the pressure on the suction side of the pump 35 is equal to the pressure on the discharge side (
(negative pressure), power is generated in the pump 35 (in the supercharger 2) and transmitted to the engine.

この様に本発明によれば、機関へ供給される給気(新気
)の量を、給気のみが過給機2の吐出側からほぼ大気圧
状態のまま機関へ供給される場合よりも、小さくなる如
く制限する様にしているので、シリンダー内熱容量は適
度に減少される。
As described above, according to the present invention, the amount of supply air (fresh air) supplied to the engine can be reduced compared to when only supply air is supplied to the engine from the discharge side of the supercharger 2 at almost atmospheric pressure. , so that the heat capacity inside the cylinder is appropriately reduced.

従つて、圧縮端温度が十分に上昇するから燃焼が改善さ
れ、燃料の完全燃焼が可能となり、機関の極低負荷にお
ける失火も減少して、燃費を改善させる一因となる(か
つ、着火遅れ期間が短縮され、燃焼圧力の上昇が緩やか
となるから、燃焼騒音が低減される利点もある)。
Therefore, since the compression end temperature rises sufficiently, combustion is improved, making complete combustion of the fuel possible, and misfires at extremely low engine loads are reduced, contributing to improved fuel efficiency (and reducing ignition delay). This has the advantage of reducing combustion noise because the combustion period is shortened and the rise in combustion pressure becomes more gradual.)

他方、圧縮端圧力は減少するので機関の摩擦損失が低減
し、燃費は改善される。
On the other hand, since the compression end pressure is reduced, engine friction loss is reduced and fuel efficiency is improved.

一般に機関へ供給される給気の量を、給気のみが過給機
の吐出側からほぼ大気圧状態のまま機関へ供給される場
合よりも、小さくなる如く制限する様にすると、機関の
ポンプ損失の増大により燃費は悪仕するはずであるが、
実際には前述の様な燃費改善効果があるので、燃費の悪
仕は殆どない。
In general, if the amount of supply air supplied to the engine is restricted to be smaller than when only supply air is supplied to the engine from the discharge side of the supercharger at almost atmospheric pressure, the engine pump Fuel efficiency should suffer due to increased losses, but
In reality, it has the effect of improving fuel efficiency as mentioned above, so there is almost no negative effect on fuel efficiency.

さて本発明によれば、絞弁42が全閉又はほぼ全閉した
機関の低負荷域においては過給機2から機関へ動力が伝
達されている。
According to the present invention, power is transmitted from the supercharger 2 to the engine in the low load range of the engine when the throttle valve 42 is fully closed or almost fully closed.

従つて、この分機関の燃費は改善される(通常は、過給
機2の内部摩擦等の駆動馬力損失の為に、燃費は悪仕す
る)。
Therefore, the fuel efficiency of this branch engine is improved (normally, fuel efficiency suffers due to drive horsepower loss due to internal friction of the supercharger 2, etc.).

更には、過給機2の給気圧縮仕事損失がないので、機関
の燃費は大幅に改善され(一般に過給機付デイーゼル機
関では、過給機により給気を常時加圧して機関へ供給し
ているので、燃費は相当悪仕する)、かくして本発明の
目的が達成される。
Furthermore, since there is no work loss in compression of the charge air in the supercharger 2, the fuel efficiency of the engine is greatly improved. Therefore, the object of the present invention is achieved.

燃料噴射量が増大して機関へ供給される給気が更に多量
に要求される場合には、アクセルペダル(図示せず)の
所定開度から開き始める絞弁42を徐々に又は急激に開
く僅にすれば良く、これにより過給機2の吐出側の圧力
が高まり、燃料噴射量の増大と相まつて機関の出力は一
段と増大する(絞弁42は燃料噴射量を制御するコント
ロールラツクに連動させても良い)。
When the amount of fuel injection increases and a larger amount of air is required to be supplied to the engine, the throttle valve 42, which starts opening from a predetermined opening degree of the accelerator pedal (not shown), is opened gradually or suddenly. This increases the pressure on the discharge side of the supercharger 2, and together with the increase in the amount of fuel injection, the output of the engine further increases (the throttle valve 42 is linked to the control rack that controls the amount of fuel injection). ).

機関の過給時には閉鎖弁43を全閉させる事は言うまで
もない。
Needless to say, the closing valve 43 is fully closed when the engine is supercharged.

ここで、絞弁42が全閉又は若干開いた機関の低負荷域
を考えると、過給機2の吐出側(吐出側通路10、10
′)には強い負圧が発生しているから、二点鎖線示の如
く適当な流量制御装置37を有する排ガス導入通路38
を形成すれば、排気通路36内を流れる排ガスを吐出側
通路10、10′内へ多量に導入させる事ができる。
Here, considering the low load region of the engine where the throttle valve 42 is fully closed or slightly opened, the discharge side of the supercharger 2 (discharge side passages 10, 10
'), a strong negative pressure is generated in the exhaust gas introduction passage 38 with an appropriate flow rate control device 37 as shown by the two-dot chain line.
By forming this, a large amount of exhaust gas flowing in the exhaust passage 36 can be introduced into the discharge side passages 10, 10'.

これにより(排ガスの温度は極めて高いから)、圧縮端
温度が更に上昇する利点が生ずると共に、排ガス中のN
Oxを低減させる事もできる。
This has the advantage of further increasing the compression end temperature (since the temperature of the exhaust gas is extremely high), and also increases the amount of N in the exhaust gas.
It is also possible to reduce Ox.

この場合、吐出側通路10、10′内へ導入される排ガ
スの流量を順次増加させてゆくと、遂には吐出側通路1
0、10′内の圧力がほぼ大気圧となり、従つて過給機
2から機関へ動力が伝達される事はないが、同時に機関
にもポンプ損失が発生しない様になるので、これに起因
する燃費の悪仕は全くない(この時、圧縮端温度はもち
ろん十分に上昇するが、これはシリンダー内熱容量の減
少によるものではなく、機関へ供給される空気、即ち新
気の量を、新気のみが過給機2の吐出側からほぼ大気圧
状態のまま機関へ供給される場合よりも、小さくなる加
く制限した事と、排ガスを導入した事とによるものであ
る)。
In this case, when the flow rate of the exhaust gas introduced into the discharge side passages 10, 10' is gradually increased, the discharge side passage 1
The pressure inside 0 and 10' becomes almost atmospheric pressure, so no power is transmitted from the supercharger 2 to the engine, but at the same time, no pumping loss occurs in the engine, so this is caused by There is no negative impact on fuel efficiency (at this time, the compression end temperature rises sufficiently, but this is not due to a decrease in the heat capacity inside the cylinder; the amount of air supplied to the engine, that is, the amount of fresh air (This is due to the additional restriction and the introduction of exhaust gas.)

この様にしても、圧縮端温度が十分に上昇して燃焼が改
善され、かつ圧縮端圧力が減少して機関の摩擦損失が低
減される一方、過給機2の給気圧縮仕事損失も低減され
るので(一般に過給機付デイーゼル機関では、過給機に
より常時給気を大気圧以上に加圧している)、機関の燃
費は大幅に改善されるのである。
Even in this way, the compression end temperature rises sufficiently to improve combustion, and the compression end pressure decreases, reducing engine friction loss, while also reducing charge air compression work loss of the supercharger 2. (Generally, in a diesel engine with a supercharger, the charge air is constantly pressurized to above atmospheric pressure by the supercharger), so the fuel efficiency of the engine is significantly improved.

尚、第14、15、16図に示す本発明による過給機付
デイーゼル機関においても第2、7、8、10〜13図
で述べた手段が適用される。
Note that the means described in FIGS. 2, 7, 8, and 10 to 13 are also applied to the supercharged diesel engine according to the present invention shown in FIGS. 14, 15, and 16.

本発明は以上の如く構成されているので、機関の燃費を
大幅に改善させる事ができる。
Since the present invention is configured as described above, the fuel efficiency of the engine can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による過給機付内燃機関の断面図、第2
・3・7・8・10〜16図は本発明における過給機の
図、第4・6・9図はP−V線図、第5図は本発明にお
ける機関の図。 1は機関、2は過給機、3・3′・3′′・28・28
′・33・33′・35・35′はポンプ、4・4′・
29・39・40はローター、5はローターハウジング
、6はサイドハウジング、7・7′・41は作動室、8
・8′・13・16・25・27は吸入側通路、9・9
′はリード弁、10・10′は吐出側通路、11・12
・24・30・42・11′は絞弁、14は接続部、1
5・26は連通孔、17・31・31′・31′′は連
通路、18・32・32′・32′′・43は閉鎖弁、
19は負圧通路、20はダイアフラム装置、21は燃焼
室、22は吸気弁、23は副吸気弁、34は切欠、36
は排気通路、37は流量制御装置、38は排ガス導入通
路である。 特許出願人 北村修一
FIG. 1 is a sectional view of a supercharged internal combustion engine according to the present invention, and FIG.
- Figures 3, 7, 8, 10 to 16 are diagrams of the supercharger in the present invention, Figures 4, 6, and 9 are PV diagrams, and Figure 5 is a diagram of the engine in the present invention. 1 is the engine, 2 is the supercharger, 3, 3', 3'', 28, 28
', 33, 33', 35, 35' are pumps, 4, 4',
29, 39, 40 are rotors, 5 is rotor housing, 6 is side housing, 7, 7', 41 is working chamber, 8
・8', 13, 16, 25, 27 are suction side passages, 9, 9
' is a reed valve, 10 and 10' are discharge side passages, and 11 and 12
・24, 30, 42, 11' are throttle valves, 14 is a connection part, 1
5 and 26 are communication holes, 17, 31, 31', 31'' are communication passages, 18, 32, 32', 32'', and 43 are closing valves,
19 is a negative pressure passage, 20 is a diaphragm device, 21 is a combustion chamber, 22 is an intake valve, 23 is a sub-intake valve, 34 is a notch, 36
37 is a flow rate control device, and 38 is an exhaust gas introduction passage. Patent applicant Shuichi Kitamura

Claims (8)

【特許請求の範囲】[Claims] (1)少なくとも2つのポンプを連結した過給機を機関
の出力軸へ連結させたオツトー機関において、前記過給
機のある1つのポンプに注目し、同ポンプ内へ機関に供
給される給気の全部又は大部分を占る如く給気を減入さ
せ、かつ同ポンプの吸入側の圧力が吐出側の圧力よりも
十分に大である様にし、これにより同ポンプに動力を発
生せしめ、以上の状態から機関の出力を増大させる場合
には、前記過給機を介して給気を更に機関へ供給しつつ
、遂には過給を行う様にした事を特徴とする過給機付内
燃機関。
(1) In an engine in which a supercharger connected to at least two pumps is connected to the output shaft of the engine, focus on one pump with the supercharger, and supply air is supplied to the engine into the pump. The supply air is reduced so that it occupies all or most of the air supply, and the pressure on the suction side of the pump is sufficiently greater than the pressure on the discharge side, thereby generating power for the pump, and the above When increasing the output of the engine from the above state, supply air is further supplied to the engine via the supercharger, and finally supercharging is performed. .
(2)過給機のある1つのポンプのある1つの作動室に
注目し、同作動室の容積の少なくとも最大状態まで給気
を同作動室内へ流入させ、これにより前記ポンプに動力
を発生せしめ、以上の状態から機関の出力を増大させる
場合には、前記過給機を介して給気を更に機関へ供給し
つつ、遂には過給を行う様にした特許請求の範囲第1項
記載の過給機付内燃機関。
(2) Focusing on one working chamber containing one pump containing a supercharger, supply air flows into the working chamber to at least the maximum capacity of the working chamber, thereby causing the pump to generate power. , when increasing the output of the engine from the above state, supply air is further supplied to the engine via the supercharger, and finally supercharging is performed. Internal combustion engine with supercharger.
(3)過給機のある1つのポンプのある1つの作動室に
注目し、同作動室の容積の最小状態から最大状態へ到る
行程の中途Vc点までに、同作動室を介して機関へ供給
される給気の全部又は大部分を占る如く給気を同作動室
内へ流入させ、かつ前記Vc点までは給気を同作動室内
へ流入させ、これにより前記ポンプに動力を発生せしめ
、以上の状態から機関の出力を増大させる場合には、前
記過給機を介して給気を更に機関へ供給しつつ、遂には
過給を行う様にした特許請求の範囲第1項記載の過給機
付内燃機関。
(3) Focusing on one working chamber in which one pump with a supercharger is located, it is necessary to Supply air is caused to flow into the working chamber so as to account for all or most of the supply air supplied to the pump, and the supply air is allowed to flow into the working chamber up to the Vc point, thereby generating power for the pump. , when increasing the output of the engine from the above state, supply air is further supplied to the engine via the supercharger, and finally supercharging is performed. Internal combustion engine with supercharger.
(4)過給機のある1つのポンプに注目に、同ポンプか
ら送られてくる給気の速い噴流によつて機関の燃焼室内
に形成される給気の乱れを強仕する様にした特許請求の
範囲第1項ないし第3項のいずれかに記載の過給機付内
燃機関。
(4) A patent that focuses on one pump in the supercharger, and is designed to strongly suppress the turbulence in the air supply that is formed in the combustion chamber of the engine due to the fast jet of air supplied from the pump. A supercharged internal combustion engine according to any one of claims 1 to 3.
(5)少なくとも2つのポンプを連結した過給機を機関
の出力軸へ連結させたデイーゼル機関において、前記過
給機のある1つのポンプに注目し、同ポンプ内へ過給機
を介して機関に供給される給気の全部又は大部分を占る
如く給気を流入させ、これにより機関へ供給される新気
の量も、新気のみが過給機の吐出側からほぼ大気圧状態
のまま機関へ供給される場合よりも、小さくなる如く制
限して、同ポンプの吐出側の圧力が正圧とならない様に
せしめ、機関へ供給される給気が更に要求される場合に
は、前記過給機を介して給気を更に機関へ供給する如く
して過給機の吐出側の圧力を高める様にした事を特徴と
する過給機付内燃機関。
(5) In a diesel engine in which a supercharger connected to at least two pumps is connected to the output shaft of the engine, focus on one pump with the supercharger, and connect the engine into the pump via the supercharger. The amount of fresh air supplied to the engine is increased so that only the fresh air is at almost atmospheric pressure from the discharge side of the supercharger. If more air is required to be supplied to the engine, the pressure on the discharge side of the pump is restricted to be smaller than that when the air is supplied to the engine. An internal combustion engine with a supercharger, characterized in that the pressure on the discharge side of the supercharger is increased by further supplying air to the engine via the supercharger.
(6)過給機の吐出側の圧力が負圧となる様にして過給
機に動力を発生させ、機関へ供給される給気が更に要求
される場合には、過給機を介して給気を更に機関へ供給
する如くして過給機の吐出側の圧力を高める様にした特
許請求の範囲第5項記載の過給機付内燃機関。
(6) Generate power in the turbocharger so that the pressure on the discharge side of the turbocharger becomes negative pressure, and if more air is required to be supplied to the engine, the power is generated through the turbocharger. The internal combustion engine with a supercharger according to claim 5, wherein the pressure on the discharge side of the supercharger is increased by further supplying air to the engine.
(7)排ガスを過給機の吐出側へ導入させる様にした特
許請求の範囲第6項記載の過給機付内燃機関。
(7) The internal combustion engine with a supercharger according to claim 6, wherein exhaust gas is introduced into the discharge side of the supercharger.
(8)過給機の吸入側の圧力と吐出側の圧力とがほぼ等
しくなる如く、排ガスを過給機の吐出側へ導入させる様
にした特許請求の範囲第5項記載の過給機付内燃機関。
(8) With a supercharger according to claim 5, wherein the exhaust gas is introduced into the discharge side of the supercharger so that the pressure on the suction side and the pressure on the discharge side of the supercharger are approximately equal. Internal combustion engine.
JP58197865A 1983-10-22 1983-10-22 Internal-combustion engine with supercharger Pending JPS6090924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58197865A JPS6090924A (en) 1983-10-22 1983-10-22 Internal-combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197865A JPS6090924A (en) 1983-10-22 1983-10-22 Internal-combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JPS6090924A true JPS6090924A (en) 1985-05-22

Family

ID=16381614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197865A Pending JPS6090924A (en) 1983-10-22 1983-10-22 Internal-combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JPS6090924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117799A (en) * 1989-04-27 1992-06-02 Fuji Jukogyo Kabushiki Kaisha Control system for a supercharged internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117799A (en) * 1989-04-27 1992-06-02 Fuji Jukogyo Kabushiki Kaisha Control system for a supercharged internal combustion engine

Similar Documents

Publication Publication Date Title
US4677826A (en) Outboard motor with turbo-charger
EP0277945B1 (en) An internal combustion engine provided with a supercharger
JP2892518B2 (en) Intake device for engine with mechanical supercharger
JPH0457848B2 (en)
JPS6090924A (en) Internal-combustion engine with supercharger
JP2966008B2 (en) Engine supercharger
JPS6116229A (en) Supercharged internal-combustion engine
JPS6045719A (en) Internal-combustion system with supercharger
JPS5851221A (en) Supercharging system for engine
KR100271467B1 (en) Low speed compensation device for turbo charger
JPS6069235A (en) Diesel engine with supercharger
JPS5857020A (en) Intake controller of internal-combustion engine
JPS60116820A (en) Internal-combustion engine with suprecharger
JPH0436026A (en) Intake system of engine
JPS59200017A (en) Engine with supercharger
JPS59692B2 (en) Exhaust turbocharged engine
JPS5999025A (en) Supercharged internal-combustion engine
JPS61104116A (en) Intake device of engine
JPS601222Y2 (en) Separate supercharged engine
JPS60261928A (en) Engine provided with supercharger
JPS6032933A (en) Diesel engine with supercharger
JPS58126427A (en) Internal-combustion engine with supercharger
JPH0340214B2 (en)
JPH04298658A (en) Fuel control device for engine
JPS6040725A (en) Internal-combustion engine with pump