JPS609093B2 - Aluminum alloy for thin plates with excellent high-temperature sag resistance and sacrificial anode properties - Google Patents

Aluminum alloy for thin plates with excellent high-temperature sag resistance and sacrificial anode properties

Info

Publication number
JPS609093B2
JPS609093B2 JP10159477A JP10159477A JPS609093B2 JP S609093 B2 JPS609093 B2 JP S609093B2 JP 10159477 A JP10159477 A JP 10159477A JP 10159477 A JP10159477 A JP 10159477A JP S609093 B2 JPS609093 B2 JP S609093B2
Authority
JP
Japan
Prior art keywords
alloy
sacrificial anode
temperature
thin plates
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10159477A
Other languages
Japanese (ja)
Other versions
JPS5435810A (en
Inventor
一雄 山田
堅 勝又
重威 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP10159477A priority Critical patent/JPS609093B2/en
Publication of JPS5435810A publication Critical patent/JPS5435810A/en
Publication of JPS609093B2 publication Critical patent/JPS609093B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた高温サグ性と犠牲陽極特性をもっ
た薄板用アルミニウム(Aそ)合金に関するものである
。 従来、一般に、例えばオートバイや自動車などのラジエ
ーター、クーラーのコンデンサー、およびェバポレィタ
ーなど(以下これらを総称して熱交換器という)の製造
には、フィン材とみてそれぞれAA規格105の材(9
9.5%以上のA〆)、同3003材(A〆−1。 2%Mn)および同7072村(A夕−1.2%Zn)
などの薄板が使用され、前記フィン材を管体に、有フラ
ックスろう付け法や真空ろう付け法などによって取付け
ることにより上記熱交換器が製造されている。 しかし、フィン材を構成する上記の従来AそおよびAそ
合金薄板は、高温サグ性(後述の実施例参照)が劣るた
めに、管体へのフィン材のろう付けに際して、前記フィ
ン材は外力および自重によって変形し、ろう付け前のフ
ィン材組立て形状をろう付け後まで保持し得ないという
問題点があった。 この発明は、上述のような観点から、すぐれた高温サグ
性を有すると共に、例えば各種熱交換器のフィン材とし
て適用した場合に管体に腐食を発生させない犠牲陽極特
性をもった薄板用Aそ合金を提供するもので、その成分
組成範囲を、重量%で・、Zn:0.5〜8.0%、 Mn:0.3〜2.5%、 Ni:0.05〜1.0% A夕および不可避不純物:残り、 で構成した点に特徴を有するものである。 つぎに、この発明の薄板用Aク合金において、成分組成
範囲を上述のように限定した理由を説明する。
The present invention relates to an aluminum (A-so) alloy for thin plates that has excellent high-temperature sag resistance and sacrificial anode properties. Conventionally, for the manufacture of radiators for motorcycles and automobiles, condensers for coolers, evaporators, etc. (hereinafter collectively referred to as heat exchangers), materials of AA standard 105 (9) have been used as fin materials.
9.5% or more A〆), 3003 material (A〆-1.2%Mn) and 7072 material (A〆-1.2% Zn)
The heat exchanger is manufactured by attaching the fin material to the tube body by flux brazing or vacuum brazing. However, since the above-mentioned conventional A-shaped and A-shaped alloy thin plates constituting the fin material have poor high-temperature sagging properties (see Examples below), when brazing the fin material to the pipe body, the fin material is not exposed to external force. Moreover, the fin material deforms due to its own weight, and the assembled shape of the fin material before brazing cannot be maintained until after brazing. From the above-mentioned viewpoints, the present invention provides a thin plate A material that has excellent high-temperature sagging properties and also has sacrificial anode properties that do not cause corrosion to tube bodies when used as a fin material for various heat exchangers, for example. It provides an alloy, and its composition range in weight% is: Zn: 0.5-8.0%, Mn: 0.3-2.5%, Ni: 0.05-1.0%. It is characterized by the following: residual and unavoidable impurities. Next, the reason for limiting the composition range as described above in the A alloy for thin plates of the present invention will be explained.

【a】 Zn Zn成分には合金の隣性陽極特性(すなわち、例えば前
記合金のフィン材と管体とより構成される熱交換器であ
れば、前記フィン材によって前記管体に腐食が発生する
のを防止する特性)を向上させる作用があるが、その含
有量が0.5%未満では所望のすぐれた犠牲陽極特性を
確保することができないので0.5%以上含有させなけ
ればならない。 しかし「80%を越えて含有させるとサグ性が劣化する
ようになると共に、合金の熔融点が低下するようになっ
てろう付けに際しての高温加熱時に部分溶融する場合が
あるので8%を越えて含有させてはならない。{b}
Mn Mn成分には後述するNj成分との共存において高温サ
グ性を向上させる作用があるがLその含有量が043%
未満では前記作用に所望の効果が得られないので0.3
%以上含有させなければならない。 しかし「2.5%を越えて含有させてもさらに一段の効
果向上は現われないことから「その上限値を2.5%と
定めた。〔CI Ni Ni成分は、Mn成分との相乗効果によって、高温サグ
性を向上させるために添加含有されるが〜その含有量が
0.05%未満では高温サグ性改善はなされないので0
.05%以上の含有が必要である。 しかし1.0%の含有で高温サグ性改善効果は飽和値に
達することから、その上限値を1.0%と定めた。つぎ
に、この発明の合金を実施例により比較例とともに説明
する。 【1’A夕−1.5%Zn−1.0%Mn−0.5%N
i合金(本発明合金)、■ A〆−1.5%Zn−1.
0%Mn−0.1%Zr合金(同一出願人による先行発
明合金、特厭昭51・一152027号参照)、‘3’
A〆−1.2%Zn合金(従釆7072合金)、以上
m〜湖合金の銭塊(長さ2000側×幅90仇舷×厚さ
45比妙)をそれぞれ温度58000に2独特間保持し
て灼熱化処理した後、その上下面を各5脚厚だけ機械面
削により除去した。 このように厚さ44仇奴とした面削鉾塊を、温度510
00で熱間圧延して厚さ8脚とした後、冷間圧延によっ
て厚さ2柵に圧延した。 ついで温度400℃に1時間保持の中間蛾鈍を施した後
、その厚さ2柵わ冷間圧延によって厚さ0.5肋まで減
じ、されに前記の中間焼鈍を行ない、最終冷間圧延によ
って厚さ0.5側を厚さ0.15肌に減じて本発明合金
裸薄板ト先行発明合金裸薄板、および従来7072合金
裸薄板をそれぞれ製造した。また「上記(1}〜(3’
合金の面削錆塊の上下削面のそれぞれに、厚さ55側の
A夕−9.5%Si−1.5%Mg合金ろう材を重ね合
わせ、両側4隅部(計8ケ所)をスポット的に熔接して
仮付けし、以後上述の裸薄板製造の場合と同一条件で圧
延して、本発明合金ろう材クラッド薄板、先行発明合金
ろう材クラッド薄板「および従来7072合金ろう材ク
ラッド薄板をそれぞれ製造した。 ついで、この結果得られた裸薄板およびろう材クラッド
薄板に関して高温サグ性試験および蟻性陽極特性試験を
行った。 まず、高温サグ性試験は、上記の裸薄板およびろう材ク
ラツド薄板のそれぞれから長さ60帆×幅15側×厚さ
0.15肋の寸法をもった試験片を切出し、第1図に概
略側面図で示されるように、前記試験片1を、その長さ
方向半分(3仇吻)がステンレス鋼台2から突出するよ
うに固定し、【a}温度600ooに、それぞれ1分「
2分、4分、および8分間加熱保持、{b’温度56
0oo、58000、60000、および62000に
それぞれ8分間加熱保持、の条件で加熱し、前記試験片
1の垂下値1を測定した。 この測定結果を第1表および第2表に示した。第1表 第2表 第1表および第2表に示す結果から明らかなように、裸
薄板およびろう材クラッド簿板のいずれにおいても、本
発明合金は、従来7072合金に比して著しくすぐれた
サグ性を示し、されに先行発明合金と比較しても長時間
保持および高温側ですぐれた特性を示している。 また、従来一般に60000で3〜5分保持した場合に
垂下量が5側以下のものが実用性があるとされているが
、近年複雑な構造の製品への適用が広まり、より高温サ
グ性のよいフィン材の開発が望まれていることから鑑み
て、本発明合金ろう材クラッド薄板は、温度620o
Cに8分間保持しても4.5側の垂下量しか示さないの
で、これの複雑な形状をした製品への適用が可能となる
ばかりでなく、その製品の仕上り寸法精度も一段とすぐ
れたものとなるのである。 ついで、犠牲陽極特性試験は、上記の裸薄板およびろう
材クラッド薄板のそれぞれから長さ140柳×幅2仇物
×厚さ0.15脚の寸法をもった試験片を9枚づつ切り
出し、第2図に概略斜視図で示されるように、裸薄板試
験片3については、心材;AA規格3003材、ろう材
:同×4004材(A〆−9.5*%Sj−1.5%M
g)からなる長さ140脚×幅7仇肋×厚さ1.0柳の
寸法をもってろう材クラッド平板4の上面に7側間隔に
真空ろう付けにより立設し、一方ろう材クラッド薄板試
験片3′については同寸法のi05の材(99.5%以
上のA夕)からなる裸平板4〆の上面に前記の裸薄板試
験片の場合と同様にこれを立設して、それぞれ犠牲陽極
特性試験用組立て体Aを形成し、つぎにこの組立て体に
対して、温度30qoの5%食塩水に10分間浸債、引
上げての強制乾燥5粉ご間の1時間サィクルの交互浸債
を90日間施し、前託ろう材クラッド平板4および裸平
板4′の上記試験片ろう付け側の面に発生した孔食状況
を観察した。 この観察結果が第3表に示されている。第3表に示され
る結果から明らかなように、本発明合金は、裸材および
ろう材クラッド材のいずれの場合にもすぐれた犠牲陽極
特性を示すので相手材である平板には全く腐食が発生し
ていないのに対して、従来7072合金においては、犠
牲陽極特性が悪いために相手材である平板には多数の孔
食の発生が認められる。 第3表 上述のように、この発明の合金は、すぐれた高温サグ性
および犠牲陽極特性をもつので、これを特に通常の熱交
換器のフィン材として使用した場合には、フィン材のも
つすぐれた磁性陽極効果のために管体の腐食が完全に防
止でき、また管体とフィン材とのろう付けに際しても組
立て時の形状がそのままろう付け後も保持されるのでフ
ィン材に粗密が発生せず、この結果冷却・加熱を均一に
効率よく行なうことができ性能および寿命の向上がはか
れるなど有用な効果がもたされるのである。
[a] Zn The Zn component has the adjacency anode property of the alloy (i.e., for example, in a heat exchanger composed of a fin material of the alloy and a tube body, corrosion occurs in the tube body by the fin material. However, if the content is less than 0.5%, the desired excellent sacrificial anode properties cannot be ensured, so the content must be 0.5% or more. However, if the content exceeds 80%, the sag properties will deteriorate, and the melting point of the alloy will decrease, which may cause partial melting during high-temperature heating during brazing. Must not be contained. {b}
Mn The Mn component has the effect of improving high-temperature sag properties when coexisting with the Nj component described below, but the L content is 0.43%.
If it is less than 0.3, the desired effect cannot be obtained.
% or more. However, ``even if the content exceeds 2.5%, further improvement in the effect will not appear,'' so the upper limit was set at 2.5%. [CI Ni The Ni component has a synergistic effect with the Mn component. is added to improve high-temperature sag properties, but if its content is less than 0.05%, no improvement in high-temperature sag properties is achieved.
.. The content must be 0.05% or more. However, since the high-temperature sag property improvement effect reaches a saturation value at a content of 1.0%, the upper limit value was set at 1.0%. Next, the alloy of the present invention will be explained by examples together with comparative examples. [1'A-1.5%Zn-1.0%Mn-0.5%N
i alloy (alloy of the present invention), ■ A〆-1.5% Zn-1.
0%Mn-0.1%Zr alloy (earlier invention alloy by the same applicant, see Tokkyo No. 51/1152027), '3'
A〆-1.2% Zn alloy (7072 alloy), a coin ingot (length 2000 mm x width 90 mm x thickness 45 mm) of 1.2% Zn alloy (7072 alloy) was kept at a temperature of 58000 for 2 unique periods. After that, the upper and lower surfaces were removed by mechanical shaving by a thickness of 5 feet each. In this way, the 44-meter-thick surface-cut block was heated to a temperature of 510 degrees.
After hot rolling to a thickness of 8 legs at 0.00, it was cold rolled to a thickness of 2 bars. Then, after being subjected to intermediate annealing at a temperature of 400°C for 1 hour, the thickness was reduced to a thickness of 0.5 ribs by cold rolling with 2 bars, then subjected to the above intermediate annealing, and finally cold rolling. The 0.5 thickness side was reduced to a thickness of 0.15 to produce a bare thin plate of the present invention alloy, a bare thin plate of the prior invention alloy, and a bare thin plate of the conventional 7072 alloy. In addition, “the above (1}~(3'
Overlay the A-9.5%Si-1.5%Mg alloy brazing filler metal on the 55-thickness side on each of the top and bottom surfaces of the surface-cut rust lump of the alloy, and spot the four corners on both sides (8 locations in total). Welded and tack-bonded, and then rolled under the same conditions as in the above-mentioned production of bare thin sheets to produce the present invention alloy brazing material clad thin sheet, the prior invention alloy brazing material clad thin sheet, and the conventional 7072 alloy brazing material clad thin sheet. Next, high-temperature sag resistance tests and ant-resistant anode property tests were conducted on the bare thin plates and brazing metal clad thin plates obtained as a result. First, the high-temperature sag resistance tests A test piece with dimensions of 60 sails in length x 15 sides in width x 0.15 ribs in thickness was cut out from each of Fix it so that half of the direction (3 points) protrudes from the stainless steel stand 2, and heat it to a temperature of 600 oo for 1 minute each.
Hold heat for 2 minutes, 4 minutes, and 8 minutes, {b' temperature 56
The samples were heated under the conditions of 0oo, 58,000, 60,000, and 62,000 for 8 minutes, respectively, and the droop value 1 of the test piece 1 was measured. The measurement results are shown in Tables 1 and 2. As is clear from the results shown in Tables 1 and 2, the alloy of the present invention is significantly superior to the conventional 7072 alloy in both bare thin sheets and brazing metal clad sheets. It exhibits sag resistance, and also exhibits superior properties in terms of long-term retention and high-temperature side, compared to the alloys of the prior invention. In addition, in the past, it was generally considered practical to have a drooping amount of 5 or less when held at 60,000 for 3 to 5 minutes, but in recent years, its application to products with complex structures has spread, and it has become more difficult to sag at high temperatures. In view of the desire to develop a good fin material, the alloy brazing filler metal clad thin plate of the present invention has a temperature of 620oC.
Even if held at C for 8 minutes, only the amount of sagging on the 4.5 side is shown, so not only can this be applied to products with complex shapes, but the finished dimensional accuracy of the products is even better. It becomes. Next, in the sacrificial anode characteristic test, nine test pieces each having dimensions of 140 yen length x 2 yam width x 0.15 yen thickness were cut out from each of the above-mentioned bare thin plate and brazing metal clad thin plate. As shown in the schematic perspective view in Fig. 2, for the bare thin plate test piece 3, the core material: AA standard 3003 material, the brazing material: AA standard 3003 material (A〆-9.5*%Sj-1.5%M
g) with the dimensions of 140 legs in length x 7 legs in width x 1.0 willow in thickness, were erected by vacuum brazing on the upper surface of the brazing metal clad plate 4 at 7 side intervals, while the brazing metal clad thin plate test piece As for 3', this was erected on the upper surface of a bare flat plate 4 made of I05 material (99.5% or more A) with the same dimensions as in the case of the bare thin plate test piece described above, and a sacrificial anode was placed on each. An assembly A for characteristic testing was formed, and then this assembly was immersed in 5% saline solution at a temperature of 30 qo for 10 minutes, then pulled out and forced dry for 1 hour cycle of 5 powders. The test was carried out for 90 days, and the state of pitting corrosion occurring on the brazed side surfaces of the test pieces of the pre-brazed brazing material clad flat plate 4 and the bare flat plate 4' was observed. The results of this observation are shown in Table 3. As is clear from the results shown in Table 3, the alloy of the present invention exhibits excellent sacrificial anode properties in both cases of bare material and brazing metal clad material, so that no corrosion occurs in the flat plate that is the mating material. On the other hand, in the conventional 7072 alloy, due to poor sacrificial anode characteristics, a large amount of pitting corrosion is observed in the flat plate that is the mating material. As mentioned above in Table 3, the alloy of the present invention has excellent high-temperature sag resistance and sacrificial anode properties, so when it is used as a fin material for a conventional heat exchanger, it is particularly effective against tangles in the fin material. Corrosion of the tube body can be completely prevented due to the magnetic anode effect, and even when the tube body and fin material are brazed, the shape at the time of assembly is maintained as it is after brazing, so there will be no unevenness in the fin material. As a result, cooling and heating can be performed uniformly and efficiently, resulting in useful effects such as improved performance and life span.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサグ性試験態様を示す概略側面図、第2図は犠
牲陽極特性試験用組立て体の概略斜視図である。 図面し、おいて、1・・・高温サグ性試験片、2・・・
ステンレス鋼台、A…擬性陽極犠牲試験用組立て体、3
,3′・・・試験片、4,4′・・・平板。 精1図 精2図
FIG. 1 is a schematic side view showing a sag test mode, and FIG. 2 is a schematic perspective view of the sacrificial anode characteristic test assembly. 1... high temperature sag test piece, 2...
Stainless steel stand, A...pseudo anode sacrificial test assembly, 3
, 3'... test piece, 4, 4'... flat plate. Sei 1 Sei 2

Claims (1)

【特許請求の範囲】 1 Zn:0.5〜8.0%、 Mn:0.3〜2.5%、 Ni:0.05〜1.0% Alおよび不可避不純物:残り、 (以上重量%)からなることを特徴とするすぐれた高温
サグ性と犠牲陽極特性をもった薄板用アルミニウム合金
[Claims] 1 Zn: 0.5 to 8.0%, Mn: 0.3 to 2.5%, Ni: 0.05 to 1.0%, Al and unavoidable impurities: remainder, (more than % by weight ) is an aluminum alloy for thin plates with excellent high-temperature sag resistance and sacrificial anode properties.
JP10159477A 1977-08-26 1977-08-26 Aluminum alloy for thin plates with excellent high-temperature sag resistance and sacrificial anode properties Expired JPS609093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10159477A JPS609093B2 (en) 1977-08-26 1977-08-26 Aluminum alloy for thin plates with excellent high-temperature sag resistance and sacrificial anode properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10159477A JPS609093B2 (en) 1977-08-26 1977-08-26 Aluminum alloy for thin plates with excellent high-temperature sag resistance and sacrificial anode properties

Publications (2)

Publication Number Publication Date
JPS5435810A JPS5435810A (en) 1979-03-16
JPS609093B2 true JPS609093B2 (en) 1985-03-07

Family

ID=14304698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10159477A Expired JPS609093B2 (en) 1977-08-26 1977-08-26 Aluminum alloy for thin plates with excellent high-temperature sag resistance and sacrificial anode properties

Country Status (1)

Country Link
JP (1) JPS609093B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526048Y2 (en) * 1990-01-21 1997-02-12 ソニー株式会社 Recording and playback device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057496B2 (en) * 1980-09-27 1985-12-16 株式会社神戸製鋼所 Aluminum alloy for brazing
JPS5792773A (en) * 1980-12-01 1982-06-09 Matsushita Electric Ind Co Ltd Method of producing positive temperature coefficient thermistor heater
JPS63274733A (en) * 1987-04-28 1988-11-11 Furukawa Alum Co Ltd Aluminum alloy for fin
JP3197251B2 (en) * 1998-09-22 2001-08-13 カルソニックカンセイ株式会社 Sacrificial corrosion-resistant aluminum alloys for heat exchangers and high corrosion-resistant aluminum alloy composites for heat exchangers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526048Y2 (en) * 1990-01-21 1997-02-12 ソニー株式会社 Recording and playback device

Also Published As

Publication number Publication date
JPS5435810A (en) 1979-03-16

Similar Documents

Publication Publication Date Title
JPH0320594A (en) Heat exchanger
EP0193004B1 (en) Corrosion resistant modified cu-zn alloy for heat exchanger tubes
JPS609093B2 (en) Aluminum alloy for thin plates with excellent high-temperature sag resistance and sacrificial anode properties
JPS6245301B2 (en)
US11491587B2 (en) Aluminum alloy brazing sheet and manufacturing method thereof
JPH0120958B2 (en)
JPS6280246A (en) Al alloy material for heat exchanger excellent in strength at high temperature
JPS62196348A (en) Fin material for heat exchanger made of aluminum alloy
JPH0210213B2 (en)
JPH0320436A (en) Aluminum alloy for heat exchanger fin
JPS60138037A (en) Al alloy composite fin material for heat exchanger having excellent high-temperature strength and sacrificial anode effect
JPS6346137B2 (en)
JPS62158850A (en) Al-alloy fin material for heat exchanger
JPH03197652A (en) Production of aluminum alloy fin material for brazing
JPS63186846A (en) Fin material for aluminum alloyed heat exchanger
JPS6323260B2 (en)
JPH03134128A (en) Aluminum alloy-clad material for heat exchanger member
JPH01246339A (en) Fin material for anticorrosion of cathode
JPH02129337A (en) Aluminum fin material
JPH01148489A (en) Al alloy brazing sheet for heat exchanger having excellent corrosion resistance at fillet forming part
JPH0210216B2 (en)
JPH03260029A (en) Aluminum alloy brazing sheet for drawn cup type heat exchanger
JPH03162542A (en) Aluminum alloy for heat exchanger
JPH02305946A (en) Production of fin material for heat exchanger
JPH0321616B2 (en)